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Abstract 

Background  Although substantial efforts have been made to build molecular biomarkers to predict radiation sen-
sitivity, the ability to accurately stratify the patients is still limited. In this study, we aim to leverage large-scale radiog-
enomics datasets to build genomic predictors of radiation response using the integral of the radiation dose–response 
curve.

Methods  Two radiogenomics datasets consisting of 511 and 60 cancer cell lines were utilized to develop genomic 
predictors of radiation sensitivity. The intrinsic radiation sensitivity, defined as the integral of the dose–response curve 
(AUC) was used as the radioresponse variable. The biological determinants driving AUC and SF2 were compared using 
pathway analysis. To build the predictive model, the largest and smallest datasets consisting of 511 and 60 cancer cell 
lines were used as the discovery and validation cohorts, respectively, with AUC as the response variable.

Results  Utilizing a compendium of three pathway databases, we illustrated that integral of the radiobiological model 
provides a more comprehensive characterization of molecular processes underpinning radioresponse compared 
to SF2. Furthermore, more pathways were found to be unique to AUC than SF2—30, 288 and 38 in KEGG, REACTOME 
and WIKIPATHWAYS, respectively. Also, the leading-edge genes driving the biological pathways using AUC were 
unique and different compared to SF2. With regards to radiation sensitivity gene signature, we obtained a concord-
ance index of 0.65 and 0.61 on the discovery and validation cohorts, respectively.

Conclusion  We developed an integrated framework that quantifies the impact of physical radiation dose 
and the biological effect of radiation therapy in interventional pre-clinical model systems. With the availability of more 
data in the future, the clinical potential of this signature can be assessed, which will eventually provide a framework 
to integrate genomics into biologically-driven precision radiation oncology.
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Introduction
Radiotherapy (RT) is among the most commonly used 
therapeutic modes of interventions in the management 
of cancer [1]. In routine clinical care, it is known that 
over half of all patients diagnosed with cancer undergo 
radiotherapy as a palliative and curative treatment 
modality in an adjuvant or a neoadjuvant setting [2]. 
Spanning over several decades, there have been numer-
ous technological advancements in the way radiation is 
administered to patients for achieving a high therapeu-
tic ratio [3–5]. For instance, image guidance techniques 
integrated with conformal radiotherapy and intensity-
modulated radiotherapy indicated a superior therapeu-
tic response for a variety of fractionation regimens [6]. 
For a longtime, the administration of radiotherapy in 
clinical practice has been guided by a tradeoff between 
the tumor control probability [7] and radiation-induced 
early- and late-toxicities [8, 9]. It is widely accepted that 
patients with similar stage, histology and anatomic fea-
tures, known as the ‘one-size-fits-all’ dosing paradigm, 
is currently employed in routine clinical care. However, 
this ‘one-size-fits-all’ philosophy does not account for 
tumor biological features to design patient-specific radia-
tion dosing regimens. Moreover, due to the inter-patient 
variability, patients treated with radiotherapy have a wide 
spectrum of clinical response [10]. Therefore, an in-depth 
understanding through the molecular lens is required, 
which has the potential to move RT into the realm of per-
sonalized radiation medicine based on patient-specific 
genomic profiles.

With the dawn of high throughput technologies, new 
research avenues have been opened to build biomarkers 
of treatment response using different types of OMICS 
data, such as, transcriptomics, proteomics, epigenom-
ics, etc. This could help us to investigate the underly-
ing biological mechanisms driving radiation response, 
thereby, enabling us to identify unique molecular tar-
gets accordingly. There have been several research 
efforts that were aimed towards the identification of 
genomic markers associated with radioresponse as well 
as to predict the risk of developing radiation-induced 
toxicities. One of the earliest works to predict radiation 
sensitivity was done by Eschrich et al., who developed a 
gene-based network using 48 cancer cell lines with SF2 
(surviving fraction at 2Gy of radiation) as the radiore-
sponse variable. Attempts to build radiation sensitiv-
ity gene signatures have continued to emanate over the 
years. A comprehensive overview of radiation response 
gene expression-based signatures can be found in a 
recently published work by Manem et  al. [11]. In this 
compendium, all the molecular signatures of radiation 
sensitivity were built using the NCI-60 panel data-
set with limited to no independent external validation 

raising concerns about their applicability and repro-
ducibility. Moreover, these signatures showed little to 
no overlap among them. This can be attributed to the 
development of gene signatures arising from different 
technological platforms, various experimental assays 
used to generate dose–response profiles across labs, 
and statistical methods used to build them resulting in 
reproducibility issues, thereby, ultimately resulting in 
non-translatable clinical biomarkers. While on the con-
trary, a study led by Fan et  al. found non-overlapping 
gene signatures to have high concordance, indicating 
common biological processes and redundancy among 
these signatures [6]. Considering these concerns with 
the development of biomarkers, it is crucial to apply 
robust statistical methods with independent discovery 
and validation cohorts before adopting to clinical prac-
tice. Through this manner, we can also avoid any spu-
rious association of gene signatures with the biological 
determinants of radiation sensitivity.

Recently, Yard et  al. profiled 511 cancer cell lines to 
different types of high-throughput screening—radiation 
sensitivity screen, while the same cell lines were also pro-
filed at the transcriptomic level [12]. In their study, the 
authors found that radiation sensitivity is driven by the 
association between genomic instability and the alter-
nations to DNA damage response. Given the concerns 
presented above along with the underlying biological 
complexity of the radiation response predictions, there 
is a dire need to combine the existing large-scale radiog-
enomics datasets and build robust multivariate genomic 
predictors and validate them on fully independent data-
sets. Till date, none of the studies in the literature have 
utilized these radiogenomics datasets to develop and vali-
date radiation response biomarkers. Importantly, to build 
predictive biomarkers of RT, there is currently no con-
sensus regarding the optimal response indicator for use 
across studies—AUC (Area under the curve of radiobio-
logical model) or SF2 (surviving fraction of cells at 2Gy of 
RT). In this study, we establish that AUC is more robust 
radiation response predictor than SF2 to build molecular 
signatures. To the best of our knowledge, this is the first 
time that both these large-scale radiogenomics datasets 
were analyzed in a single study with AUC under the radi-
obiological model as the response variable. This should 
provide us with adequate sample size to build molecular 
predictors and validate them in a fully independent data-
set, i.e., discovery dataset = 511 cancer cell lines and vali-
dation dataset = 60 cancer cell lines. Genomic predictors 
of radiation response built using preclinical data can be 
incorporated into the design of clinical trials, upon fur-
ther external validation. This can potentially accelerate 
and translate genomically-driven radiation regimens to a 
clinical setting.
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Materials and methods
Dose–response and gene expression data
We leveraged the largest radiogenomics dataset gen-
erated by Yard et  al. (also termed as Cleveland data set 
(CL)) to build the transcriptomic signatures, while the 
smallest radiogenomics dataset published by Amundson 
et al. (also termed as NCI-60 (NCI)) was used to validate 
the gene signature. Within the CL dataset, the radia-
tion sensitivity screening was performed across 511 cell 
lines comprising of 23 tissues. Multiple radiation doses 
of—1Gy, 2Gy, 3Gy, 4Gy, 6Gy, 8Gy, were administered to 
all the cell lines in the CL dataset to generate the dose–
response data. The raw Illumina RNA-seq profiles of the 
CL dataset were retrieved from the CCLE website (http://​
www.​broad​insti​tute.​org/​ccle/). The number of cell lines 
and tissues in the NCI cohort were 60 and 9, respectively. 
Only three radiation doses—2Gy, 4Gy, 6Gy, were admin-
istered to all the cell lines in the NCI cohort to obtain 
the cell viability data. The gene expression profiles for 
the NCI dataset were retrieved using the R package, rcell 
miner. This compendium of radiogenomics datasets were 
used to develop and validate gene signature for radiation 
sensitivity. Using our RadioGx platform [13], these data-
sets have earlier been processed. In the present study, the 
analyses were restricted to the genes common between 
the CL and NCI datasets, i.e., restricted for a total of 
12,258 genes.

Through this radiation cell viability data, we can obtain 
the indicators of radiation response, which could be used 
to develop preclinical models. In the literature, radiation 
sensitivity was defined by two different indicators that 
can be extracted from the dose–response data, namely, 
area under the curve (AUC) of the fitted radiobiological 
model to the dose–response data and surviving fraction 
of cells at a specific dose level, 2 Gy (SF2). To this date, 
there is no consensus regarding the optimal indicator of 
radioresponse for use across studies. Although our ear-
lier work has demonstrated that AUC captures more bio-
logical mechanisms than SF2, the comparison was done 
using only one pathway database. In this study, we gener-
alized this concept, and utilized three pathway databases 
to compare the biological determinants of AUC and SF2.

Radiobiological model
The relationship between the administered dose and the 
corresponding cell kill is given by the cell survival curve, 
which indicates the dose delivered against the number 
of surviving fraction of cells. The linear quadratic (LQ), 
also called the radiobiological model, is a formalism that 
is used to evaluate various clinically relevant radiation 
treatment regimens. The LQ model describes the fraction 
of cells that survived for a given radiation dose D (where, 

D can be an acute dose or a dose delivered in several frac-
tions). The survival fraction of cells after radiotherapy is 
given by the following equation:

where D is the total dose. In the above equation, the 
dimension of α is (1/Gy) that denotes the cellular radio-
sensitivity parameter, representing the direct action of 
lethal cell killing. And the dimension of β is (1/Gy2) that 
represents damage by DNA double-strand breaks. The 
ratio α/β depends on the tissue type. The value of α/β is 
high for tissues with early effects, and the linear value is 
crucial. For tissues with late effects, the value of α/β is 
low, and the quadratic term becomes important. Using 
the RadioGx platform, we fitted the radiation dose–
response data to the LQ radiobiological model. AUC was 
then computed as the area under the curve of the fitted 
radiobiological model.

Modeling approach
The integral under the dose–response curve was used 
as the radiation response indicator. For this analysis, we 
considered only those genes that were common between 
the two cohorts (12,258). The dimensionality of the fea-
tures was further reduced by choosing all those genes 
that were associated with radiation response. For this 
purpose, we utilized our previously compiled com-
pendium of radiation response gene signatures under 
oxic conditions [11], wherein, we curated a database 
of 35 gene expression signatures predictive of radia-
tion response under both oxic and hypoxic conditions. 
These signatures have come from a variety of sources and 
encompass a number of derivation techniques (e.g., clas-
sification, regression, clustering, co-expression networks 
using gene expression data across different types of can-
cers). All of these signatures were developed to predict 
radiation sensitivity. We leveraged these genes that are 
predictive of radioresponse to decrease the dimensional-
ity of features, which is also one of the common meth-
odologies described in the literature. In total, there were 
3402 unique genes related to radioresponse, out of which 
only 2836 genes were part of the gene expression data 
utilized in this study. Then, we employed the regression-
based multivariate linear model to develop and validate 
the gene expression-based predictor of radiation sen-
sitivity. The most significantly associated genes were 
selected based on the ranking of coefficient of correla-
tion between gene expression and AUC, which were then 
used to fit a multivariate regression model. The perfor-
mance of the model was evaluated using the concordance 
index metric, which is a generalization of the area under 
the ROC curve. The concordance index is defined as the 

S = exp(−αD − βD2)

http://www.broadinstitute.org/ccle/
http://www.broadinstitute.org/ccle/
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proportion of all pairs of patients where one patient expe-
rienced the event of interest and the other patient did not 
experience the event, and the patient with the lower risk 
score was the one who did not experience the event. A 
concordance index of 0.5 represents a random predictor, 
while a concordance index of 1 denotes a perfect pre-
dictor. We used the implementation of the concordance 
index available in the survcomp package.

Analysis framework
The framework for this study is presented in Fig. 1. The 
CL and NCI cohorts were used as discovery and valida-
tion datasets, respectively. Firstly, the pre-validation on 
the discovery dataset was performed, which consisted of 
10 iterations/repetitions of 10-fold cross-validation. The 
model was then trained on the CL dataset and the NCI 
dataset was used as an independent validation cohort. 
The accuracy of the models was computed using the con-
cordance index. By repeating ten times, we obtained the 
average accuracy for the model.

Biological determinants of AUC and SF2
The pathway enrichment analysis was carried out using 
the gene set enrichment analysis (GSEA) methodol-
ogy [14] with pathways defined by the C2 curated gene 
set from the MSIGDB (Molecular Signatures Database). 
For this study, we considered a compendium of three 
pathway databases, namely, ‘KEGG’, ‘REACTOME’ and 
‘WIKIPATHWAYS’ consisting of 186, 1654 and 733 
pathways, respectively. Firstly, the correlation was com-
puted between SF2 and AUC with gene expression val-
ues. Then, genes were ranked based on their correlation 
coefficient. Using the GSEA methodology, we computed 

the enrichment score for each pathway along with sta-
tistical significance using a permutation test (1000 per-
mutations). We performed the pathway analysis using 
the piano package [15]. For each pathway, the nominal 
p-values were corrected for multiple testing using the 
false discovery approach (FDR) method, with the p.adjust 
function in the base R package.

Leading‑edge gene analysis
In order to analyze if the same subset of genes were 
driving a pathway enriched by both AUC and SF2, we 
performed the leading-edge gene analysis. The GSEA 
methodology returns a subset of genes, termed as the 
leading-edge genes, which drives the enrichment statis-
tic in the pathway analysis. The leading-edge genes were 
obtained from the enrichment score that is defined by the 
maximum deviation from zero. This set of leading-edge 
genes are considered to be of high biological interest due 
to appearing at higher frequencies among the pathway 
subsets, which can also be used to build gene signatures. 
We extracted the leading-edge genes from the pathways 
that were commonly enriched between the two radiation 
response indicators, AUC and SF2.

Results
Using our RadioGx computational platform, we applied 
the LQ model to dose–response data for the cell lines 
available in the CL and NCI cohorts. The correlation 
between the computed AUC values with LQ model and 
the AUC assessed by the 9-day proliferative assay was 
found to be around 0.91 (p < e-16). Furthermore, we 
found the median value of AUC for all the cell lines in the 
CL cohort to be 2.71 (SD = 1.33). We then stratified the 

Fig. 1  Analysis pipeline. Using the cross-validation framework in the discovery cohort, CL dataset, we carried out the pre-validation of genomic 
predictors for radiation sensitivity. Gene expression signature was developed using the full training set, which was then evaluated on a fully 
independent external cohort, NCI cohort
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CL cohort into two groups—resistant and sensitive cell 
lines, based on the mean value of AUC. The median and 
standard deviation of AUC values for resistant and sen-
sitive groups were found to be 3.68 (SD = 1.02) and 1.92 
(SD = 0.53) respectively (Fig. 2A).

To assess the differences of radiation response distri-
bution in AUC values across all tissue types in the larg-
est dataset (CL cohort), we plotted the distribution of 
LQ model AUC values across various histologies (with 
a minimum number of 10 cell lines per histology). We 
observed that radiation response varied across tissues 
(Fig.  2B). We found that soft tissue and breast have the 
lowest and highest median AUC values, respectively.

Comparison of radiation response indicators
For carrying out any pre-clinical investigations along 
with the discovery of novel biomarkers, utilizing the 
robust radiation response indicator is crucial. To examine 
the biological pathways that were driving SF2 and AUC, 
we performed the pathway analysis on the largest avail-
able dataset, i.e., the CL dataset with 511 cell lines. Gene 
expression profiles were correlated with SF2 and/or AUC 
using the Spearman correlation. GSEA methodology was 
then applied on the ranked gene list based on the coef-
ficient of correlation. All the results presented in this sec-
tion were corrected for an FDR < 10% (Fig. 3).

Using the KEGG database (Fig. 3A and D), 57 molec-
ular pathways were found to be enriched using AUC, 

out of which, 33 and 24 pathways were positively and 
negatively correlated with AUC, respectively. In a simi-
lar manner, using SF2, only 31 pathways were enriched, 
out of which, 19 were positively correlated with the SF2. 
There were 27 pathways that were commonly enriched 
between AUC and SF2. While 30 transcriptional path-
ways were specifically enriched with AUC, only 4 path-
ways were enriched specifically with SF2. Similarly, we 
have performed pathway analysis using the REACTOME 
database too (Fig.  3B and E). 461 biological pathways 
were enriched using AUC, out of which, 152 and 309 
pathways were positively and negatively correlated with 
AUC, respectively. With SF2, only 196 pathways were 
enriched, out of which 81 and 115 were positively and 
negatively correlated. Among the enriched pathways, we 
found 173 of them to be common between SF2 and AUC. 
Moreover, 288 and 23 pathways were enriched specifi-
cally with AUC and SF2, respectively. Using the WIKIP-
ATHWAYS database, 92 pathways were found to be 
enriched with AUC, out of which, 51 and 41 of them were 
positively and negatively enriched (Fig. 3C and F). While 
with SF2, we found 83 pathways to be enriched with 55 
and 28 of them positively and negatively correlated with 
SF2. There were 54 transcriptional pathways that were 
commonly enriched between the two radioresponse indi-
cators, AUC and SF2. While 38 of these pathways were 
specifically enriched with AUC, only 29 pathways were 
enriched specifically with SF2. Importantly, we found 

Fig. 2  A Distribution of LQ model AUC values across all cell lines as well as the resistant and sensitive cell lines in the CL dataset. B Distribution 
of LQ model AUC values across various histologies (those cell lines with at least 10 per histology)
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two groups of biologically enriched mechanisms, namely, 
cell cycle and repair pathways. It is well known that cell 
cycle post irradiation is known to determine radiation-
induced cell death, and DNA repair is an important 
component for cell survival post irradiation [16]. Among 
these enriched pathways, cell cycle pathways were found 
to be negatively correlated with both SF2 and AUC, DNA 
damage and repair pathways are predominantly impaired 
in AUC. On the contrary, SF2 was associated with a more 
pronounced antioxidative response. We found an enrich-
ment of Nrf2-related pathways, which are known to be 
activated in oxidative stress and promote cell protection 
and survival. Numerous works have shown that the acti-
vation of the Nrf2 biological pathway promotes radiation 
resistance through increased cyto-protection and cell 
growth [17–19].

To summarize our findings, we characterized the bio-
logical determinants underpinning SF2 and AUC, sup-
porting the biological relevance of these transcriptional 

pathways in the realm of radiation therapy [16–19]. 
More importantly, we leveraged three pathway data-
bases and found that AUC captures more biological 
processes compared to the point estimate, SF2. Further-
more, AUC was able to provide a more comprehensive 
characterization of the molecular processes underpin-
ning radioresponse compared to SF2. Therefore, from 
our analyses, we conclude that AUC was able to capture 
more gene expression pathways that were correlated 
with radioresponse, compared to SF2. Altogether, our 
findings reveal that AUC is a better and a robust indica-
tor of radiation response. As a result of these findings 
at the transcriptomic level, we exclusively used AUC 
as the radioresponse indicator to build the predictive 
models. Furthermore, our analyses demonstrated that 
cancer cells are guided by variable biological responses 
based on the radiation response indicator, which is a 
key determinant for biomarker discovery.

Fig. 3  Comparison of biological processes underpinning radioresponse indicators, AUC and SF2. Panels A-C Venn diagrams representing pathways 
enriched with AUC and SF2 using KEGG, REACTOME and WIKIPATHWAYS databases, respectively. Panels D-F FDR for each biological pathway from A, 
B, C panels demonstrating greater levels of statistical significance among pathways specific to AUC compared to SF2
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Analysis of leading‑edge genes
To identify those genes that were driving the enrichment 
of biological pathways, we performed the leading-edge 
gene analysis. To achieve this, we focused on pathways 
that were commonly enriched between AUC and SF2 
within each pathway database, separately. Leading-edge 
genes were extracted from 27, 173 and 54 common path-
ways that were enriched between AUC and SF2 in KEGG, 
REACTOME and WIKIPATHWAYS databases, respec-
tively. The intersection of the unique leading-edge gene 
sets between AUC and SF2 is presented in Fig. 4. Despite 
the fact that there are a number of leading-edge genes 
that were overlapping across the pathway databases, 
there are a subset of genes that were specifically unique 
to AUC and SF2. These results suggest that the enrich-
ment signal is driven by a different set of genes with the 
two radioresponse indicators, AUC and SF2. Addition-
ally, this illustrates that cancer cells are driven by variable 
subsets of genes based on the radiation response indica-
tor, which is crucial to build biomarkers.

Model evaluation
In this section, we will present the results of the gene 
expression signature for predicting radiation sensitivity. 
We developed the genomic predictive model in the dis-
covery dataset (CL) using a cross-validation framework 
consisting of 10 iterations of 10-fold cross-validations. In 
the 10-fold cross-validation approach, the multivariate 
regression model was developed using 90% of the total 
cell lines as a training set, leaving 10% of the cell lines as 
a test set. The gene expression profiles and AUC of all 
cell lines in the training set were used to identify features 
that were strongly associated with radiation response. To 

reduce the dimensionality of feature space, we selected 
those genes that were associated with radiation response. 
Then, the model’s performance was assessed using the 
concordance index in the pre-validation phase, which is 
presented in Fig. 5. The number of features that resulted 
in the highest concordance index was found to be 22. 
The gene signature can be found in the Supplementary 
file. We then used the set of best features and repeated 
10 iterations in a 10-fold cross validation framework. The 
model yielded an average concordance index of 0.65 in 
the pre-validation phase. We further validated the per-
formance of the genomic predictor in the NCI dataset, 
which is a fully independent validation cohort. This will 
enable us to examine if the developed gene expression 
signature can be generalizable to new datasets. On the 
validation cohort, the concordance index of the multivar-
iate model was found to be 0.61.

Discussion
To date, the paradigm of precision medicine has primar-
ily been applied to pharmacogenomics, and little focus 
has been given to radiation oncology [4]. Radiotherapy 
is often used as a curative therapeutic intervention for 
early-stage curable cancers. The last few decades have 
witnessed an improvement in the survival rates of can-
cer patients with advancements in the physical precision 
of radiotherapy (RT) targeting of tumors. The clinical 
gains against these technological changes have been less 
impressive. Hence, to achieve a substantial gain in tumor 
control, therapeutic strategies have to be designed based 
on the genomic profiles of each patient, also known as 
the biological precision. With a rapid progress in high-
throughput technologies and generation of sequencing 

Fig. 4  Comparison of leading-edge gene sets among commonly enriched pathways using the radiation response indicators, AUC and SF2, 
within each of the three pathway databases
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data, it is now possible to leverage these diverse datasets 
and build molecular predictors of radiation response.

It is widely accepted that the next wave of clinical gains 
will be from designing biologically-guided radiation 
regimens. The availability of OMICS data has acceler-
ated research towards developing data-driven OMICS-
based biomarkers using gene expression profiles from 
in-vitro or cell line data [13, 20]. Several studies in the 
literature have developed radiation sensitivity gene sig-
natures using cell data obtained from clonogenic survival 
assays, and an overview of these signatures can be found 
in a recent work by Manem et al. [11]. All of these stud-
ies built the radiosensitivity gene signatures using the 
NCI-60 panel or used SF2 as the response variable. These 
models demonstrated poor predictive performance on 
large-scale prospective validation datasets. Although not 
an exhaustive list, but, there are several reasons for the 
poor model performance, such as lack of assay stand-
ardization to generate dose–response data across labs, 
various statistical methods used to build these signa-
tures resulting in reproducibility issues, and inadequate 
sample size, thereby evading their clinical translation 
[21, 22]. This highlights the need to develop robust and 
reproducible molecular predictors of radiation sensitiv-
ity for future interventional studies. Currently, there are 
no clinically approved genomic biomarkers predictive of 
radiation response. Furthermore, there is a lack of pre-
dictive biomarkers in the context of combination inter-
ventions, in which, radiotherapy is administered along 

with cytotoxic chemotherapeutic compounds and/or 
immunotherapy. Hence, there remains an unmet clinical 
need to develop robust and reproducible biomarkers of 
radiation response.

With this premise, we sought to address two objectives 
in this study, namely, i) compare the molecular determi-
nants of the two radiation response indicators, SF2 and 
AUC using three pathway databases; and ii) build and val-
idate the genomic predictor of radiation sensitivity using 
AUC as the response variable. To achieve the objectives 
of this work, we utilized two large-scale radiogenom-
ics datasets consisting of 511 cancer cell lines (used as 
discovery cohort) and an external cohort of 60 cell lines 
(used as validation cohort). So far, none of the studies 
have utilized them to build and validate gene signatures. 
In addition, all of the studies in the literature have used 
SF2 as the radioresponse indicator, although, mathemati-
cally, integral under the radiobiological curve captures 
more biological processes, as presented in this study. We 
performed pathway analysis using the GSEA method 
and demonstrated that AUC captures more molecular 
processes compared to SF2. We found this finding to be 
agnostic to the pathway database. Despite radiation con-
serves numerous biological pathways, unique biological 
signals were enriched based on the radiation response 
indicator, which is a crucial determinant for building 
biomarkers. These findings will further facilitate a poten-
tial understanding on the biological mechanisms driv-
ing radiation sensitivity at the transcriptomic level. As a 
result of these findings, we have used AUC as the radiore-
sponse indicator to build the predictive models. To build 
the molecular predictor, we implemented a multivariate 
regression model with AUC as the radiation response 
variable. The CL dataset was used as the discovery cohort 
(n = 511 cancer cell lines) and the NCI dataset was used 
as the validation cohort (n = 60 cancer cell lines). We 
found the concordance index of 0.65 in the discovery 
dataset and 0.61 in the validation dataset. It should be 
noted that the model performance is in line with other 
cell line-derived drug response studies in the literature. 
One of the major reasons for the model performance to 
be around 65% can be attributed to the complexity of the 
experimental design and assays used, and the tradeoff 
between various experimental parameters to enable high 
throughput collection of data makes the noise unavoid-
able from these generated data. More advanced statisti-
cal approaches should be employed to correct for these 
noisy observations to build robust predictive biomarkers, 
which is a subject of ongoing investigation.

This study holds great promise to generate more test-
able biological hypotheses, for instance, SF2 vs AUC 
indicators in a pre-clinical setting along with the devel-
opment of novel biomarkers using the integral of the 

Fig. 5  Model performance of genomic predictor of radiation 
sensitivity in the pre-validation and validation phases. The prediction 
performance of the predictive model assessed by concordance index 
between the predicted and observed AUC values. Predictions were 
averaged in 10 iterations of 10-fold cross-validation in the discovery 
dataset (CL). The error bars represent the 95% confidence 
interval of the performance computed during the 10 repetitions 
of cross-validation
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dose–response curve. Our work also represents a sig-
nificant step towards individualizing radiation dosim-
etry with the integral of the dose–response curve to 
individual patients and not abiding to the one- size-fits 
all philosophy that is currently employed in routine 
clinical care. Importantly, the integration of clinical and 
OMICS features in the predictive model, will help the 
physicians to design optimal radiation treatment plans 
that can maximize the tumor control and minimize 
the toxicities. While this study is promising, we do 
acknowledge the limitations. Firstly, the complex exper-
imental assays with non-standard distributions may 
potentially lead to non-spurious associations between 
genomics features and radioresponse indicators. Sec-
ondly, it is possible that cell lines may have evolved 
under different conditions temporally and accumulated 
genomic alterations that were re culture-dependent. 
Thirdly, these cell cultures lack the tumor microenvi-
ronment structure such as stroma and immune cells, 
which play a major role in radiation response. Hence, 
it is pertinent to address these issues in future works by 
using rigorous quality controls in experiments.

Rigorous model testing is required before adopt-
ing the genomic predictors in clinical practice [23]. To 
demonstrate the robustness and generalizability, gene 
signatures have to be validated on several external data-
sets as well as on prospective cohorts, if available. To 
summarize, we envision that the developed gene sig-
nature of radiation sensitivity based on the integral of 
the dose–response curve has the enormous potential to 
personalize RT and improve the treatment outcomes. 
This could eventually have a huge impact in decision-
making landscape of precision radiation oncology.
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