
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Zou et al. BMC Cancer         (2023) 23:1147 
https://doi.org/10.1186/s12885-023-11628-1

BMC Cancer

†Yanzheng Zou and Ming Yue contributed equally to this work.

*Correspondence:
Rongbin Yu
rongbinyu@njmu.edu.cn
Sheng Yang
yangsheng@njmu.edu.cn
Peng Huang
huangpeng@njmu.edu.cn
1Department of Epidemiology, Center for Global Health, School of Public 
Health, Nanjing Medical University, Nanjing 211166, China

2Department of Infectious Diseases, The First Affiliated Hospital of Nanjing 
Medical University, Nanjing, China
3Department of Infectious Disease, Jurong Hospital Affiliated to Jiangsu 
University, Jurong, China
4Faculty of Life Science and Technology, Kunming University of Science 
and Technology, Yunnan, China
5Kunming Medical University, Kunming, China
6Beijing Institute of Microbiology and Epidemiology, State Key Laboratory 
of Pathogen and Biosecurity, Beijing, China
7Department of Biostatistics, Center for Global Health, School of Public 
Health, Nanjing Medical University, Nanjing 211166, China

Abstract
Background Most existing predictive models of hepatocellular carcinoma (HCC) risk after sustained virologic 
response (SVR) are built on data collected at baseline and therefore have limited accuracy. The current study aimed 
to construct an accurate predictive model incorporating longitudinal data using a novel modeling strategy. The 
predictive performance of the longitudinal model was also compared with a baseline model.

Methods A total of 400 patients with HCV-related cirrhosis who achieved SVR with direct-acting antivirals (DAA) were 
enrolled in the study. Patients were randomly divided into a training set (70%) and a validation set (30%). Informative 
features were extracted from the longitudinal variables and then put into the random survival forest (RSF) to develop 
the longitudinal model. A baseline model including the same variables was built for comparison.

Results During a median follow-up time of approximately 5 years, 25 patients (8.9%) in the training set and 11 
patients (9.2%) in the validation set developed HCC. The areas under the receiver-operating characteristics curves 
(AUROC) for the longitudinal model were 0.9507 (0.8838–0.9997), 0.8767 (0.6972,0.9918), and 0.8307 (0.6941,0.9993) 
for 1-, 2- and 3-year risk prediction, respectively. The brier scores of the longitudinal model were also relatively low 
for the 1-, 2- and 3-year risk prediction (0.0283, 0.0561, and 0.0501, respectively). In contrast, the baseline model only 
achieved mediocre AUROCs of around 0.6 (0.6113, 0.6213, and 0.6480, respectively).

Conclusions Our longitudinal model yielded accurate predictions of HCC risk in patients with HCV-relate cirrhosis, 
outperforming the baseline model. Our model can provide patients with valuable prognosis information and guide 
the intensity of surveillance in clinical practice.
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Background
Hepatitis C virus (HCV) infection remains a severe 
public health problem today, with an estimated 71  mil-
lion chronically infected worldwide [1]. One of the most 
serious outcomes of HCV infection is the occurrence 
of hepatocellular carcinoma (HCC). HCC resulted in 
approximately 830,000 deaths in 2020 alone [2]. The new 
direct-acting antivirals (DAA) regime offers unprece-
dented rates of HCV virus eradication, with a sustained 
virologic response (SVR) rate of over 90% [3, 4]. With the 
widespread use of DAA, it is expected that most HCV-
infected patients will achieve SVR after their antiviral 
treatments.

However, several studies have shown that the residual 
risk of HCC persists after HCV eradication [5–7]. Addi-
tionally, the risk of HCC increases in patients with cir-
rhosis [5]. Results of a large-scale cohort study revealed 
that patients with HCV-related cirrhosis presented a 
significantly higher annual incidence rate of HCC after 
SVR, well above the threshold of surveillance recom-
mendation by the American Association for the Study of 
Liver Diseases [8]. Several factors, including older age [6], 
male gender [9], alpha-fetoprotein (AFP) [10, 11], aspar-
tate aminotransferase (AST) [12], alanine transaminase 
(ALT) [12], gamma-glutamyl transferase (GGT) [13] and 
total bilirubin [13], were reported to be associated with 
the increased risk of HCC in patients with HCV or cir-
rhosis. Risk prediction models were constructed on these 
predictor variables to guide clinical decisions regarding 
the intensity of surveillance for cirrhotic patients who 
have reached SVR.

Most of the published predictive models were built on 
a few variables collected at baseline using conventional 
modeling strategies [11, 13, 14]. These models are usu-
ally mediocre in predictive performance since the risk 
of HCC can fluctuate over time as patients age, portal 
hypertension worsens, or liver stiffness increases [15]. In 
contrast, longitudinal models incorporating the repeated 
measurements of the predictor variables are able to cap-
ture the dynamic risk of HCC occurrence post-SVR. 
Furthermore, the longitudinal models can distinguish 
between patients who have similar values of predic-
tor variables at baseline but continue to have different 
outcomes.

Machine learning algorithms have long been used in 
predictive modeling [16, 17]. The random survival for-
est (RSF) algorithm is regarded as a better alternative 
to the conventional Cox model in survival analysis [18]. 
Recently, a novel modeling framework has been devel-
oped that is capable of including information extracted 
from longitudinal data into RSF [19]. The current study 
aimed to construct a longitudinal predictive model using 
this modeling approach to predict HCC occurrence in 
patients with HCV-related cirrhosis. We also compared 

the performance of our longitudinal model with a base-
line model.

Methods
Study population and follow-up
A total of 1042 patients with chronic hepatitis C from 
the Chronic Hepatitis C Research Program of Jiangsu 
(CHCRPJ) underwent DAA treatment from July 2012 to 
October 2020 at Jurong people’s hospital, China. Among 
these patients, 485 had been diagnosed with cirrhosis 
prior to treatment. Cirrhosis was diagnosed based either 
on a liver biopsy showing Metavir F4, a transient elastog-
raphy score > 14  kPa, or clinical evidence. Patients who 
did not reach SVR after treatment, patients diagnosed 
with HCC prior to treatment, and patients who lacked 
the required serum biomarker values at baseline were 
further excluded. SVR was determined as a serum HCV 
RNA viral load below the lower limit of detection at least 
12 weeks after completion of treatment. Eventually, 400 
patients were enrolled in the study. The flow diagram of 
patient selection is presented in Figure S1.

The index date of the study was the start of DAA treat-
ment. Patients were followed until HCC development, 
death or 31/11/2022, whichever came first. The study 
outcome was HCC occurrence after the index date. HCC 
was diagnosed according to the guidelines of the Ameri-
can Association for the Study of Liver Diseases [20]. 
Information on HCC occurrence both before and after 
treatment was retrieved from hospital inpatient and out-
patient diagnoses. Patients not developing HCC were 
censored at the end of follow-up or the date of death.

Written informed consent was obtained from all par-
ticipants for the use of their data. The study protocol 
complied with the ethical guidelines of the Declarations 
of Helsinki and Istanbul. The study was approved by the 
institutional ethics review committee of Nanjing Medical 
University.

Predictor variables
The predictor variables involved in model development 
were selected based on their availability in the current 
study and their association with HCC described in pre-
vious literature. The predictor variables were classified 
into two categories, baseline predictors and longitudinal 
predictors. The baseline predictors, including age and 
gender, were collected at enrollment and did not change 
over time. The longitudinal predictors might change over 
time, as they were collected at enrollment and measured 
multiple times afterwards when patients returned for 
medical visits during the follow-up period. The longitu-
dinal predictors were serum biomarkers, including AFP, 
total bilirubin, direct bilirubin, ALT, AST, cholinester-
ase, alkaline phosphatase (ALP), GGT, total protein, and 
albumin.
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Patients attended follow-up visits at variable time inter-
vals. At each visit, their serum biomarkers, including the 
aforementioned longitudinal predictors, were measured. 
If any measurement from a follow-up visit was missing 
one of the longitudinal predictors, the entire data from 
that visit was excluded. Consequently, the time intervals 
between the repeated measurements for each patient 
were irregular.

Model development
We developed two types of models to predict HCC 
occurrence in patients reaching SVR–the longitudinal 
model and the baseline model for comparison. The lon-
gitudinal model was constructed in two steps following 
the modeling framework proposed by Lin et al [19]. First, 
to retrieve information from every repeatedly measured 
longitudinal variable, we used the fast covariance esti-
mation method (FACEs) developed by Xiao et al [21]. 
FACEs is a new covariance-based functional principal 
component analysis (FPCA) method that has consider-
ably expanded the applicability of functional data analysis 
to irregularly spaced data such as longitudinal data. The 
FACEs method extracts informative features from longi-
tudinal data and presents them as scores. It reveals good 
performance in the case of sparse longitudinal data like 
the current study.

Next, the features extracted were included in the ran-
dom survival forest model (RSF) as time-independent 
covariates along with the two baseline variables. RSF is 
an extension of the random forest approach, a non-para-
metric machine learning algorism, to survival analysis 
[18]. The model is constructed by averaging the predicted 
hazards of many decision trees. Unlike conventional sur-
vival methods, RSF bypasses the assumption of propor-
tional hazards and provides a way to handle unspecified 
interactions [22] and patterns of non-linearity [23] in the 
covariates. RSF in the current study was built using 1000 
trees and other default parameters.

We developed a baseline model using RSF based on the 
same predictor variables as in the longitudinal model, 
but utilizing only a single measurement taken at baseline. 
Additionally, for ease of interpretation, we constructed 
another baseline model using Cox regression.

Statistical analysis
Continuous variables were summarized as mean (stan-
dard deviation), and categorical variables were sum-
marized as count (percentage). The follow-up time of 
patients was presented as median (range). Continu-
ous variables were compared using the Student t-test or 
the Mann-Whitney U test, and categorical variables by 
either the Chi-square test or the Fisher exact test when 
appropriate.

The averaged trajectory of each longitudinal predictor 
was estimated using mixed-effects models with random 
and fixed effects for measurement time. In addition to a 
linear model, a non-linear model which included natural 
cubic splines with 2 degrees of freedom in both the ran-
dom and fixed effects part was also constructed.

The study population was split into a training set (70%) 
and a validation set (30%) at random. The baseline and 
longitudinal models were developed on the training set 
and assessed on the validation set. We presented the per-
formance of the two models in predicting HCC occur-
rence in subsequent 1, 2, and 3 years after the third year 
of follow-up. In essence, the longitudinal information in 
the initial 3 years of follow-up served as the basis for the 
prediction of events happening in the 4th, 5th, and 6th 
years of follow-up. We chose three years from enrollment 
as the prediction window because the time frame allowed 
for the majority of patients in the validation set (81.25%) 
to have at least two repeated measurements recorded.

To further evaluate the robustness of our modeling 
strategy, we employed a leave-one-out cross-validation 
approach. For each iteration, we trained the model using 
the entire dataset, excluding one patient’s data, and then 
tested the model on the omitted patient. This process 
was repeated for every individual, resulting in a pre-
dicted probability of HCC occurrence for each patient. 
The prediction window was still set at three years from 
enrollment.

Across both our main model and the leave-one-out 
validation, the predictive performance of the models was 
evaluated in terms of both discrimination and calibration. 
The time-dependent areas under the receiver-operating 
characteristics curves (AUROC) were used to measure 
the discriminatory capacity of the models for separating 
patients who developed HCC 1, 2, and 3 years after Year 
3 from patients who did not [24, 25]. A higher AUROC 
indicates better model performance. Brier scores, which 
capture both discrimination and calibration, were used as 
a metric for overall accuracy. Brier scores range between 
0 and 1, with scores closer to 0 representing higher accu-
racy and better model performance. To adjust for right 
censoring, the Kaplan–Meier method was used as the 
inverse probability of censoring weights estimator in cal-
culating brier scores [24]. The 95% confidence interval 
(CI) of the time-dependent AUROC and brier score were 
estimated based on 1000 bootstrap samples of the valida-
tion set.

Statistical significance was set at P < 0.05. Data analy-
sis was all performed using R software, version 4.1.2 (R 
Foundation for Statistical Computing) [26]. The FACEs 
method was performed using the face package [27], and 
the RSF was constructed using the randomForestSRC 
package [28]. The risk prediction of RSF models was per-
formed with the pec package [29]. The time-dependent 
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AUROC was calculated using the tdROC package [30]. 
The online web calculator was constructed using the 
shiny package [31].

Results
Baseline characteristics of patients
A total of 400 HCV-infected patients with cirrhosis were 
enrolled in the study. 280 patients (70%) were random-
ized to the training set and 120 (30%) to the validation 
set. The characteristics of patients in the two groups are 
displayed in Table 1. There were no significant differences 
in baseline characteristics between these two groups. 
Both groups consisted mainly of female patients (72.5-
77.9%) around 60 years old (60.21 and 60.43 years). Dur-
ing a median follow-up of approximately 5 years (4.76 
and 4.84 years), 25 patients (8.9%) in the training set and 
11 patients (9.2%) in the validation set developed HCC. 
Patients with the longest follow-up time were followed 
for 10.96 years in the training set and 10.87 years in the 
validation set. The Kaplan-Meier curve of the cumula-
tive probability of HCC in the entire study population is 
shown in Figure S2.

Trajectories of longitudinal predictors over time
The patients’ longitudinal predictors have been measured 
an average of 3.68 times (range 1–26) during the entire 
follow-up period. To illustrate the evolution of these pre-
dictors over time, we presented in Fig.  1 the individual 
and averaged trajectories of the 10 longitudinal predic-
tors in patients who developed HCC and those who did 
not from the entire cohort.

As can be seen, the trajectory of the longitudinal pre-
dictors differed in patients who had HCC and patients 
who did not. For example, the AFP level in patients who 
experienced HCC increased dramatically during the fol-
low-up period, while the AFP level in patients who did 
not experience HCC remained stable or even decreased 
steadily. Also, the GGT level in patients who did not 
develop HCC appeared to decrease over time, whereas 
the GGT level in patients who developed HCC remained 
stable.

Individual-level prediction of HCC-free probabilities
Figure 2 illustrates the predictions made with the longitu-
dinal models and the baseline RSF model for two patients 
with similar biomarker values at baseline from the valida-
tion set. The predictions of the longitudinal model were 
made at Year 3 of the follow-up. It can be noted that the 
baseline model gave similar predictions for HCC risk in 
the two patients. In contrast, the longitudinal model indi-
cated a sharp increase in HCC risk for patient 2377 and 
a relatively low risk for patient 1356. As demonstrated 
by the overlaid survival curves, the longitudinal model 
assigned a higher survival probability to patient 1356 
and a lower survival probability to patient 2377 com-
pared with the baseline model. The predictions made by 
the longitudinal model were consistent with the actual 
outcome, with patient 2377 developing HCC 4.85 years 
after enrollment. In contrast, patient 1356 had not devel-
oped HCC at the time of last clinical visit, 5.65 years after 
enrollment.

Performance of prediction models in the validation set
Validation of the models was performed on a random 
30% split of the entire study cohort. The validation set 
was not included in model development. Three years 
after enrollment, 94 out of 120 patients in the validation 
set were still at risk of HCC. In this subset of patients, 
the longitudinal model showed excellent performance in 
predicting HCC events that occurred 1 year after, with 
an AUROC of 0.9507 (95% CI 0.8838–0.9997). For 2-year 
and 3-year predictions, the performance of the longitu-
dinal model was very good as well, with AUROCs both 
above 0.8 (0.8767 and 0.8307, respectively). Addition-
ally, the longitudinal model achieved remarkably low 
brier scores in the 1-, 2- and 3- year predictions of HCC 
(0.0283, 0.0561, and 0.0501, respectively). In compari-
son, the baseline model also constructed with RSF only 
achieved mediocre AUROCs in predicting HCC events 
1, 2, and 3 years from Year 3 (0.6113, 0.6213, and 0.6480, 
respectively) (Table 2). As is demonstrated in Fig. 3, the 
longitudinal model outperformed the baseline RSF model 
with better discriminative accuracy and improved cali-
bration. The Cox regression baseline model showed per-
formance similar to the RSF baseline model (Table S1).

Table 1 Baseline Characteristics of Patients*
Characteristics Training set 

(n = 280)
Validation 
set (n = 120)

P 
value

Age (years) 60.21 (7.10) 60.43 (6.71) 0.767
Gender, female 218 (77.9) 87 (72.5) 0.305
AFP (ng/ml) 13.21 (25.37) 11.30 (21.79) 0.472
Total Bilirubin (µmol/L) 20.62 (13.98) 21.87 (26.82) 0.542
Direct Bilirubin (µmol/L) 7.24 (7.82) 8.01 (16.67) 0.530
ALT (U/L) 82.97 (111.41) 73.40 (62.72) 0.378
AST (U/L) 72.37 (65.65) 68.70 (55.95) 0.593
Cholinesterase (U/L) 5917.30 

(1921.28)
6137.38 
(1738.98)

0.281

ALP (U/L) 93.00 (34.42) 87.58 (36.87) 0.158
GGT (U/L) 70.71 (67.31) 64.12 (72.92) 0.382
Total Protein (g/L) 79.38 (8.47) 78.76 (6.35) 0.471
Albumin (g/L) 43.65 (5.49) 44.67 (6.45) 0.106
Median follow-up time (years) 
[range]

4.76 
[0.51,10.96]

4.84 
[0.32,10.87]

0.083

HCC 25 (8.9) 11 (9.2) 1.000
* Continuous variables were presented as mean (standard deviation), and 
categorical variables were presented as count (percentage)

AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; ALP, alkaline phosphatase; GGT, gamma-glutamyl 
transferase; HCC, hepatocellular carcinoma
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Fig. 1 Trajectories of 10 longitudinal predictors in patients with HCC and without from the entire cohort. The longitudinal predictors were AFP (a), ALT 
(b), albumin (c), ALP (d), AST (e), cholinesterase (f ), direct bilirubin(g), GGT (h), total bilirubin (i), and total protein (j). The grey lines represent individual 
trajectories of each patient, the blue lines are the averaged trajectories estimated using linear mixed-effects models and the red lines are the averaged 
trajectories estimated using mixed-effects models that includes natural cubic splines with 2 degrees of freedom. The values of all predictor variables 
are on a log scale. Abbreviations: AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; GGT, 
gamma-glutamyl transferase; HCC, hepatocellular carcinoma
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The relative importance of the 10 predictors that con-
tributed the most to the performance of the longitudi-
nal model was displayed in Figure S3. The longitudinal 
predictor AFP contributed highly to the prediction of 
HCC with large variable importance (VIMP) compared 
to other predictors. Other key longitudinal predictors 
identified by VIMP include GGT, direct bilirubin, total 

bilirubin, albumin, and ALP. Also, age at baseline was 
very informative in predicting HCC development.

Given the significant contribution of AFP to the lon-
gitudinal model’s performance, we explored a model 
solely based on AFP levels (Table S2). This ‘AFP-only’ 
model demonstrated promising results, particularly for 
predicting HCC within the subsequent year, achieving 
an AUROC of 0.8297. However, its efficacy waned over 
extended periods, with the AUROC of 3-year prediction 
dropping to 0.6383.

Evaluation of prediction model performance using leave-
one-out cross-validation
The efficacy of our longitudinal modeling approach was 
further assessed using leave-one-out cross-validation. 
The longitudinal model fitted with the entire dataset 
demonstrated commendable predictive capabilities, as 
detailed in Table S3. The AUROC in predicting HCC 
events 1, 2, and 3 years from Year 3 was 0.8504, 0.7235, 
and 0.7173, respectively. Notably, the longitudinal model 
consistently outperformed the baseline RSF model in our 
evaluations.

Table 2 Comparison of the Performance Characteristics 
of the Longitudinal and Baseline RSF Models to Predict the 
Development of HCC*

Longitudinal (95% CI) Baseline Only (95% CI)
1-Year Prediction
AUROC 0.9507 (0.8838,0.9997) 0.6113 (0.4428,0.8000)
Brier score 0.0283 (0.0109,0.0715) 0.0581 (0.0277,0.1028)
2-Year Prediction
AUROC 0.8767 (0.6972,0.9918) 0.6213 (0.4801,0.7575)
Brier score 0.0561 (0.0205,0.1129) 0.0786 (0.0431,0.1254)
3-Year Prediction
AUROC 0.8307 (0.6941,0.9993) 0.6480 (0.4865,0.7924)
Brier score 0.0501 (0.0213,0.1088) 0.0758 (0.0400,0.1237)
*Predictions were made at Year 3 for HCC occurrence 1, 2, and 3 years from Year 
3, which equals 4, 5, and 6 years from baseline

HCC, hepatocellular carcinoma; CI, confidence interval; AUROC, area under the 
receiver-operating characteristic curve; RSF, random survival forest

Fig. 2 Individual-level prediction of HCC-free probabilities for two patients from the validation set. Survival curves were smoothed with local polyno-
mial regression. The blue lines represent the HCC-free probabilities predicted by the baseline RSF model, and the orange lines represent the HCC-free 
probabilities predicted by the longitudinal model. Survival curves were overlaid in the final column. Abbreviations: HCC, hepatocellular carcinoma; RSF, 
random survival forest
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Fig. 3 Area under the receiver operating characteristic curves value and brier score of the baseline RSF model and longitudinal model for predictions 
made 1, 2, and 3 years from Year 3. Predictions were made at Year 3 for HCC occurrence 1, 2, and 3 years from Year 3, which equals 4, 5, and 6 years from 
baseline. Abbreviations: HCC, hepatocellular carcinoma; AUROC, area under the receiver-operating characteristic curve; RSF, random survival forest
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Discussion
The DAA-based regimen has brought revolutionary 
changes to the management of chronic hepatitis C as 
it offers excellent rates of HCV virus eradication [3, 4]. 
With the widespread use of DAA, it is foreseeable that 
most HCV-infected patients will achieve SVR. However, 
multiple studies have shown that the residual risk of HCC 
persists years after patients achieved SVR [32, 33] and 
that patients with cirrhosis present a significantly higher 
risk of HCC post-SVR than patients with no cirrhosis [5, 
34]. Currently, only less than 50% of patients with cir-
rhosis undergo regular surveillance in most healthcare 
systems [35]. As a result, it is critical to determine which 
patients with cirrhosis need HCC surveillance the most, 
especially in healthcare systems with limited resources. 
Risk prediction models can provide valuable insights in 
guiding clinical decisions. Most risk prediction models 
for HCC occurrence were constructed on data collected 
at baseline alone and thus cannot capture the changes in 
the predictor variables, resulting in a loss of information. 
In this study, we aimed to construct an accurate longi-
tudinal prediction model for HCC occurrence based on 
repeated measurement data. We also demonstrated the 
predictive accuracy of the longitudinal model through 
comparisons with a baseline model.

400 patients with HCV-related cirrhosis were included 
in the study, with a median follow-up time of approxi-
mately 5 years. The patient with the longest follow-up 
period was followed for up to 10.96 years. The longitudi-
nal predictors were measured on average 3.68 times. We 
modeled the average trajectory of the longitudinal pre-
dictors and found that the trajectories of the predictors 
differ in patients with or without HCC, indicating the 
necessity of developing a longitudinal prediction model.

The current study employed a two-step modeling 
framework to capture the changes in the predictor vari-
ables and apply them in the predictive model. FACEs, a 
covariance-based FPCA method, was used to extract 
informative features from the trajectories of the longi-
tudinal predictors. The resulting PCA scores were then 
included as time-independent covariates in the RSF. Our 
model yielded predictive accuracy that is considered 
excellent [36] in the validation set for 1-year prediction, 
with an AUROC of 0.9507. For 2- and 3-year prediction, 
the model also exhibited very good predictive accuracy, 
with AUROCs of 0.8767 and 0.8307, respectively. Equally 
importantly, our model had excellent calibration, as dem-
onstrated by the very low brier scores for 1-,2- and 3- 
year predictions.

In addition, we constructed a baseline model with RSF 
using the same predictor variables. Our results showed 
that the longitudinal model outperformed the base-
line RSF model at individual and population levels. For 
two patients with similar baseline measurements, the 

longitudinal model made accurate personal predictions 
that corresponded with their distinct outcomes, whereas 
the baseline model failed to distinguish between the 
HCC risk of the two patients. Also, the baseline model 
returned a mediocre AUROC of around 0.6 in predicting 
HCC occurrence 1-,2- and 3- years after Year 3 of the fol-
low-up. In contrast to the longitudinal model, the predic-
tive accuracy of the baseline model was only considered 
sufficient [36].

In clinical practice, obtaining all the predictive vari-
ables used in the model can be challenging. To address 
this, we constructed an alternative model exclusively 
based on repeated AFP measurements. Prior research 
has already highlighted the efficacy of AFP levels in pre-
dicting HCC in patients with chronic liver disease [36]. 
Our ‘AFP-only’ model also displayed satisfactory results, 
particularly for one-year predictions. Although the pre-
diction performance of the simplified model diminished 
for long-time prediction, this model still offers a practi-
cal solution when data for all variables are not available, 
especially for making short-term predictions.

To enhance the clinical applicability of our longitudi-
nal model, we have developed a web application to assess 
the risk of HCC development in patients. This online tool 
offers two options: the comprehensive model, as pro-
posed in this study, and a simplified ‘AFP-only’ model 
that leverages only the longitudinal AFP data. Clinicians 
can select the appropriate model based on their avail-
able data. A preliminary version of this tool is available 
at https://shizongrenkou.shinyapps.io/HCC_calcula-
tor/. For users who prefer a local solution, all codes and 
dependencies can be found on our GitHub repository 
(https://github.com/shizongrenkou/HCC.cal). Once 
downloaded, the app can be executed locally in R, pro-
viding a faster user experience without the constraints of 
the online version.

Our study holds the following strengths. First, the 
study utilized a novel statistical approach to construct a 
predictive model incorporating longitudinal data. Most 
risk prediction models for HCC development were built 
using the Cox regression [11, 37] or logistic regression 
[14]. These conventional regression modeling algorithms 
cannot capture the changes in predictor variables dur-
ing follow-up; hence the model-building process relies 
entirely on baseline data. A few studies expanded the 
data collection window to baseline and a single follow-up 
time point [38, 39]. This modeling strategy is still rather 
rigid and discards potentially valuable information from 
the longitudinal data. There have been studies that utilize 
longitudinal information for risk prediction in hepatitis 
C patients. A study that aimed to construct prediction 
models for liver-related outcomes employed a joint mod-
eling framework to incorporate longitudinal data into the 
modeling process [40]. Though the longitudinal model 

https://shizongrenkou.shinyapps.io/HCC_calculator/
https://shizongrenkou.shinyapps.io/HCC_calculator/
https://github.com/shizongrenkou/HCC.cal
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performed very well in predicting incidences of decom-
pensation (AUROC = 0.92), it did poorly in predicting 
the occurrence of HCC (AUROC = 0.59). In contrast, the 
longitudinal model in the current study yielded excellent 
predictive accuracy of HCC incidence.

Furthermore, the current study adopted the RSF 
method to analyze the right-censored survival data. The 
RSF is an extension of the random forest algorithm. 
While random forest focuses mainly on classification 
and regression, RSF further accounts for right-censoring 
and extends the application of machine learning to sur-
vival analysis [18]. The majority of the studies employ-
ing machine learning methods in HCC risk prediction 
are inclined to use the classification-based method like 
the random forest or boosting [41, 42]. There was also a 
study that leveraged deep learning methods to predict 
whether a specific patient with cirrhosis would develop 
HCC within the next 3 years using all longitudinal data 
available at the prediction time point [43]. The deep 
learning model exhibited an AUROC of 0.759, which is 
considered very good. However, the modeling strategy 
of the study was still classification-based. These stud-
ies are limited when dealing with survival data as the 
machine learning classifiers cannot predict the time to 
an outcome, do not account for censoring, and needs to 
be re-trained for each prediction time [44]. The RSF, on 
the other hand, addresses these issues effectively. The 
RSF also holds advantages over the commonly used Cox 
regression in handling survival data. It avoids the restric-
tive assumption of proportional hazards, tackles the non-
linear effects of variables, and automatically handles the 
interactions between multiple variables [22, 29]. This 
flexibility allows RSF to have more robust discrimination 
and calibration in risk prediction.

Lastly, our longitudinal model was trained on data with 
irregular time intervals and still performed well in valida-
tion. In some longitudinal studies, the repeated measure-
ments of patients were done on fixed time points, like 
annually or semi-annually [41]. However, in real-world 
clinical practice, patients often come to follow-up vis-
its at random times. Therefore, these longitudinal mod-
els cannot be applied to such situations. Our model was 
trained on longitudinal data with irregular time intervals 
and is better suited for clinical use.

There are several limitations to our study. First, the 
current study employed the fast covariance estimation 
method (FACEs) instead of the multivariate fast covari-
ance estimation method (mFACEs) [45] suggested by the 
original article in dealing with longitudinal data due to 
computational cost. As a result, the correlation between 
the longitudinal variables was omitted when extract-
ing the informative features. Nevertheless, the model 
performed well in terms of predictive accuracy. Second, 
the study’s validation set was relatively small, which 

might explain the large confidence interval of AUROCs 
for 2-and 3-year prediction of the longitudinal model. 
Third, some of the patients did not come back for follow-
up visits, so only baseline measurements were available 
for these patients. Fourth, to ensure sufficient repeated 
measurements, we selected a three-year window from 
enrollment as the prediction timeframe. While this deci-
sion was made to accumulate a more robust set of lon-
gitudinal information, it may have introduced a selection 
bias. Finally, the study cohort was all Asian and consisted 
mainly of females. It is necessary to perform external val-
idations of our model in other cohorts.

In conclusion, the current study demonstrated that 
predictive model constructed on longitudinal data per-
formed better than baseline model in estimating the risk 
of HCC occurrence in patients with HCV-related cir-
rhosis. Our longitudinal model performed especially well 
in predicting the occurrence of HCC within one year. 
Our model could have a variety of applications in clini-
cal practice. The model is particularly useful in resource-
limited countries that do not have the capacity to offer 
surveillance to all cirrhotic patients, as it identifies high-
risk patients based on a few simple laboratory biomark-
ers. Our model could also be used to identify high-risk 
patients for novel and relatively expensive surveillance 
strategies. Further studies and a larger population will be 
needed to validate our results externally.
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