
Dong et al. BMC Cancer         (2023) 23:1097  
https://doi.org/10.1186/s12885-023-11603-w

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Cancer
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Abstract 

Background  Colorectal cancer (CRC) is one of the most common malignancies worldwide. Immunotherapy target-
ing the programmed death protein 1(PD-1) and its ligand (PD-L1), is a promising treatment option for many cancers, 
but has exhibited poor therapeutic efficacy in CRC. This study aimed to identify and validate the prognostic value 
of immune-related genes and PD-1-associated genes for immunotherapy treatment of CRC.

Methods  An extensive analysis of prognostic immune-related DEGs and PD-1-related genes has highlighted 
CDKN2A as a vital overlapping gene. To further explore its expression in CRC and its prognostic value, we conducted 
qRT-PCR, Western blot experiments, and consulted various databases. Subsequently, we conducted gene expres-
sion analysis, survival and prognostic analysis, enrichment analysis, immune infiltration assessment, and TIDE analysis 
to assess the significance of CDKN2A.

Results  In CRC, CDKN2A was highly expressed compared to normal tissue. It was found that CDKN2A expression 
was related to clinicopathological features such as inflammation and tumor stage. Furthermore, a significant cor-
relation was identified between CDKN2A and immune infiltration, specifically involving CD4 T cells, CD8 T cells, 
and macrophages. The analysis of the GSEA of CRC samples with high CDKN2A expression identified enrichment 
of genes involved in MYC target-v2 and metabolism pathways. Furthermore, UBE2I, CDK4, CDK6, TP53, and CCND1 
were found to be significantly coexpressed with CDKN2A, suggesting a potential role that these gene play in CRC 
and immunotherapy.

Conclusions  Our study revealed that high CDKN2A expression in CRC is a potentially valuable prognostic biomarker, 
which may guide PD-1-mediated immunotherapy.
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Introduction
Colorectal cancer (CRC) ranks as the third most preva-
lent malignancy worldwide and stands as the second 
primary contributor to cancer-related mortality [1]. Con-
ventional therapeutic modalities for CRC encompass 
surgical intervention, chemotherapy, and radiotherapy, 
however, most patients are diagnosed at intermediate 
or advanced stages, resulting in dismal prognosis and 
poor survival [2, 3]. Therefore, it is crucial to identify 
novel biomarkers and molecular targets to develop more 
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effective treatment strategies to improve outcomes for 
patients with intermediate and advanced CRC.

Immunotherapy uses the immune system to target 
tumor cells and tissues, and can have advantages over 
chemotherapy and radiotherapy, especially regarding 
specific targeting of cancer cells [4]. Immune checkpoint 
inhibitors(ICIs) offer a promising immunotherapeutic 
approach, and have obtained U.S. Food and Drug Admin-
istration (FDA) approval for the treatment of several 
advanced malignancies [5, 6]. In CRC, immune check-
point therapy has obtained regulatory approval for the 
treatment of tumors exhibiting a substantial mutational 
burden, characterized by deficiencies in mismatch repair 
(dMMR) mechanisms or high levels of microsatellite 
instability (MSI-H). However, colorectal cancer (CRC) 
tumors that display proficient mismatch repair (pMMR), 
microsatellite stability (MSS), or demonstrate low levels 
of microsatellite instability (MSI-L; commonly referred 
to as pMMR–MSI-L tumors) do not manifest a favora-
ble response to immunotherapy [7, 8]. Hence, there is a 
pressing need for the identification of more dependable 
biomarkers and molecular targets to enhance the effec-
tiveness of immune checkpoint therapy and optimize 
treatment outcomes in patients with colorectal cancer.

The immune checkpoint targets, such as Programmed 
Cell Death 1 (PD-1) and Cytotoxic T Lymphocyte Anti-
gen 4 (CTLA-4), have been extensively investigated in 
academic research. PD-1 and its corresponding ligand, 
Programmed Cell Death Ligand 1 (PD-L1), are widely 
acknowledged as crucial components of immune check-
points, frequently observed in heightened levels within 
tumor microenvironments. This immunosuppressive 
microenvironment helps cancer cells to escape destruc-
tion by the immune system [9–11].

The objective of this study was to ascertain the prog-
nostic genes linked to PD-1 and immunity in colorec-
tal cancer. Furthermore, we investigated the correlation 
between these genes and various clinicopathological 
aspects of CRC, such as immune infiltration and the 
immune microenvironment. We successfully identified 
and validated the expression and prognostic significance 
of this pivotal gene, and subsequently delved into its 
biological functionalities. These data may identify novel 
biomarkers that can guide or improve PD-1-mediated 
immunotherapy of CRC.

Materials and methods
Data acquisition
Transcriptomes files and clinical data related to colo-
rectal cancer were obtained from the TCGA (TCGA-
COAD) and GEO databases (GSE39582, GSE24551, 
GSE18105, GSE40967). Additionally, we retrieved 
immune-related gene expression data from the 

ImmPort and InnateDB databases. Furthermore, genes 
related to PD-1 expression were selected from the Gen-
eCards and NCBI databases. Pan-cancer data were 
obtained from the UCSC database.

Clinical tissue samples
According to the Declaration of Helsinki, this study was 
approved by the Ethics Committee of the First Hospital 
of Jiaxing. A total of 66 samples of CRC tissue with adja-
cent normal tissue were collected at the First Hospital of 
Jiaxing and stored at -80°C. Pathologists and clinicians 
provided and verified information on relevant clinical 
features.

The study incorporated the following inclusion criteria: 
(1) individuals diagnosed with primary colorectal can-
cer; (2) individuals with a confirmed diagnosis through 
pathological examination; and (3) individuals who had 
not undergone preoperative chemotherapy, radiotherapy, 
or targeted therapy. Conversely, the exclusion criteria 
encompassed: (1) patients with incomplete or ambiguous 
pathological data; and (2) patients who had undergone 
alternative treatments prior to surgery.

Identification of prognostic immune‑related genes 
in COAD
In this study, we utilized the R- x64–4.1.2 ’limma’ package 
to conduct a differential expression analysis of immune-
related genes (irDEGs) in COAD. We applied a false 
discovery rate (FDR) threshold of less than 0.05 and a 
log-fold change (FC) threshold greater than 1 to identify 
significant irDEGs. Additionally, we employed a univari-
ate Cox analysis using the ’survival’ package to examine 
the relationship between the expression levels of irDEGs 
and the survival of COAD patients. We considered irD-
EGs with a p value less than 0.05 as potential prognostic 
markers. To minimize bias and account for surgical fac-
tors, we excluded patients with missing values and those 
who died within a 30-day follow-up period from our 
analysis.

Enrichment analyses and network visualization
In order to examine the biological characteristics of the 
prognostic irDEGs, we conducted Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses using the ’clusterProfiler’, 
’enrichplot’, and ’ggplot2’ packages [12–14]. Statistical sig-
nificance was determined using an FDR threshold of 0.05. 
Additionally, the protein–protein interaction (PPI) net-
work of the genes within this interaction network module 
was investigated using the STRING database.
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Identifying PD‑1‑related DEGs and determining their 
association with prognostic irDEGs in COAD
We retrieved PD-1-related genes from GeneCards and 
the NCBI database, and conducted a difference analysis 
to identify PD-1-related DEGs in COAD using the fol-
lowing criteria:|LogFC|> 1 and FDR < 0.05. The applica-
tion of Venn diagram analysis was subsequently utilized 
to ascertain the genes that overlapped between the 
prognostic irDEGs and PD-1-related DEGs. The visu-
alization of this intersection was accomplished through 
the utilization of the R-package ’Venn’.

Pancancer analysis of CDKN2A expression
Using the UCSC database, we obtained pancancer 
expression data, and then extracted the CDKN2A gene 
expression data for each sample. Significant differential 
analysis was performed using the log2 (x + 0.001) trans-
formation and the Wilcoxon rank test.

mRNA expression and the prognostic significance 
of CDKN2A in COAD
In order to examine the potential correlations between 
the expression of CDKN2A and the survival outcomes 
of patients diagnosed with COAD, we conducted an 
analysis of gene expression profiles utilizing the GEPIA 
and UALCAN databases. Furthermore, we evaluated 
the expression of CDKN2A in COAD through the uti-
lization of the R-package ’timeROC’, wherein we plot-
ted the receiver operating characteristic curve (ROC), 
while also calculating the corresponding area under the 
curve (AUC).

Quantitative real‑time PCR (qRT‑PCR) in CRC​
We extracted total RNA from CRC samples, reverse tran-
scribed it to cDNA template, and performed RT-qPCR. 
Gene expression and relative gene expression were ana-
lyzed using the 2−∆Ct and 2−∆∆Ct approaches, respec-
tively [15]. The primer sequences used, with β-actin as 
the endogenous control, are as follows: CDKN2A-F 
5ʹ-CAA​GAT​CAC​GCA​AAA​ACC​TCTG-3’; CDKN2A-
R 5ʹ-CGA​CCC​TAT​ACA​CGT​TGA​ACTG-3’; β-actin-F 
5ʹ-TGG​CAC​CCA​GCA​CAA​TGA​A-3ʹ; β-actin-R 5ʹ-CTA​
AGT​CAT​AGT​CCG​CCT​AGA​AGC​A-3ʹ.

Western blot
We added a Protease Inhibitor to the RIPA buffer in 
order to extract proteins from colorectal cancer and its 
paired normal tissues. Following this, we used the BCA 
Protein Assay kit to quantify the proteins, and then 
conducted a 12.5% SDS-PAGE. The proteins were trans-
ferred to a 0.2 µm PVDF transfer membrane, which was 
subsequently incubated with 5% skimmed milk powder 

for 1.5 h at room temperature. The membrane was then 
incubated with primary antibodies (β-actin 1:5000, 
CDKN2A 1:4000, Proteintech) at 4  °C overnight. The 
PVDF was then incubated with a secondary antibody 
(HRP-conjugated goat anti-rabbit 1:5000) for 1.5 h, and 
finally, we used chemiluminescence to detect the pro-
tein expression.

Gene Set Enrichment Analysis (GSEA) of CDKN2A
The significant biological functions and pathways linked 
to low and high CDKN2A expression were identified 
using GSEA-4.2.3. Phenotyping was conducted based 
on the median CDKN2A expression level. The data was 
analyzed and visualized using the Hallmark and KEGG 
tools. Significance was determined by an adjusted p value 
of less than 0.05, a normalized enrichment score (|NES|) 
greater than 1, and a false discovery rate (FDR) below 
0.25.

Correlation between CDKN2A expression and the tumor 
microenvironment in CRC​
The tumor microenvironment (TME) refers to the tis-
sue environment surrounding cancer cells, and includes 
not only cancer cells but also immune and stromal com-
ponents. In this study, data were gathered from patients 
diagnosed with CRC, and the R-’estimate’ package was 
employed to calculate stromal, immune, and ESTIMATE 
scores. Additionally, an investigation into CDKN2A 
expression and immune cell infiltration was conducted 
utilizing the TIMER database. Furthermore, Pearson 
correlation coefficients were computed to assess the 
relationship between CDKN2A expression and genes 
associated with immune checkpoint regulation.

Correlation between expression of CDKN2A and sensitivity 
to immunotherapy
TIDE (Tumor Immune Dysfunction and Exclusion) was 
employed as a computational framework to assess the 
potential of tumor immune evasion in the gene expres-
sion profiles of the tumor samples. The TIDE score and 
the status of the tumor immune function for each tumor 
sample in the TCGA-COAD dataset were calculated in 
the TIDE database. The median value of the CDKN2A 
expression was used as the cutoff point to divide the 
CDKN2A gene into high and low expression groups, in 
order to predict the responsiveness of the CDKN2A gene 
expression level to immunotherapy.

Gene correlation analysis of CDKN2A
To identify other genes associated with CDKN2A, we 
collected the top 10 genes directly related to CDKN2A 
expression from the STRING database. We used the 
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GEPIA database to screen genes significantly coex-
pressed with CDKN2A. We conducted a Spearman cor-
relation analysis, using the nonlog scale for calculation, 
and the log-scale axis for visualization. The HPA data-
base (https://​www.​prote​inatl​as.​org/) was also used to 
assess the expression of these genes in normal and tumor 
tissues.

Results
Identification of prognostic immune‑related DEGs
Expression profiles were obtained from a total of 41 nor-
mal tissue samples and 473 colorectal cancer (CRC) sam-
ples sourced from the TCGA-COAD cohort (Fig. 1). We 
obtained 2,660 immune-related genes from the ImmPort 
and InnateDB datasets. The CRC tissues were found 
to be enriched for 597 genes (355 upregulated and 242 
downregulated) as compared to adjacent normal tissues 
(Fig.  2A and B). Univariate Cox analysis was conducted 

to evaluate the irDEGs in COAD and determine the rele-
vant impact of each gene individually on patient survival, 
identifying 82 irDEGs that were significantly associated 
with disease prognosis (Fig. 2C).

GO/KEGG analysis and PPI network
GO and KEGG analyses were performed on the 82 
prognostic irDEGs. The most enriched biological 
processes (BP) were leukocyte-mediated immunity, 
immune response-regulating signaling pathway, adap-
tive immune response based on somatic recombina-
tion of immune receptors built from immunoglobulin 
superfamily domains, and immunoglobulin-mediated 
immune response. In terms of cellular components (CC), 
the prognostic irDEGs were mainly found in the external 
side of the plasma membrane, immunoglobulin complex, 
and collagen − containing extracellular matrix. The major 
functional categories related to molecular function (MF) 

Fig. 1  Study workflow. After obtaining data on colorectal cancer patients, immune-related genes, and PD-1-related genes from a database, 
differential analysis was conducted to identify prognosis-associated immune differential genes and PD-1-related genes, resulting in the discovery 
of the overlapping gene CDKN2A. Subsequently, gene expression analyses, survival and prognostic analyses, immune infiltration, enrichment 
analyses, and TIDE analysis were performed

https://www.proteinatlas.org/
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were receptor ligand activity and signaling receptor acti-
vator activity (Fig. 3A).

The KEGG pathway enrichment analysis demonstrated 
that the prognostic irDEGs were significantly associated 
with cytokine-cytokine receptor interaction, neuroactive 
ligand − receptor interaction, and the calcium signaling 
pathway (Fig. 3B).

As shown in Fig. 3C, we constructed a protein–protein 
interaction (PPI) network and analyzed the internal rela-
tionships and connections among the prognostic irDEGs 
based on the STRING database.

Differentially expressed PD‑1‑related genes in COAD 
and identification of overlapping genes
A total of 9612 genes related to PD-1 were collected 
from GeneCards and NCBI databases, and analyzed in 
COAD. Among these PD-1-related genes, a compre-
hensive analysis revealed that a total of 90 genes exhib-
ited differential expression patterns between COAD 
and normal tissue. Specifically, 71 genes were found to 

be upregulated, while 19 genes were downregulated in 
CRC tissue. Heatmap and volcano plot visualizations 
of the PD-1-related genes and DEGs were generated 
(Fig. 4A and B).

We conducted a comparative analysis of the PD-
1-related genes and prognostic irDEGs, employing a 
threshold of |log2FC|> 1 and FDR < 0.05. Through this 
analysis, we successfully identified CDKN2A as a gene 
that is common to both sets (Fig. 4C).

CDKN2A expression across cancers
We analyzed CDKN2A expression in 34 human cancers 
using the UCSC database in order to explore possible 
effects of CDKN2A on cancer incidence and develop-
ment. CDKN2A was significantly upregulated in 32 
tumor types, while its expression was significantly 
decreased in TGCTs (Testicular Germ Cell Tumors) 
(tumor: 1.59 ± 1.22, normal: 4.30 ± 1.19, p = 3.7e-39; 
Fig. 5).
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Evaluation of CDKN2A expression and the prognostic 
significance of CDKN2A in COAD
A comparative analysis of the CDKN2A gene expres-
sion was performed on cancer and normal samples 
using the GEPIA and UALCAN databases. In COAD, 
CDKN2A was highly expressed (Fig. 6A and B). We also 
found that CDKN2A expression is significantly differ-
ent depending on the pathological stage of CRC (Fig. 6C 
and D). The prognostic value of CDKN2A for COAD was 
assessed and depicted using Kaplan–Meier curves. A 
high CDKN2A protein level was associated with shorter 
OS and DFS as compared to a low CDKN2A protein 
level (Fig. 6E and F). Moreover, survival status was pre-
dicted by ROC analysis, based on CDKN2A expression 
(Fig. 6G).

The correlation between CDKN2A expression in CRC 
tissues and the clinicopathological features of CRC​
We conducted qRT-PCR analysis on 66 pairs of colorectal 
cancer and paired normal tissues, and randomly selected 
four pairs for Western Blot. To ensure the precision of 
the results, we utilized the GEO database to perform 
additional validation. Results indicated that, compared to 
normal tissues, the expression of CDKN2A mRNA and 
protein levels was higher in CRC tissues (Fig.  7A-E). In 
order to investigate the correlation between the expres-
sion levels of CDKN2A and the clinicopathological fea-
tures of CRC patients, we divided the 66 CRC patients 
into two groups based on their relative expression of 

CDKN2A: a group with high expression (n = 34, > 1); 
and a group with low expression (n = 32, < 1). Our study 
revealed that the mRNA expression of CDKN2A did 
not exhibit any significant correlation with patient age, 
sex, body mass index (BMI), tumor location, tumor size, 
depth of infiltration, peri-intestinal lymph node metasta-
sis, distant metastasis, P53 status, or Ki67 status. How-
ever, we observed a significant association between 
CDKN2A expression and tumor stage, as well as nerve 
invasion status (Table 1). By utilizing the GEO database, 
a Fisher test was conducted on the GSE40967 dataset, 
which consists of information from 585 colorectal cancer 
patients, to investigate the association between the high 
and low expression groups of CDKN2A with clinico-
pathological features. Our results demonstrated a signifi-
cant association between CDKN2A expression and the 
status of TP53, KRAS, and BRAF.

Gene Set Enrichment Analysis (GSEA) of CDKN2A
The Gene Set Enrichment Analysis (GSEA) was con-
ducted in order to explore the biological functions that 
are linked to the expression of CDKN2A. We found 
enrichment of several hallmark gene sets in the CDKN2A 
low-expression group, including the androgen response, 
heme metabolism, UV response downregulated, bile acid 
metabolism, and fatty acid metabolism (Fig.  8A). Con-
versely, the CDKN2A high-expression group showed a 
higher level of DNA repair and MYC target-v2 pathways 
(Fig.  8A). Furthermore, the results of KEGG gene set 
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enrichment analysis revealed that the group with high 
expression of CKDN2A exhibited enrichment in vari-
ous biological processes, including aldosterone-regulated 
sodium reabsorption, long-term potentiation, starch 
and sucrose metabolism, and fatty acid and propanoate 
metabolism (Fig.  8B). The CDKN2A low-expression 
group had significantly higher RNA polymerase pathway 
enrichment (Fig. 8B).

Correlation between CDKN2A expression 
and characteristics of the tumor microenvironment in CRC​
ESTIMATE analysis was conducted to determine how 
CDKN2A affects the tumor microenvironment (TME) 
in colorectal cancer. ESTIMATE, immune score, 
and stromal score all showed positive correlations 
with CDKN2A expression (Fig.  9A-C). Moreover, we 
observed a significant association between CDKN2A 
expression and infiltration of macrophages, dendritic 
cells, CD4 T cells, and CD8 T cells (Fig.  9D). Further-
more, a positive correlation was observed between the 
expression of CDKN2A and various immune check-
point genes in colorectal cancer, namely PDCD1, 
CTLA-4, and CD274 (Supplementary Fig. 1). Based on 
these results, we postulate that CDKN2A may be intrin-
sically linked to immune infiltration, immunological 
checkpoints, and the TME, thereby playing a crucial 
role in the regulation of T cells.

Correlation between expression of CDKN2A and sensitivity 
to immunotherapy
To further explore the connection between the CDKN2A 
gene expression and tumor immunotherapy, we used the 
TIDE database to simulate the immune escape mecha-
nism of tumor tissues and predict the response to immu-
notherapy. Our study revealed that the group with high 
CDKN2A expression had a much greater TIDE, Dysfunc-
tion, and CD8 scores than the group with low CDKN2A 
expression, implying that immunotherapy is more effec-
tive in treating colorectal cancers with high CDKN2A 
expression (Fig. 10).

Gene correlation analysis of CDKN2A
For the purpose of exploring CDKN2A’s involvement 
in immune-related pathways and CRC, we queried the 
STRING database and identified ten genes that inter-
act directly with CDKN2A (Fig.  11A). We used the 
Gene Expression Profile Interaction Analysis (GEPIA) 
database to analyze the intensity of coexpression of 
these genes with CDKN2A and identified five genes 
that were significantly coexpressed with CDKN2A 
(Fig. 11B-F). Finally, we searched the HPA database for 
protein expression of CDKN2A and these coexpressed 
genes, and found that CDKN2A, UBE2I, CDK4, CDK6, 
TP53, and CCND1 were all highly expressed in CRC 
(Fig. 11G).
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Fig. 7  Expression of CDKN2A in CRC Tissues. A mRNA levels of CDKN2A in 66 pairs of colorectal cancer tissues and paired normal tissue. Data are 
shown as the mean ± SEM. B Western blot was used to measure the protein levels of CDKN2A in four pairs of colorectal cancer tumor tissues (T) 
and their paired normal tissues (N). Full-length blots/gels are presented in Supplementary Fig. 2. C-E In the GSE39582, GSE24551, and GSE18105 
datasets, the levels of CDKN2A were upregulated in CRC tissues compared to normal tissues. *P < 0.05; **P < 0.01; ***P < 0.001



Page 9 of 15Dong et al. BMC Cancer         (2023) 23:1097 	

Discussion
Immune checkpoint therapies, such as inhibitors target-
ing the PD-1/PD-L1 and CTLA-4 pathways, have ush-
ered in a new phase in cancer treatment [8, 16]. However, 

the number of CRC patients who benefit from immu-
notherapy is limited [17, 18]. In this study, we screened 
for novel prognostic irDEGs and PD-1-related DEGs in 
CRC by differential analysis and univariate Cox analy-
sis. We identified CDKN2A as a potential pivotal gene. 

Table 1  Correlation between CDKN2A expression levels and clinicopathological characteristics of colorectal cancer patients

Characteristics Low(N = 34) High(N = 32) Total(N = 66) P value

Gender 0.87

  Female 10(15.15%) 11(16.67%) 21(31.82%)

  Male 24(36.36%) 21(31.82%) 45(68.18%)

Age 0.66

  ≥ 65 23(34.85%) 19(28.79%) 42(63.64%)

  < 65 11(16.67%) 13(19.70%) 24(36.36%)

BMI 0.2

  ≥ 25 6(9.09%) 11(16.67%) 17(25.76%)

  < 25 28(42.42%) 21(31.82%) 49(74.24%)

Stage 0.03

  I-II 12(18.18%) 21(31.82%) 33(50.00%)

  III-IV 22(33.33%) 11(16.67%) 33(50.00%)

Tumor size(cm) 0.33

  ≥ 5 20(30.30%) 14(21.21%) 34(51.52%)

  < 5 14(21.21%) 18(27.27%) 32(48.48%)

Tumor infiltration depth 0.61

  T1-2 2(3.03%) 4(6.06%) 6(9.09%)

  T3-4 32(48.48%) 28(42.42%) 60(90.91%)

Tumor location 0.32

  Rectum 6(9.09%) 10(15.15%) 16(24.24%)

  Colon 28(42.42%) 22(33.33%) 50(75.76%)

Distant metastasis 0.4

  ( +) 8(12.12%) 4(6.06%) 12(18.18%)

  (-) 26(39.39%) 28(42.42%) 54(81.82%)

Peri-intestinal lymph node metastasis 0.2

  ( +) 18(27.27%) 11(16.67%) 29(43.94%)

  (-) 16(24.24%) 21(31.82%) 37(56.06%)

deficient mismatch repair (dMMR) 0.73

  ( +) 4(6.06%) 2(3.03%) 6(9.09%)

  (-) 30(45.45%) 30(45.45%) 60(90.91%)

P53 0.94

  ( +) 21(31.82%) 21(31.82%) 42(63.64%)

  (-) 13(19.70%) 11(16.67%) 24(36.36%)

Vascular cancer embolism 0.47

  ( +) 10(15.15%) 6(9.09%) 16(24.24%)

  (-) 24(36.36%) 26(39.39%) 50(75.76%)

Nerve Violation 0.03

  ( +) 21(31.82%) 10(15.15%) 31(46.97%)

  (-) 13(19.70%) 22(33.33%) 35(53.03%)

Ki67%

  Mean ± SD 65.29 ± 11.61 61.25 ± 15.40 63.33 ± 13.63

  Median[min–max] 70.00[40.00,80.00] 65.00[20.00,90.00] 70.00[20.00,90.00]
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Fig. 9  Associations between CDKN2A expression and tumor microenvironment characteristics in CRC. A-C Based on the ESTIMATE algorithm, there 
is a correlation between CDKN2A and stromal score, immune score, and ESTIMATE score in CRC samples. D Correlation of CDKN2A gene expression 
levels with the infiltration of six immune cell types by the TIMER database
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Colorectal cancer tissues exhibited a significantly ele-
vated level of CDKN2A mRNA expression compared 
to normal tissues, as confirmed through bioinformatic 
analysis and clinical observations. Mining the correlation 
between CDKN2A mRNA expression and clinicopatho-
logical features, including tumor status, distant metasta-
sis, and pathological stage, as well as related molecular 
gene expression, is of great significance in diagnosing and 
treating CRC. Nevertheless, the present study did not 
yield any noteworthy disparities in the mRNA expression 
levels of CDKN2A and microsatellite instability among 
CRC patients with high and low expression, thereby indi-
cating the necessity for further investigation within a 
more extensive CRC cohort to elucidate this association.

Immunotherapy aims to bolster natural anticancer 
immune defenses by mobilizing the host immune sys-
tem antitumor immune responses against established 
tumor cells, thereby clearing tumor cells and inhibit-
ing tumor cell migration and invasion [19, 20]. T cells 
and other molecules are recognized and interacted with 
by their surface molecules. Tumor immune response 
involves the action of CTLs (cytotoxic T lymphocytes), 
which are capable of killing tumor cells. The present pro-
cess by which cytotoxic T lymphocytes (CTLs) eliminate 
tumor cells involves the secretion of various media-
tors and cytokines, including perforin, granzyme, and 
tumor necrosis factor (TNF) [21–23]. From tumor tissue, 
tumor-infiltrating lymphocytes (TILs) are isolated. The 
CD4 and CD8 molecules play a crucial role in the recog-
nition of major histocompatibility complex (MHC) II and 
I molecules, respectively, and assist the T-cell receptor 
(TCR) in identifying bound antigens and participating 
in T-cell activation signaling [24–26]. Tumor-infiltrat-
ing immune cells are a significant predictor of survival 
in CRC patients [25, 27]. In the course of our investiga-
tion, it has been determined that CRC immune infiltra-
tion is potentially regulated by CDKN2A. Moreover, our 
research findings demonstrate a significant association 

between the expression of CDKN2A and the infiltration 
of CD4 T cells, CD8 T cells, and macrophages. These 
outcomes imply that CDKN2A might exert its influence 
on the immune microenvironment in colorectal cancer 
by means of immune cells or tumor-infiltrating lympho-
cytes (TILs), aligning with prior investigations [28, 29]. It 
is established that there is a strong correlation between 
the TME and tumorigenesis and progression [30, 31]. 
Consequently, the stromal score, immune score, and 
ESTIMATE score of colorectal cancer (CRC) tumors 
were computed, revealing a positive correlation between 
CDKN2A and the risk score, as well as the presence of 
stromal cells and immune cells. CDKN2A expression 
showed a strong correlation with the immune checkpoint 
molecules PDCD1, CD274, and CTLA4, so we hypoth-
esized that ICIs might be effective in CRC patients with 
high CDKN2A expression. To validate our hypothesis, we 
conducted a TIDE analysis and found that those with a 
high CDKN2A expression had a greater response rate to 
immunotherapy and a higher chance of deriving benefit 
from it. Nevertheless, more experiments are needed to 
establish the role of CDKN2A in antitumor immunity.

The CDKN2A gene is a tumor suppressor located at 
the 9p21 locus, also called MTS1 (multiplex tumor sup-
pressor 1), and encodes the proteins p16INK4a (p16) 
and p14ARF (p14). The phosphorylation of Rb proteins, 
leading to the inhibition of G1-phase cell proliferation, 
is a consequence of the interaction between p16INK4a 
and cell cycle protein-dependent kinase (CDK) 4/6 [32, 
33]. Moreover, the protein p14ARF possesses the abil-
ity to interact with and degrade MDM2 (mouse double 
minute 2), consequently hindering the deactivation of 
p53 through ubiquitin-mediated proteolysis or tran-
scriptional suppression [34]. The upregulation of the 
CDKN2A gene is notably observed in colorectal can-
cer, and this increased expression has been associated 
with unfavorable overall survival (OS) and disease-free 
survival (DFS) outcomes. The role CDKN2A plays as a 

Fig. 10  Correlation between expression of CDKN2A and sensitivity to immunotherapy through the TIDE database
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tumor suppressor is contradicted by this finding. Possi-
ble explanations for this discrepancy may be attributed 
to changes in CDKN2A protein transcription and trans-
lation, as well as tumor heterogeneity. The features and 
functions of CDKN2A in CRC are still under debated 
[35]. CDKN2A is a highly prevalent gene mutation in 

human cancers [36, 37], with three distinct mechanisms 
identified as potential contributors to its inactivation: 
genomic deletions, point mutations, and hypermethyla-
tion of the CDKN2A promoter region CpG island [38–
40]. Indeed, the hypermethylation of p16 and p14 has 
been found to be correlated with unfavorable prognosis, 

Fig. 11  Identification of candidate proteins interacting with CDKN2A. A The top 10 candidate molecules that may interact with CDKN2A are shown. 
B-F The GEPIA database was used to screen for molecules that are significantly coexpressed with CDKN2A. G The HPA database was used to validate 
the differential expression of coexpressed molecules in CRC and normal colorectal tissue
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increased tumor aggressiveness, and the spread of metas-
tases in individuals diagnosed with colorectal cancer 
[41–43].

Further investigation into the function of CDKN2A is 
necessary, so we conducted an analysis of a protein–pro-
tein interaction (PPI) network in the STRING database. 
From this analysis, we identified the top 10 potential 
interaction partners of CDKN2A, namely NPM1, UBE2I, 
CDK4, CDK6, TP53, MDM2, MYC, HIF1A, CCND1, 
and CCND2. These proteins play significant roles in cell 
cycle regulation and cancer pathways. Notably, UBE2I, 
CDK4, CDK6, TP53, and CCND1 exhibited the strong-
est coexpression with CDKN2A. Previous studies have 
highlighted the role of the p16INK4a-cyclin D1/Cdk4/
CDK6-Rb axis and the P14ARF-MDM2-P53/TP53 axis 
in cancer [44–47]. However, the relationship between 
UBE2I (also called UBC9) and CDKN2A has been less 
explored. Several studies have focused on the interaction 
of ARF with the UBC9 SUMO-conjugating enzyme for 
stabilizing P53 [48, 49], this may provide guidance for our 
future research.

In conclusion, this study effectively discerned CDKN2A 
as a biomarker linked to immunity and PD-1 in colorec-
tal cancer. The assessment of CDKN2A’s expression and 
prognostic relevance in CRC was conducted comprehen-
sively. Moreover, thorough examinations of immune infil-
tration and biological functionalities have demonstrated 
the potential of CDKN2A as a viable therapeutic target 
for colorectal cancer and may offer valuable insights for 
PD-1-mediated immunotherapy.
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