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Abstract 

Background  RAS mutations affect prognosis in patients with metastatic colorectal cancer (mCRC) and have been 
identified as strong negative predictive markers for anti-epidermal growth factor receptor monoclonal antibody (anti-
EGFR mAb) therapy, but many tumors containing wild-type RAS genes still do not respond to these therapies. Some 
additional biomarkers may have prognostic or predictive roles, but conclusions remain controversial.

Methods  We performed a meta-analysis and systematic review of randomized controlled trials comparing anti-EGFR 
mAb therapy with alternative therapy that investigated the prognostic and predictive impact of additional biomark-
ers in RAS wild-type (wt) mCRC patients. Hazard ratios (HRs) and 95% confidence intervals (CIs) for progression-free 
survival (PFS) and overall survival (OS) and odds ratios (ORs) for objective response rate (ORR) were calculated. The 
prognostic value of biomarkers was investigated by separately pooling HR and OR for different treatment groups 
in an individual study. The predictive value was assessed by pooling study interactions between treatment effects 
and biomarker subgroups.

Results  Thirty publications reporting on eighteen trials were selected, including a total of 13,507 patients. In prog-
nostic analysis, BRAF mutations were associated with poorer PFS [HRs = 3.76 (2.47–5.73) and 2.69 (1.82–3.98)] and OS 
[HRs = 2.66 (1.95–3.65) and 2.45 (1.55–3.88)] in both the experimental and control arms; low miR-31-3p expres-
sion appeared to have longer PFS and OS. In terms of predictive effect, a lack of response to anti-EGFR therapy 
was observed in patients with BRAF mutant tumors (Pinteraction < 0.01 for PFS). Patients with tumors with any mutation 
in the KRAS/NRAS/BRAF/PIK3CA gene also showed similar results compared with all wild-type tumors (Pinteraction for PFS, 
OS, and ORR were < 0.01, < 0.01 and 0.01, respectively). While low miR-31-3p expression could predict PFS (Pinterac-

tion = 0.01) and OS (Pinteraction = 0.04) benefit. The prognostic and predictive value regarding PIK3CA mutations, PTEN 
mutations or deletions, EGFR, EREG/AREG, HER2, HER3, and HER4 expression remains uncertain.

Conclusions  In RAS wt mCRC patients receiving EGFR-targeted therapy, BRAF mutation is a powerful prog-
nostic and therapy-predictive biomarker, with no effect found for PIK3CA mutation, PTEN mutation or deletion, 
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but the combined biomarker KRAS/NRAS/BRAF/PIK3CA mutations predict resistance to anti-EGFR therapy. Low miR-
31-3p expression may have positive prognostic and therapy predictive effects. Evidence on the prognostic and predic-
tive roles of EGFR and its ligands, and HER2/3/4 is insufficient.

Keywords  Colorectal cancer, Prognostic, Predictive value, Biomarkers, Anti-EGFR monoclonal antibody

Introduction
The epidermal growth factor receptor (EGFR) is a 170-
kD transmembrane glycoprotein composed of three 
domains: an extracellular receptor domain, a transmem-
brane region, and an intracellular domain with tyrosine 
kinase function. It is a member of the ErbB family of 
receptors, a subfamily of four closely related receptor 
tyrosine kinases: EGFR (ErbB-1), HER2/neu (ErbB-2), 
HER3 (ErbB-3), and HER4 (ErbB-4) [1]. Upon binding 
of EGF or other ligands, EGFR is activated and induces 
the activation of downstream signaling pathways, includ-
ing Ras-MAPK, PI3K/Akt, JAK/STAT, and PLCγ/PKC 
pathways, which leads to tumor cell proliferation, angio-
genesis, tumor invasion, metastasis, and inhibition of 
apoptosis [2, 3]. EGFR is overexpressed in a wide variety 
of solid tumors and is associated with poor prognosis [4].

Several approaches have been developed that target the 
EGFR to interfere with EGFR-mediated cellular effects, 
preventing the growth of EGFR-expressing tumors [1, 5]. 
The two most extensively studied to date consist of mon-
oclonal antibodies blocking EGFR binding sites on the 
extracellular domain of the receptor and small-molecule 
compounds inhibiting intracellular tyrosine kinase activ-
ity. Anti-EGFR mAbs have been widely used in mCRC, 
including cetuximab (Erbitux, IMC-C225) and pani-
tumumab (Vectibix, ABX-EGF). EGFR tyrosine kinase 
inhibitors (EGFR-TKIs) are effective in treating EGFR-
mutated lung cancer, whereas they have thus far shown 
little activity in colorectal cancer [6].

The development of panitumumab and cetuximab is a 
milestone in the history of mCRC treatment, significantly 
improving the PFS and OS [7], but anti-EGFR mAb ther-
apy is only effective for some mCRC patients [8, 9]. RAS 
mutations have been demonstrated to be negative predic-
tive biomarkers of anti-EGFR mAb response and survival 
benefit [10, 11]. Indeed, KRAS and NRAS mutations acti-
vate downstream pathways independently of EGFR sta-
tus and induce primary drug resistance. However, many 
tumors containing wild-type KRAS and NRAS still do not 
respond to these therapies, suggesting that other molecu-
lar mechanisms of resistance exist.

Several retrospective evidence suggested that muta-
tions of BRAF, PIK3CA, loss of PTEN, aberrant expres-
sion of EGFR and its ligands amphiregulin (AREG) and 
epiregulin (EREG), amplification or overexpression of 
HER2/3, and dysregulation of microRNAs could be 

prognostic or predictive biomarkers of anti-EGFR mAb 
in RAS wt mCRC patients [12–20]. However, most of 
the conclusions are still controversial [21–25]. To date, 
only RAS and BRAF mutations have been incorporated 
into routine clinical practice, and the role of other bio-
markers still needs to be validated. BRAF oncogene 
mutations are strong prognostic markers, but the pre-
dictive value for anti-EGFR mAb therapy remains a 
matter of debate [26, 27].

Therefore, this systematic review pooled the prognos-
tic and predictive value of these additional biomarkers to 
further select patients with RAS wt mCRC who are most 
likely to benefit from EGFR-targeted therapy.

Methods
We performed this review according to the guidance of 
the Preferred Reported Items for Systematic Reviews 
and Meta-Analyses (PRISMA) 2020 statement [28]. The 
PRISMA compliance has been delineated in the PRISMA 
checklist table provided in Supplementary Table S1. 
A prospective protocol was registered in PROSPERO, 
CRD42022303340.

Eligibility criteria
Criteria for considering studies included: 1) Types of 
studies, prospective randomized clinical trials, or pro-
spective-retrospective biomarker analysis. 2) Types of 
participants, RAS wt mCRC; 3) types of interventions, 
matched anti-EGFR mAb therapy (either as monotherapy 
or in combination with standard‐of‐care palliative chem-
otherapy) versus alternative therapy; 4) Types of outcome 
measures, progression‐free survival (PFS, defined as the 
time from trial enrolment to a composite of disease pro-
gression and death), overall survival (OS, defined as the 
time from trial enrolment to death from any cause), and/
or overall response rate (ORR, defined as the percentage 
of people who achieved either a complete response or 
partial response) [29].

Due to the disparity in the trial protocol designs and 
the executing clinical centers, there were differences in 
the number and sort of investigated biomarkers among 
these studies. When we analyzed the prognostic and pre-
dictive values of each biomarker, we selected those stud-
ies containing the required data of biomarkers, which 
showed different numbers of studies in every analysis.
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Search strategy
We systematically searched the Cochrane Library, Pub-
Med, and Embase databases (up to 7 February 2022). 
The searches were rerun before the final analysis. The 
search strategy was presented in Additional file  1. All 
relevant articles were identified on PubMed to conduct 
a further search using the ’related articles’ feature. In 
addition, we manually examined the citation lists of 
included studies and previous systematic reviews. Two 
authors (XL and YL) performed the search indepen-
dently, in parallel.

Study selection
We imported all records retrieved by electronic search-
ing to Endnote 20 software and removed duplicates. 
Three authors (YL, XZ, and JS) examined the remaining 
references independently, in parallel. We excluded those 
studies that clearly do not meet the inclusion criteria and 
obtained the full text of potentially relevant references. 
Independently, three investigators assessed the eligibility 
of the retrieved studies. Any disagreement was resolved 
through discussion or, if required, consulted a fourth per-
son (ZY). We identified and excluded duplicate reports 
and collated multiple reports of the same study so that 
each study, rather than each report, was the unit of inter-
est in the review.

Data extraction
Two authors (XZ, and JS) independently extracted data 
from included studies, resolving discrepancies by consen-
sus or a third author (HF). Data were collected included 
the following: authors, publication years, journals, trial 
names, study design, participant demographics and char-
acteristics, treatment protocols (lines of treatment and 
study treatment protocols), the status of biomarkers, out-
comes (PFS, OS, and/or ORR), and results (numbers of 
events, hazard ratio (HR) and odds ratio (OR), and 95% 
confidence interval (CI). We extracted all information for 
data from the same trial presented in multiple publica-
tions and reported it as a single trial.

Study risk of bias assessment
We assessed and reported the risk of bias for each 
included study according to the Newcastle–Ottawa Scale 
(NOS), which is categorized into three dimensions: selec-
tion of study groups; comparability of groups; and assess-
ment of outcomes [30, 31]. The scale for cohort studies 
was used because nearly all included studies were based 
on retrospective biomarker analysis using archived tumor 
specimens, and biomarker status was not a matter of 
randomization. Risk of bias assessments was performed 

independently by two authors (XL and YL) and any dif-
ferences were resolved by discussion.

Statistical analysis
For prognostic and predictive analyses, PFS, OS, and 
ORR by treatment arm were assessed in subgroups of 
RAS wt patients according to the status of biomark-
ers. We used HRs with 95% CIs as the measure of effect 
for the time‐to‐event outcomes (PFS and OS). For the 
dichotomous outcome (ORR), OR with 95% CI was cal-
culated. For crossover trials, we only used pre-crossover 
data for pooling to minimize potential bias from carry-
over effects [32].

The prognostic value of biomarkers was investigated 
by comparing outcomes in RAS wt patients with differ-
ent statuses of biomarkers using the HRs and ORs in the 
experimental and control arms, respectively. The predic-
tive value of biomarkers was investigated by comparing 
the HRs or ORs of anti-EGFR mAb therapy (experimen-
tal arm) versus no anti-EGFR mAb therapy (control arm). 
Evidence for treatment effect modification by different 
statuses of biomarkers was evaluated by interaction tests. 
HRs were generally adjusted for covariates but varied to 
account for differences between studies. The ORs were 
not adjusted. The pooled HRs/ORs correspond to strati-
fied Cox proportional hazards and logistic regression 
models, respectively. The HRs/ORs of interaction were 
pooled as proposed by Fisher et  al. [33]. For data that 
could not be pooled statistically using meta‐analysis, we 
conducted a narrative synthesis of results adhering to the 
Synthesis Without Meta‐analysis (SWiM) guideline [34].

Heterogeneity between studies was evaluated by visual 
inspection of forest plots and quantified using the I2 sta-
tistic [35, 36]. I2 > 50% may represent substantial hetero-
geneity, in which case a random-effect (RE) model was 
used; otherwise, a fixed-effect (FE) model was used. The 
publication bias risk was assessed using funnel plots and 
Egger’s linear regression test. Sensitivity analyses were 
performed to investigate the impact of excluding trials 
with a high risk of bias. Prespecified analyses were under-
taken by grouping trials according to the anti-EGFR mAb 
therapy (cetuximab or panitumumab), the line of therapy, 
and treatment modalities in the control arm (with or 
without bevacizumab). All reported P values were two-
sided, and all statistical analyses were carried out using R 
statistical software (version 4.1.2; with the meta_v5.2–0 
packages).

Results
Overview of included studies and risk of bias assessment
The search retrieved a total of 7658 articles that have 
been thoroughly reviewed for entry criteria (Fig.  1). 
Eighteen trials comprising 13,507 intention-to-treat 
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(ITT) populations were finally identified that met the 
inclusion criteria (Table  1; Supplementary Table S2). 
Thirteen trials compared the addition of an anti-EGFR 
mAb with background treatment (FOLFIRI, FOLFOX, 
FLOX, irinotecan, oxaliplatin/irinotecan plus fluoropy-
rimidine, or best supportive care), and five compared 
the addition of an anti-EGFR mAb or bevacizumab to 
chemotherapy (FOLFOX or FOLFIRI). Twelve trials 
evaluated cetuximab and six assessed panitumumab. 
RAS mutation status was evaluable in 36%–100% of the 
ITT populations. Wild-type RAS accounts for approxi-
mately 59% of evaluable patients. 14 trials were avail-
able to assess the prognostic and predictive value of 
BRAF mutations by NGS, sanger sequencing, PCR and 
pyrosequencing, 4 trials for that of PIK3CA mutations 
by NGS, PCR and pyrosequencing, and 2 trials for that 
of non-functional PTEN by NGS and IHC. Three tri-
als examined the combined effect of multiple biomark-
ers mutations. In addition, 8 trials assessed the value of 
EGFR and its ligands by IHC and PCR, 3 trials for that 
of other members of the HER family by PCR, and 3 tri-
als for that of microRNA by PCR. The risk of bias assess-
ments was summarized in Supplementary Table S3.

Markers downstream of EGFR
BRAF Mutations

Prognostic role of BRAF Mutations  Six trials (five panitu-
mumab trials and one cetuximab trial) reported PFS or OS 
data that could be used to assess the prognostic value of 
BRAF mutations. For the anti-EGFR therapy arm, pooled 
analyses (Fig. 2a, b) showed an overall HR of 3.76 [2.47–
5.73] (P < 0.01) for PFS and 2.66 [1.95–3.65] (P < 0.01) for 
OS in the absence of any heterogeneity between trials, 
indicating a negative prognostic effect of BRAF mutation. 
Results were similar in the control arm, with an overall 
HR for PFS of 2.69 [1.82–3.98] (P < 0.01; heterogeneity test 
P = 0.36, I2 = 1%) but less pronounced than in the experi-
mental arm. The overall HR for OS in the control arm was 
2.45 [1.55–3.88] (P < 0.01), but there was substantial het-
erogeneity (P < 0.01; I2 = 74%). Sensitivity analysis showed 
that after excluding 20,050,181 study, there was no longer 
significant heterogeneity for OS (P = 0.33; I2 = 12%) with an 
overall HR of 1.95[1.50–2.54] (P < 0.01).

Predictive role of BRAF Mutations  Thirteen trials 
reported sufficient data to assess whether the efficacy of 

1895 duplicate records 

5763 abstracts screened

5332 records excluded:
1303 reviews, editorials, letters, notes, case reports, etc
4029 with irrelevant patients, treatment, and/or outcome

431 full-text assessed for eligibility

382 records excluded:
8 reviews, editorials, letters, notes, etc

82 with irrelevant patients, treatment, and/or outcome
238 not prospective randomized clinical trials 
33 duplicate cohorts
21 no data to extract

49 publications included in the review reporting on 18 RCTs:  
20020408, 20050181, 20100007, CRYSTAL, OPUS, PRIME, CO.17, 
TAILOR, PICCOLO, COIN, NORDIC-VII, CAPRI-GOIM, CALGB 
80203, FIRE-3, CALGB/SWOG 80405, PEAK, New EPOC, VISNÚ-2

7638 records identified by database search: 
1830 Pubmed
5179 Embase
629 The Cochrane Library

20 additional records identified 
through hand searching related articles 
and references in retrieved studies

Fig. 1  Flow chart of study selection
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Study

Cmab/pmab

No cmab/pmab

20050181
20100007
PRIME

20050181
20100007
PRIME
CO.17
PICCOLO

BRAF mut

22
 9
24

23
11
29
 6
31

BRAF wt

186
155
286

190
142
280
 97
163

2.66

2.45

3.23
1.79
2.63

5.00
3.03
2.22
1.47
1.56

[1.95; 3.65]

[1.55; 3.88]

[2.00; 5.23]
[0.88; 3.70]
[1.59; 4.35]

[3.03; 7.69]
[1.52; 5.88]
[1.43; 3.45]
[0.59; 3.68]
[1.03; 2.37]

OS Hazard Ratio [95% CI]

< 0.01P

< 0.01P
SUMMARY

SUMMARY
Heterogeneity: I2 = 0%, P =0.41

0.2 0.5 1 2 5

Heterogeneity: I2 = 74%, P < 0.01

'BRAF mut'
subgroup superior

'BRAF wt' 
subgroup superior

B

Study

Cmab/pmab 

No cmab/pmab

SUMMARY

20020408
20050181

20020408
20050181
CO.17

BRAF mut

 9
22

 6
23
 6

BRAF wt

 63
186

 52
190
 97

0.2 0.5 1 2 5

'BRAF mut'
subgroup superior

'BRAF wt' 
subgroup superior

3.76

2.69

3.27
4.00

2.55
3.23
1.52

[1.82; 3.98]

[1.04; 6.24]
[1.96; 5.26]
[0.61; 3.80]

Heterogeneity: I2 = 0%, P = 0.67

SUMMARY
Heterogeneity: I2 = 1%, P = 0.36

PFS Hazard Ratio [95% CI]

[1.52; 7.01]
[2.44; 6.67]

[2.47; 5.73]
P < 0.01

P < 0.01

A

Fig. 2  Forest plots for the prognostic analyses of BRAF mutations in the control and experimental arms for progression-free survival a and overall 
survival b. Cmab, cetuximab; Pmab, panitumumab; mut, mutant; wt, wild-type. OS, overall survival; PFS, progression-free survival



Page 7 of 27Lu et al. BMC Cancer         (2023) 23:1117 	

anti-EGFR mAb differed between BRAF subgroups. PFS 
data were available for all 13 RCTs. Overall, the addi-
tion of anti-EGFR mAb did not increase PFS in patients 
with BRAF mutant tumors compared with controls 
[HRs of 1.05 (0.86–1.28); P = 0.62]; whereas a significant 

benefit of anti-EGFR mAb therapy was observed in 
patients with BRAF wt tumors [HRs of 0.65 (0.55–0.79); 
P < 0.01] (Fig.  3a). OS data were available from 11 trials 
except the 20,020,408 and TAILOR trials. Based on the 
pharmacogenomic substudies of 11 RCTs, the hazard 
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ratio for OS benefit with anti-EGFR mAb therapy was 
1.01 (0.82–1.25) for BRAF mutant tumors as compared 
with 0.81 (0.72–0.92) for BRAF wt tumors (Fig.  3c). 
Similar patterns were observed for ORR data obtained 
from 4 trials, with a trend toward greater benefit in the 
anti-EGFR mAb therapy arm in patients with BRAF wt 
tumors [OR = 1.93 (1.50, 2.48); P < 0.01] compared with 
patients with BRAF mutant tumors [OR = 1.43 (0.56, 
3.64); P = 0.46] (Fig. 3e).

Treatment interaction tests showed a significant dif-
ference in the PFS benefit of anti-EGFR mAb therapy 
between BRAF mutant and BRAF wt tumors (HR = 1.37 
(1.11, 1.70), interaction test P < 0.01) (Fig. 3b). However, 
there was little difference was observed between BRAF 
mutant and BRAF wt tumors with respect to either OS 
efficacy (HR = 1.16 (0.93, 1.45), interaction test P = 0.40) 
(Fig. 3d) or ORR efficacy (OR = 0.80 (0.30, 2.13), interac-
tion test P = 0.65) (Fig. 3f ). No significant inter heteroge-
neity was evident between studies for the interaction test 
between BRAF subgroups(I2 of PFS, OS, and ORR were 
26%, 4%, and 0%, respectively.). Visual inspection and 
linear regression tests of funnel plot asymmetry did not 
indicate significant publication bias.

In terms of PFS, the predictive role of BRAF status was 
not significantly different between studies with different 
anti-EGFR mAb agents (P for interaction = 0.55), differ-
ent lines of therapy (P for interaction = 0.88), and with or 
without bevacizumab in the control arm (P for interac-
tion = 1.00) (Table  2). However, the predictive effect was 
significant for studies with cetuximab, first-line therapy, 
or without bevacizumab (P values < 0.01, 0.02, and < 0.01, 
respectively) but not for studies with panitumumab, sec-
ond-line and above treatment, or with bevacizumab (P 
values 0.21, 0.10 and 0.18, respectively). Regarding OS and 
ORR, no predictive effect was observed after stratification 
for anti-EGFR mAb used, line of treatment, and whether 
or not bevacizumab was included in the control arm.

PIK3CA Mutations

Prognostic role of PIK3CA Mutations  Three trials ana-
lyzed the potential prognostic value of PIK3CA muta-
tions, but only OS data based on two trials were available 
for pooling. In the control arm according to PIK3CA sta-
tus (mutant versus wild-type), the HR for PFS was 1.10 
[0.72–1.68] (P = 0.66) for the CO.17 trial, and the pooled 
HR for OS was 1.11 [0.80–1.55] (P = 0.54; heterogeneity 
test P = 1.00, I2 = 0%) for CO.17 and PICCOLO trials. The 
COIN trial also showed that regardless of the treatment 
arm, PIK3CA mutations did not affect PFS [HR = 1.06 
(0.89–1.26); P = 0.49] or OS [HR = 0.91 (0.75–1.11); 
P = 0.37]. This was independent of whether the PIK3CA 

mutation was divided into mutations in exon 9 and exon 
20. Based on the small amount of trial data available, no 
prognostic value of PIK3CA mutations was found for 
patients with mCRC.

Predictive role of PIK3CA Mutations  Analysis of data 
based on four trials indicated that for PFS (Fig.  4a), 
a significant benefit of anti-EGFR mAb therapy was 
observed in patients with PIK3CA wt tumors [HR = 0.57 
(0.38–0.87); P < 0.01], whereas no benefit was observed in 
patients with PIK3CA mutant tumors [HR = 0.70 (0.26–
1.88); P = 0.48]; for OS (Fig.  4c), no benefit was shown 
in patients with both wild-type and mutant PIK3CA 
tumors [HRs 0.81 (0.56–1.19); P = 0.29 and 0.87 (0.49–
1.52); P = 0.62, respectively]. Treatment interaction tests 
between PIK3CA subgroups showed no difference in the 
predictive value of anti-EGFR mAb therapy for both PFS 
(HR = 1.36 (0.89, 2.07), interaction test P = 0.15; hetero-
geneity test P = 0.30, I2 = 18%, Fig. 4b) and OS (HR = 1.06 
(0.68, 1.65), interaction test P = 0.80; heterogeneity test 
P = 0.81, I2 = 0% Fig. 4d) in the absence of significant het-
erogeneity between studies. Stratified analysis according 
to the type of anti-EGFR mAb and the line of therapy also 
did not observe any predictive effect regarding PFS and 
OS (Table 3).

Prognostic and Predictive role of Non‑functional PTEN
Here we only analyzed the data descriptively because 
only two trials assessed the role of PTEN mutation and 
reduced PTEN expression in patients with RAS wt 
tumors, respectively. No quantitative analysis could 
not be performed. For the 20,020,408 trial, a favorable 
effect of panitumumab on PFS was observed in patients 
with PTEN wt tumors [n = 135; HR = 0.36 (0.25–0.52); 
P < 0.001] compared with no significant benefit in patients 
with PTEN mutant tumors [n = 9; HR = 0.11 (0.01–1.52); 
P = 0.10]. The interaction term did not suggest statistical 
significance (HR 0.31, interaction test P = 0.36). ORRs 
for mutant versus wild-type PTEN among patients with 
wild-type KRAS who were randomized to panitumumab 
were 14% (95% CI, 0–0.58) and 13% (95% CI, 0.06–0.22), 
respectively. No patients responded to BSC alone.

For the effect of PTEN expression deficiency, the 
CO.17 trial showed an HR of 0.99 (P = 0.98) for PFS and 
1.13 (P = 0.70) for OS between PTEN-negative and posi-
tive subgroups in the control arm, indicating no prog-
nostic significance. Regarding predictive value, the HRs 
for PFS and OS between cetuximab and best supportive 
care were 0.66 [0.31–1.41] and 0.66 [0.29–1.52], respec-
tively, in patients with PTEN-positive tumors and 0.34 
[0.20–0.57] and 0.63 [0.38–1.03], respectively, in patients 
with PTEN-negative tumors. Treatment interaction tests 
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showed no significant association between PTEN status 
and the survival benefit of cetuximab therapy (HR 0.52, 
interaction test P = 0.16 for PFS; HR 0.95, interaction test 
P = 0.92 for OS). The ORR to cetuximab was 21% ver-
sus 15% in patients with PTEN positive versus negative 
tumors. These data suggest that in patients with RAS wt 
tumors, PTEN status was neither prognostic nor predic-
tive of benefit from cetuximab.

Prognostic and predictive role of multiple biomarkers
Three trials evaluated the combined impact of multiple 
biomarkers on clinical outcomes of anti-EGFR therapy 
in mCRC. The role of BRAF and PIK3CA mutations 
in patients with RAS wt was analyzed in the VISNÚ-2 
trial, which showed similar trends in PFS improve-
ment in patients with BRAF/PIK3CA wt versus BRAF- 
and/or PIK3CA-mutated tumors in both treatment 
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survival and c, d overall survival. PFS, progression-free survival; OS overall survival

Table 3  Relative size of anti-EGFR mAb efficacy for PIK3CA mutant tumors compared to PIK3CA wild-type tumors. Results stratified by 
anti-EGFR drug and line of therapy

* Test comparing the HRs between trial subgroups (cetuximab; panitumumab; line of therapy)

Subgroup PFS P value for 
interaction*

OS P value for 
interaction*

N Trials Interaction 
Hazard Ratio (95% 
CI)

Interaction
P value

N Trials Interaction 
Hazard Ratio (95% 
CI)

Interaction
P value

Anti-EGFR drug 0.53 0.70

  Cetuximab 2 1.26 (0.77, 2.04) 0.36 2 1.00 (0.59, 1.70) 0.99

  Panitumumab 2 1.71 (0.75, 3.92) 0.21 1 1.21 (0.53, 2.77) 0.66

Line of therapy 0.59 0.87

  First 1 1.50 (0.86, 2.60) 0.15 1 1.10 (0.58, 2.06) 0.77

   ≥ Second 3 1.19 (0.62, 2.26) 0.60 2 1.02 (0.55, 1.91) 0.95
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arms [FOLFIRI plus cetuximab: HR = 1.55 (0.83–2.89); 
P = 0.17; FOLFIRI plus bevacizumab: HR = 1.07 (0.61- 
1.88); P = 0.83]. The predictive effect of chemotherapy 
plus EGFR antibody therapy compared with chemother-
apy plus bevacizumab was not significantly different for 
patients with BRAF/PIK3CA wt and BRAF- or PIK3CA-
mutated tumors both for PFS (HR 1.12, interaction test 
P = 0.79), OS (HR 0.87, interaction test P = 0.73), and 
ORR (OR 0.71, interaction test P = 0.65).

Two additional trials assessed whether the efficacy 
of anti-EGFR mAb differed between KRAS, NRAS, 
BRAF, and PIK3CA combined biomarker subgroups. 
The pooled analyses showed that significant PFS and 
ORR benefits of anti-EGFR mAb therapy were observed 
in patients with all-wt tumors [HR 0.66 (0.53–0.82); 
P < 0.01, OR 5.32 (3.16–8.96); P < 0.01] compared with 
no benefit in those with mutant (any mutation in 
KRAS/NRAS/BRAF/PIK3CA genes) tumors [HR 1.32 
(0.97–1.81); P = 0.08, OR 1.41 (0.63–3.18); P = 0.41] 
(Fig.  5a, e). The results for OS showed a similar trend 

(Fig.  5c), with significantly shorter OS in patients with 
any mutant tumors [HR 1.63 (1.20, 2.22); P < 0.01] com-
pared to patients with all-wild type tumors [HR 0.78 
(0.50, 1.22); P = 0.28]. Treatment interaction tests showed 
that the predictive value of anti-EGFR mAb therapy was 
significantly different for patients with mutant and wild-
type KRAS/NRAS/BRAF/PIK3CA tumors all for PFS 
(HR = 2.01 (1.36, 2.96), interaction test P < 0.01; heteroge-
neity test P = 0.24, I2 = 29%, Fig. 5b), OS (HR = 1.96 (1.34, 
2.86), interaction test P < 0.01; heterogeneity test P = 0.34, 
I2 = 0%, Fig.  5d) and ORR (OR = 0.27 (0.10, 0.74), inter-
action test P = 0.01; heterogeneity test P = 0.61, I2 = 0%, 
Fig. 5f ).

EGFR and its ligands
Prognostic and predictive role of EGFR
Because of the significant heterogeneity of EGFR sta-
tus, detection methods, and determination criteria in 
different studies, no quantitative synthesis of data was 
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performed. Three trials used immunohistochemistry 
to assess the correlation between EGFR immunostain-
ing and clinical response to anti-EGFR mAb therapy. 
The COIN trial showed a prognostic effect of EGFR on 
PFS at the standardized cutoff point of < 10% vs. ≥ 10% 
[HR 1.25 (1.05–1.50); P = 0.015] in the KRAS wt cohort 
(Table 4). There was no evidence of EGFR immunohis-
tochemistry’s predictive role, regardless of the cutoff 
point (data not shown). Data from the CRYSTAL and 
TAILOR studies also confirm that adding cetuximab to 
chemotherapy improved the survival benefit of first-
line treatment for patients with RAS wt mCRC, irre-
spective of tumor EGFR status (Fig. 6a-c).

The CALGB 80203 trial reported data from patients 
with EGFR expression evaluated by quantitative poly-
merase chain reaction and no prognostic association 
was found between this parameter and survival out-
comes in KRAS wt patients [HRs of 0.80 (0.58–1.09); 
P = 0.168 and 1.04 (0.81–1.34); P = 0.748 for PFS and 
OS, respectively]. EGFR gene expression levels were 
also not a potential predictive marker for cetuximab 
benefit (HR 0.74, interaction test P = 0.37 for PFS; and 
HR 0.88, interaction test P = 0.86 for OS).

Two trials (the 20,020,408 and PICCOLO trials) pro-
vided data from EGFR amplification patients, showing 
that patients with increased EGFR gene copy num-
ber had higher response rates and longer PFS to anti-
EGFR mAb compared to patients with normal EGFR 
gene copy number (Table  4; Fig.  6a). Data from the 
20,020,408 trial showed that in patients treated with 
panitumumab, the mean EGFR GCN ≥ 2.5/nucleus 
or percentage of chromosome 7 polysomy ≥ 40% pre-
dicted better PFS (P = 0.039 and 0.029, respectively) 
and OS (P = 0.015 and 0.014, respectively). Six of 20 
patients with EGFR GCN ≥ 2.47/nucleus and six of 19 
patients with chromosome 7 polysomy ≥ 43% achieved 
an objective response ((P = 0.0009 and 0.0007, respec-
tively). In contrast, no patients had tumor response 
when the EGFR GCN or chromosome 7 polysomy was 
less than this value. In this trial, there was no correla-
tion between EGFR GCN and chromosome 7 poly-
somy status and PFS in patients receiving supportive 
care, suggesting that this parameter is not prognostic 
in mCRC. The PICCOLO trial showed a similar trend, 
with no prognostic effect of EGFR copy number gain on 
PFS (P = 0.98) and OS (P = 0.97). However, it was pre-
dictive of panitumumab benefit, with median PFS of 5.7 
vs 3.7 months in RAS wt patients with EGFR-gain [HR 
0.60 (0.43–0.83), P = 0.002], but no benefit in patients 
with normal EGFR [3.4 vs 2.9 months, HR 1.23 (0.72–
2.08); P = 0.45) (HR 0.49, interaction test P = 0.02). In 
RAS wt patients, EGFR gain was associated with higher 
response rates than normal in the irinotecan plus 

panitumumab arm (45.3% vs. 18.7%, P = 0.01) but not in 
the irinotecan arm (13.3% vs. 12.9%, P = 1.0) (Table 4). 
The interaction was not significant (P = 0.22).

Prognostic and Predictive role of EGFR Ligands
Five trials evaluated the EGFR ligands EREG and AREG 
as prognostic and predictive biomarkers. We did not 
quantitatively synthesize the data due to the apparent dif-
ferences between studies.

In terms of EREG/AREG as a combined dichotomous 
biomarker, data from the PICCOLO trial confirmed 
that high ligand mRNA levels or IHC positivity are 
predictive biomarkers of benefit from panitumumab 
treatment in patients with metastatic colorectal can-
cer (Fig.  7a-c). In RAS wt patients with high ligand 
mRNA levels (either ligand in the top tertile), panitu-
mumab treatment had a significantly longer PFS com-
pared with control treatment [HR 0.38 (0.24–0.61); 
P < 0.001]. However, there was no benefit of panitu-
mumab in RAS wt patients with low ligand mRNA lev-
els (neither ligand in top tertile) [HR, 0.93 (0.64–1.37); 
P = 0.73]. The ligand-treatment interaction was signifi-
cant (HR 0.41, interaction test P = 0.01). The effects on 
OS (HR 0.64, interaction test P = 0.11) and ORR (OR 
3.69, interaction test P = 0.088) were less significant. 
The trial also explored several alternative cutpoints, 
including the 50th, 80th, and 90th centiles, but none 
separated the beneficiary/non-beneficiary population 
to a greater extent. Analysis of immunohistochemistry 
showed similar results, with high ligand IHC positivity 
(> 50% AREG or > 50% EREG) associated with signifi-
cant PFS and ORR benefit with panitumumab [HR for 
PFS 0.54 (0.37–0.79); P = 0.001 and OR for ORR 14.1 
(4.58, 43.39)); P = 0.000]; and no benefit in patients 
with low ligand IHC positivity (≤ 50% AREG and ≤ 50% 
EREG) [HR for PFS 1.05 (95% CI, 0.74–1.49); P = 0.78, 
and OR for ORR 2.07 (0.87, 4.91); P = 0.10]. Treat-
ment interaction tests were significant both for PFS 
(HR 0.51, interaction test P = 0.02) and ORR (OR 6.81, 
interaction test P = 0.008). The results for OS were less 
significant (HR 0.72, interaction test P = 0.19). The 
effects of different cutoffs were also examined here and 
found that interactions remained significant across the 
20% to 50% cutoff range. For the prognostic role of 
tumor EREG/AREG expression in RAS wt patients, no 
prognostic effect of high versus low expresser status 
on PFS or OS was seen in the subgroup treated with 
irinotecan alone (Table 5).

The trials also examined EREG and AREG separately as 
independent biomarkers. For EREG, contradictory results 
were presented between these studies. When examined 
as a dichotomous variable, in the prognostic analysis, 
EREG expression had a favorable prognostic effect on OS 
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Fig. 6  Forest plots for predictive analyses of EGFR in trials comparing experimental arm with control arm—a progression-free survival, b overall 
survival and c objective response rate. NA, not available; PFS, progression-free survival; OS overall survival; ORR, objective response rate
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Fig. 7  Forest plots for predictive analyses of EGFR ligands in trials comparing experimental arm with control arm—a progression-free survival, 
b overall survival and c objective response rate. NA, not available; PFS, progression-free survival; OS overall survival; ORR, objective response rate
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in the control arm [HR 0.79 (0.66–0.94)] in the CALGB 
80203 trial but failed to show significance in the CO.17 
and PICCOLO trials (Table 5). In predictive analysis, the 
CO.17 trial showed that patients with high EREG expres-
sion appeared to benefit more from cetuximab treatment 
than those with low expression (HR 0.49, interaction test 
P = 0.04 for OS, Fig.  7b), and the PICCOLO trial also 
found that the percentage of EREG IHC positivity > 50% 
predicted PFS (HR 0.50, interaction test P = 0.02, Fig. 7a) 
and OS (HR 0.60, interaction test P = 0.04, Fig. 7b) ben-
efits of panitumumab. However, no predictive value was 
observed in the CALGB 80203 and COIN trials. As a con-
tinuous variable, a prognostic impact of EGFR expression 
on OS was observed in both the CO.17 and PICCOLO 
trials [HR 0.85 (0.96–0.76); P = 0.01 and 0.87 (0.80–0.94); 
P = 0.001, respectively] (Table 5), but did not predict sur-
vival benefit of anti-EGFR mAb therapy. In contrast, in 
the immunohistochemical analysis of the PICCOLO trial, 
EGFR IHC positivity was not prognostic for either PFS or 
OS in patients treated with irinotecan only but predicted 
a PFS benefit with panitumumab (HR 0.91, interaction 
test P = 0.01, Table  5). EREG status may have certain 
prognostic and predictive roles, but no definitive conclu-
sions can be drawn based on current evidence.

When AREG was analyzed separately as a dichotomous 
variable, the CALGB 80203 and PICCOLO trials showed 
that AREG mRNA expression and AREG IHC were nei-
ther prognostic markers nor predictive markers of ben-
efit from EGFR-targeted therapy in RAS wt metastatic 
colorectal cancer (Table  5; Fig.  7a, b). When examined 
as a continuous variable, neither AREG expression nor 
AREG IHC had prognostic significance for PFS and OS. 
In the predictive analysis of patients with RAS wt tumors, 
AREG expression predicted the effect of panitumumab 
treatment on PFS (HR 0.82, interaction P = 0.008) but not 
OS (HR 0.89, interaction test P = 0.07); and AREG IHC 
was not predictive of either PFS (HR 0.91, interaction 
test P = 0.06) or OS (HR 0.96, interaction test P = 0.43) 
(Table 5).

Prognostic and Predictive role of other members 
of the HER family
Data on HER2 and HER4 were only available from the 
CALGB 80203 trial (Table 6). Prognostic analysis showed 
no significant effect of HER2 and HER4 expression on 
PFS and OS in both the anti-EGFR therapy and control 
groups. The interaction test between treatment and gene 
expression also did not show a predictive value.

For HER3, neither of the two included trials (the PIC-
COLO and CALGB 80203 trials) observed evidence for it 
as a prognostic biomarker but found tumor HER3 mRNA 
expression may be a useful predictive biomarker for anti-
EGFR therapy in RAS wt patients (Table  6; Fig.  8a-c). 

However, the prediction of HER3 expression levels in 
these two trials was in opposite directions. Considering 
the substantial statistical heterogeneity (I2 = 88%) associ-
ated with methodological and clinical characteristics, we 
ultimately decided not to perform a quantitative synthe-
sis of the trials because it would be clinically meaning-
less, and the results would be difficult to interpret. In the 
CALGB 80203 trial, high HER3 expression predicted a 
lack of OS benefit from cetuximab therapy [chemother-
apy plus cetuximab: HR 1.15 (0.81–1.62); chemotherapy 
alone: HR 0.48 (0.27–0.87); interaction test P = 0.029] 
(Table  6). Conversely, in the PICCOLO trial, patients 
with high HER3 mRNA expression significantly ben-
efited from panitumumab, both as a continuous variable 
and a binary model. There was a significant interaction 
between biomarkers and treatment (continuous vari-
able: HR 0.78, interaction test P = 0.003 for PFS; HR 0.81, 
interaction test P = 0.01 for OS, Table  6; dichotomous 
variable: HR 0.34, interaction test P = 0.002 for PFS; HR 
0.42, interaction test P = 0.01 for OS, Fig. 8a, b).

Prognostic and Predictive role of MicroRNA
Three trials assessed the value of relevant microRNAs 
as potential biomarkers. In the PICCOLO trial, a pre-
defined model classified RAS wt patients (n = 188) into 
three tertiles, high, intermediate (int), and low miR-31-3p 
expression. Int and high expression patients had worse 
PFS (HR 1.60, 1.60; P = 0.018, respectively) and OS (HR 
1.58, 2.03; P = 0.0012, respectively) compared with low 
expression patients and after adjustment for the treat-
ment arm (Table  7), indicating a positive prognostic 
effect of low miR-31-3p expression. In predictive analy-
sis, panitumumab produced a significant PFS benefit in 
patients with low and int miR-31-3p expression (HR 0.50; 
P = 0.019 and 0.57; P = 0.031, respectively) but not in 
patients with high expression (HR 0.72; P = 0.23) (Fig. 9a); 
however, no statistically significant treatment-expression 
interaction.

Data from the FIRE-3 trial not only showed the prog-
nostic value of miR-31-3p expression but also observed a 
significant benefit of anti-EGFR mAb therapy in patients 
with low miR-31-3p expression tumors compared with 
no benefit in patients with high miR-31-3p expression 
tumors, but none of these results from the New EPOC 
trial were statistically significant (Table7; Fig.  9a-c). 
Pooled results from two trials confirmed that miR-31-3p 
expression levels predicted PFS (HR = 1.83 (1.15, 2.93), 
interaction test P < 0.01; heterogeneity test P = 0.80, 
I2 = 0%, Fig.  9d) and OS (HR = 1.81 (1.02, 3.21), interac-
tion test P = 0.04; heterogeneity test P = 0.86, I2 = 0%, 
Fig. 9e) benefits of anti-EGFR mAb therapy, but not for 
ORR (OR = 0.63 (0.17, 2.30), interaction test P = 0.48; het-
erogeneity test P = 0.14, I2 = 53%, Fig. 9f ).
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In addition, a study of patients from the FIRE-3 trial also 
suggested that miR-21 expression levels may be a predic-
tive biomarker for anti-EGFR therapy (data not shown).

Discussion
Colorectal cancer accounts for about one-tenth 
of global cancer and death cases, ranking third in 
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Fig. 8  Forest plots for predictive analyses of HER3 in trials comparing experimental arm with control arm—a progression-free survival, b overall 
survival and c objective response rate. NA, not available; PFS, progression-free survival; OS overall survival; ORR, objective response rate
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incidence but second to lung cancer in terms of mortal-
ity [65]. Metastatic colorectal cancer is associated with a 
significantly worse prognosis, with a 5-year relative sur-
vival rate of no more than 15% for patients [66]. Since 
the US FDA approved cetuximab for the treatment of 
mCRC in 2004, EGFR-targeted therapy has become an 
essential means to improve the survival prognosis of 
RAS wt mCRC patients. However, primary and second-
ary resistance prevent many patients from benefiting 
from this therapy. Therefore, identifying other poten-
tial molecular biomarkers to guide this treatment and 
prognostic stratification of mCRC patients is highly 
desirable. We identified 30 publications in this system-
atic review involving 18 well-known RCTs, providing a 
comprehensive exploration of potential biomarkers cur-
rently widely studied.

The first to be extensively evaluated were critical com-
ponents of the EGFR signaling pathway, including RAS, 
BRAF, PIK3CA, PTEN, and combinations of them [67]. 
This is driven by plausible biological rationale that con-
stitutive activation of signaling pathways parallel to or 
downstream of EGFR should circumvent EGFR inhibition 
and therefore preclude sensitivity to anti-EGFR mAbs 
[68]. Some previous meta-analyses have highlighted the 
prognostic value of BRAF mutations, but there is insuf-
ficient evidence to demonstrate its predictive role for 
anti-EGFR mAbs therapy [26, 69, 70]. The efficacy of 
anti-EGFR mAb in patients with BRAF-mutated mCRC 
is still under debate. Recently, preliminary results from 

the randomized phase II FIRE-4.5 study (AIO KRK-0116) 
provided good data [71]. This is the first trial to investi-
gate mFOLFOXIRI in combination with cetuximab or 
bevacizumab as first-line treatment for patients with RAS 
wild-type, BRAF V600E mutant mCRC. According to the 
results of the FIRE-4.5 trial presented at the 2021 ASCO 
Annual meeting, FOLFOXIRI plus cetuximab (49.2%) did 
not induce a higher ORR compared with FOLFOXIRI 
plus bevacizumab (60.0%); and both PFS and OS were 
significantly better in the bevacizumab group than in the 
cetuximab-treated group. This coincides with our results. 
Our pooled analysis of relevant data from 14 trials deter-
mined that BRAF mutation was not only a negative prog-
nostic biomarker in patients with RAS wt tumors but also 
predicted a lack of benefit from anti-EGFR mAb ther-
apy (interaction test P < 0.01 for PFS). Stratified analysis 
showed that the predictive effect of BRAF status on PFS 
might depend on cetuximab, first-line treatment, and the 
absence of bevacizumab in the control group. Although 
some studies have initially suggested that RAS wt mCRC 
patients with PIK3CA mutations and PTEN mutations or 
deletions may have lower responses and poorer outcomes 
when receiving anti-EGFR mAbs [72–76]. But we found 
no prognostic or predictive role for them based on the 
data from several available trials. However, a pooled anal-
ysis of two trials evaluating the combined biomarkers of 
KRAS, NRAS, BRAF, and PIK3CA showed a significantly 
reduced benefit from anti-EGFR therapy in patients with 
any mutant tumor compared with patients with all wt 
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tumors (interaction tests P < 0.05 for PFS, OS, and ORR). 
This suggests that combinatorial analysis of multiple bio-
markers can help further screen outpatient populations 
that may benefit.

EGFR and its ligands EREG and AREG are commonly 
overexpressed in colorectal cancer [77]. Autocrine stimu-
lation of EGFR by AREG and EREG is a mechanism of 
tumor EGFR pathway dependence, so the impact of their 
expression on the response to EFGR-targeted therapy 
in mCRC patients has also received much attention 
[78–80]. Several retrospective studies have suggested 
that EGFR status and EREG/AREG expression may cor-
relate with the prognosis of mCRC patients and may 
identify patients who will or will not benefit from anti-
EGFR therapy [16, 80–86]. However, the strength of the 
evidence is limited, and the conclusions are controversial, 
so further validation of the clinical utility of these mark-
ers is needed [23]. Under this topic, we only performed a 
descriptive analysis of relevant trial data because of the 
high heterogeneity among studies. EGFR was targeted 
in six trials involving its immunohistochemical protein 
expression, mRNA expression, and frequency of gene 
amplification. No prognostic association has been found 
between this parameter and survival outcomes in RAS 
wt patients. In terms of predictive effects, data from the 
20,020,408 and PICCOLO trials suggest that patients 
with increased EGFR GCN had higher response rates to 
panitumumab and longer PFS; however, there was no evi-
dence of a predictive role for EGFR protein and mRNA 
expression. Four trials analyzed EREG and AREG alone 
or as a combined biomarker. For EREG/AREG as a com-
bined dichotomous biomarker, high ligand mRNA lev-
els or IHC positivity could predict PFS and ORR benefit 
from panitumumab treatment, but no prognostic effect 
was observed. When EREG and AREG were investigated 
as separate biomarkers, conflicting results emerged, and 
EREG expression may have certain prognostic and pre-
dictive roles compared with AREG. Still, no clear conclu-
sions can be drawn at this time.

The HER family of receptor tyrosine kinases shares a 
high degree of structural and functional homology, which 
is the molecular basis for receptor interaction and cross-
activation [87]. Dimers containing HER3, especially the 
HER2-HER3 heterodimer, have been shown to act as 
oncogenic units to drive tumor cell proliferation [88]. And 
preclinical experiments showed that cetuximab induces 
HER2-HER3 dimers in colon cancer cells [89].Several 
small clinical reports support the importance of expres-
sion of other markers in the HER axis, suggesting that 
HER2 amplification and HER3 overexpression appear to 
be predictive markers of resistance to anti-EGFR mAb 
therapy [90–94]. Of the included trials, only two provided 
data on HER2, HER3, and HER4 expression. In prognostic 

analysis, no meaningful results were observed for all three. 
In terms of predictive effect, only tumor HER3 mRNA 
expression may be a predictive biomarker for anti-EGFR 
therapy in RAS wt patients. However, in contrast to the 
results of previous retrospective studies and the CALGB 
80203 trial, the PICCOLO trial showed that HER3 over-
expression was significantly associated with benefit rather 
than resistance to anti-EGFR therapy. This result may be 
due to the role of HER3 as an obligate heterodimer. Over-
all, further studies are needed to verify the role of other 
members of the HER family.

MicroRNAs (miRNAs) are a group of short non-cod-
ing RNAs that play important roles in carcinogenesis 
and tumor progression, and their aberrant expression 
may potentially be used as diagnostic, therapeutic, and 
prognostic markers for CRC [95–98]. MiR-31 is fre-
quently upregulated in CRC tumors compared with nor-
mal mucosa and miR-31 activates the RAS pathway and 
functions by repressing RAS p21 GTPase activating pro-
tein 1 translation, thereby promoting CRC progression 
[99, 100]. In addition, it has been shown that low expres-
sion of miR-31-3p could be a consequence of the regu-
lation of pre-mir-31 maturation by an EGFR-activated 
pathway, driving tumor sensitivity to anti-EGFR ther-
apy [58].Our meta-analysis showed that low miR-31-3p 
expression predicted PFS (interaction test P = 0.01) and 
OS benefit (interaction test P = 0.04) from anti-EGFR 
mAb treatment. In terms of prognostic analysis, low 
miR-31-3p expression also showed a positive prognostic 
effect. In addition, a trial assessing the expression level 
of miR-21 also showed preliminary predictive value.

To our knowledge, this is the first systematic review to 
systematically summarize the evidence from RCTs on the 
prognostic and predictive value of all extensively studied 
potential biomarkers of interest, and the largest on this 
topic. However, the current analysis also has some limi-
tations that must be acknowledged. First, the results of 
the trials we included in the analysis were extracted from 
published data and not based on individual patient data. 
Second, some biomarkers were only analyzed descrip-
tively with limited strength of evidence due to limitations 
in the number of included trials and the high heterogene-
ity caused by differences in assay methods, determination 
criteria, etc. Furthermore, stratified analyzes of interest 
could not be performed in each marker due to the limited 
number of studies. Moreover, some factors that may influ-
ence the impact of mutations on survival, such as MSI sta-
tus, were limited by the fact that the original report did 
not adjust the hazard ratio for them, and could not be 
further analyzed. Finally, some of the studies included in 
the analysis were only reported as abstracts in conference 
presentations rather than fully published articles, and 
results may differ slightly between future full publications.
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Conclusions
In conclusion, our analysis was able to confirm that, in 
RAS wt mCRC patients, BRAF mutations were associ-
ated with poor prognosis and predicted lack of response 
to anti-EGFR therapy, and combination biomarker 
KRAS/NRAS/BRAF/PIK3CA mutations were also nega-
tive predictive markers for treatment; low miR-31-3p 
expression was positive prognostic and predictive of 
therapy. There is currently insufficient evidence to sup-
port PIK3CA mutations, PTEN mutations or deletions, 
EGFR status, and HER2 and HER4 expression as prog-
nostic or therapy predictive biomarkers. EREG/AREG 
and HER3 expression may have a particular predictive 
role, but the conclusions are still controversial. These 
results are preliminary, and efforts are needed to achieve 
assay standardization and prospective validation to opti-
mize further the identification of patients who will ben-
efit from anti-EGFR therapy.
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