
Liu et al. BMC Cancer         (2023) 23:1079  
https://doi.org/10.1186/s12885-023-11589-5

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Cancer

Identification and validation of a ferroptosis-
related signature for prediction of the prognosis 
and tumor microenvironment in patients 
with chromophobe renal cell carcinoma
Shuai Liu1†, Yu Yao1†, Mingyu Hou2, Jingchang Mei1, Lijiang Sun1 and Guiming Zhang1* 

Abstract 

Background  Ferroptosis is a novel form of regulated cell death that is different from other forms, which 
has an important role in tumor growth inhibition. The purpose of this study was to construct and validate a prognos-
tic signature related to ferroptosis in chromophobe renal cell carcinoma (ChRCC) and to explore its role in immune 
cell infiltration and systemic therapy.

Methods  The gene expression profiles of ChRCC patients obtained from The Cancer Genome Atlas (TCGA) data-
base were used to identify differentially expressed prognostic ferroptosis-related genes (FRGs) by univariate Cox 
proportional hazards analyses. Ferroptosis molecular subtypes were obtained by consensus clustering analysis. 
The FRG-based signature in the training set was established by least absolute shrinkage and selection operator 
analysis and verified in the testing set. The association between molecular subtypes and the prognostic signature 
and immune microenvironment was explored to predict responses to immunotherapy. Immunohistochemistry 
was used to verify expression of the FRG-based signature externally.

Results  ChRCC patients were divided into two FRG subtypes. Two FRGs (TFRC and SLC7A11) were identified to con-
struct the prognostic signature. The high-risk group and cluster 2 had worse overall survival than the low-risk group 
and cluster 1, respectively. The low-risk group and cluster 1 had higher levels of immune cell infiltration and expres-
sion of MHC and immune checkpoint molecules than the high-risk group and cluster 2. The risk score was a predic-
tor of overall survival and had a good predictive ability, which was verified in the testing set and evaluated by ROC 
and calibration curves. The high-risk group had a higher tumor mutation burden. The different sensitivities of targeted 
drugs in patients with different risks were evaluated. External immunohistochemical analysis showed that TFRC 
and SLC7A11 were highly expressed in tumor tissues compared with para-cancer normal tissues, and the expression 
level was significantly associated with a more advanced stage and worse cancer-specific survival.

Conclusions  An FRG signature was identified and validated to predict the clinicopathological features and prognosis 
of ChRCC. A significant association between the signature and immune cell infiltration, immune checkpoint expres-
sion, and drug response is helpful to guide comprehensive treatment of ChRCC.
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Background
The incidence of renal cell carcinoma (RCC) is increas-
ing yearly, causing approximately 175,098 deaths each 
year [1, 2]. Chromophobe renal cell carcinoma (ChRCC) 
is a subtype of RCC, accounting for approximately 5% of 
cases [3]. ChRCC has a good prognosis with a 10-year 
cancer-specific survival rate of approximately 89%, but 
8.6–12.7% of patients have recurrence and metastasis 
[4, 5]. Tumor stage, lymph node metastasis and distant 
metastasis were commonly used to predict prognosis 
and guide treatment. There has been no suitable patho-
logical grading system of ChRCC for clinical practice [6]. 
However, only TNM staging is not sufficient to predict 
the ChRCC patient’s prognosis and develop a treatment 
plan [7, 8]. Early identification of these patients with poor 
prognoses and a high risk of metastases is a hot topic for 
clinical research, in which genetic biomarkers play an 
important role.

Ferroptosis is a novel type of cell death that is distinct 
from apoptosis, autophagy, necroptosis, and pyropto-
sis. It is dependent on iron and reactive oxygen species 
to generate membrane lipid peroxidation and oxidative 
stress that disrupts permeability of the plasma mem-
brane [9]. Ferroptosis markers associated with prognosis 
has been found in numerous tumors such as lung can-
cer, breast cancer, gastric cancer and clear cell renal cell 
carcinoma (ccRCC), and these studies constructed fer-
roptosis related prognostic signature [10–13]. Ferrop-
tosis-related genes (FRGs) were regulated by the tumor 
suppressor TP53 to inhibit tumor growth [14]. There-
fore, many ferroptosis inducers have been developed to 
treat malignancy [15]. Gao et  al. found that ferroptosis 
related signature was closely related to immunother-
apy and predicted the effectiveness of immunotherapy 
for ccRCC [16]. Moreover, ferroptosis related pathway 
(TAZ/WNT10B) was found to be a tumor immune-
related pathway and a potential target for immune 
checkpoint inhibitor therapy of ccRCC [16]. In the 
tumor microenvironment, cancer cells and immune cells 
release lots of chemokines and cytokines to regulate the 
development of tumor. It was previously reported that 
ferroptosis inhibited the activity of tumor-infiltrating 
immune cells (such as CD8+ cells, natural killer cells and 
dendritic cells) and caused functional impairment [17]. 
On the other hand, some immunosuppressive immune 
cells, including M2 tumor-associated macrophages and 
T regulatory cells, also need FRGs, such as Glutathione 
peroxidase 4 (GPX4), to suppress ferroptosis and 

maintain cell activation [17]. However, the association of 
FRGs and prognosis and immunotherapy of ChRCC has 
not been investigated so far.

The aim of our study was to investigate an FRG signa-
ture and molecular subtype related to ChRCC prognosis 
and validate them in our medical center. We also analyzed 
the predictive role of the signature and cluster in immune 
cell infiltration, tumor mutation burden, immune check-
point expression, and sensitivity to potential drugs.

Materials and methods
Data collection
Gene expression profiles, corresponding clinical infor-
mation, and somatic mutations of ChRCC patients were 
downloaded from The Cancer Genome Atlas (TCGA) 
official website (https://​portal.​gdc.​cancer.​gov/). Sixty 
FRGs were retrieved from previous studies [18–21] and 
are shown in Table S1.

Gene mutation summary and identification of differentially 
expressed FRGs
A waterfall plot was used to show the frequency and type 
of mutation in ChRCC samples. Differentially expressed 
FRGs between ChRCC and normal tissues were identified 
using the “limma” R package. The cutoff value was set to 
false discovery rate < 0.05 and |log2 fold change|>1. The 
heatmap and volcano plot were used to demonstrate the 
expression difference of genes between tumor and nor-
mal samples. The STRING (Search Tool for the Retrieval 
of Interacting Genes) (Version 11.5) website was used to 
generate protein–protein interaction (PPI) networks of 
differentially expressed FRGs.

Cluster analysis
The “survival” R package was used to perform univariate 
Cox proportional hazards regression models and obtain 
survival-related FRGs. Cluster analysis (K-means) based 
on Euclidean distance used “ConsensusClusterPlus” R 
packet to identify molecular subtypes related to ferrop-
tosis. The number of repetitions is 50 and the proportion 
of the subsample is 0.8. The Kaplan–Meier method was 
used to compare overall survival between clusters.

Construction and validation of an FRG‑based prognostic 
risk signature
All patients were randomly divided into the training and 
testing sets by the “caret” R package. The grouping was 

https://portal.gdc.cancer.gov/
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performed according to a 1:1 ratio of the training set 
and testing set. The best FRG-based signature to pre-
dict ChRCC prognosis was constructed by least absolute 
shrinkage and selection operator (LASSO) Cox regres-
sion analysis using the “glmnet” R package on the basis 
of the best lambda (λ) in the training set [22, 23]. The risk 
score was calculated by FRG expression (Exp i) and the 
corresponding coefficient (Coef i) as follows: risk score 
= ∑(Exp i × Coef i). FRGs were divided into high- and 
low-risk groups using the median of the risk scores as the 
cut-off value. Survival differences between high- and low-
risk groups were shown by a Kaplan–Meier curve (K–M 
curve). The receiver operating characteristic (ROC) curve 
used R package “survivalROC” to evaluate the prediction 
ability of the signature by calculating the area under the 
curve (AUC). Then, the prognostic prediction ability of 
the FRG-based signature was verified in the testing and 
entire sets. Cox proportional hazard regression mod-
els were used in univariate and multivariate analyses of 
ChRCC patients to assess the prognostic value of the 
FRG-based signature and clinical variables. Covariates 
used in cox multivariable model included age, gender, 
and pathological stage. The association between the risk 
score and clinicopathological features was evaluated by 
the Wilcoxon rank sum test and shown in boxplots.

Construction and validation of a nomogram combining 
the FRG signature and clinical features
A nomogram was constructed using the “rms” R pack-
age to predict the 5-year OS rate of ChRCC patients by 
FRG signature risk scores and clinical characteristics 
(age, gender, and pathological stage). A calibration curve 
was used to verify agreement between the actual and pre-
dicted OS assessed by this nomogram.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) (version 4.2.3) 
was used to assess biology functions and pathways 
enriched in different groups using Gene Ontology (c5.
go.v7.5.symbols.gmt) and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (c2.cp.kegg.v7.5.symbols.
gmt) gene set. Functions and pathways with a nominal 
p-value of < 0.05 and normalized enrichment score of > 1 
were screened out.

Immune cell infiltration and tumor microenvironment
The single sample GSEA (ssGSEA) algorithm was 
used to evaluate differences in immune cell infiltration 
and immune function scores between high- and low-
risk groups through R package “GSVA” [24]. Immune, 
stromal, and ESTIMATE scores and tumor purity in 
the tumor microenvironment were obtained by the 

ESTIMATE algorithm. The expression levels of MHC 
and immune checkpoint genes were compared.

Tumor mutational burden
The tumor mutation burden (TMB) in high- and low-
risk groups was calculated by “maftools” R package. The 
Kaplan–Meier method was then used to compare the 
survival rates between the high and low mutation groups 
and the risk groups.

Drug response analysis
The response of ChRCC patients in high- and low-risk 
groups to chemotherapeutic drugs in the Genomics of 
Drug Sensitivity in Cancer database was evaluated by 
the half maximal inhibitory concentration using “pRRo-
phetic” R package. Additionally, we assessed the asso-
ciation between FRG expression and sensitivity to 
FDA-approved drugs by the CellMiner platform using 
Spearman approaches.

Tissue samples and patients for external verification
Sixty ChRCC patients at the affiliated Hospital of Qing-
dao University from April 2008 to September 2020 
were included in the study for external verification. We 
obtained paraffin-embedded tissues from the patients, 
including all tumor tissues and 32 para-cancer tissues, for 
immunohistochemical (IHC) staining. All patients had 
signed informed consent. Our study was approved by the 
Ethics Committee of the affiliated Hospital of Qingdao 
University and conformed to the Declaration of Helsinki.

IHC
Paraffin-embedded tissue sections with a thickness of 
4 μm were dewaxed with xylene and then rehydrated with 
gradient concentrations of ethanol. Antigen retrieval was 
performed in citrate buffer (pH 6.0; Zhongshan Biotech-
nology, Beijing, China) at 125 °C for 8 min in autoclave. 
Then, 3% hydrogen peroxide was used to block endog-
enous peroxidases. Anti-Transferrin Receptor (TFRC) 
(dilution: 1:400; ab214039, Abcam, Cambridge, UK) and 
anti-xCT (dilution: 1:600; ab37185, Abcam, Cambridge, 
UK) antibodies were applied to for 90  min at 4  °C. The 
sections were then washed and incubated with second-
ary antibodies for 20  min. Two-step diaminobenzidine 
staining was used for devilment, followed by hematoxy-
lin counterstaining. Sections were scored semi-quantita-
tively by two pathologists who were blinded to the patient 
information in accordance with the staining intensity and 
area. The staining intensity was scored by the follow-
ing criteria: 0 (negative), 1 (weak staining), 2 (moder-
ate staining), and 3 (strong staining). The percentage of 
positive cells was stratified as follows: 0, < 5%; 1, 5–25%; 



Page 4 of 17Liu et al. BMC Cancer         (2023) 23:1079 

2, 26–50%; 3, 51–75%; 4, 76–100%. The IHC score was 
obtained by multiplying the two values.

Statistical analysis
Statistical analysis was performed using R 4.1.3 software 
and GraphPad Prism version 8.0.1. We used the Wil-
coxon rank-sum test and Mann-Whitney U test to com-
pare the continuous variables and Spearman analysis to 
calculate correlation coefficients. Kaplan–Meier method 
was used to draw survival curve, and log-rank test was 
used to compare survival differences. P < 0.05 was consid-
ered to be statistically significant and was two-sided.

Results
A flowchart of this study is shown in Fig.  1. Sixty-six 
ChRCC patients from TCGA and 60 patients from our 
hospital were included in the study. Clinical characteris-
tics are listed in Table 1.

Gene mutation and differential expression of FRGs
Sixty genes were selected as FRGs. The gene mutation 
patterns of FRGs in ChRCC are shown in Fig. 2A. Among 
the 66 samples, 22 samples (33.3%) had gene mutations, 
mainly in the TP53 gene (30% frequency). We analyzed 
the frequency of copy number variants (CNVs) in FRGs 

Fig. 1  Flowchart of this study
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(Fig.  2B) and the locations of CNVs on chromosomes 
(Fig.  2C). The network showed a correlation between 
FRGs and the association between each FRG and progno-
sis (Fig. 2D). Eighteen FRGs were differentially expressed 
between cancer and para-cancer normal tissues (Table 
S2). The heatmap and volcano plot are shown in Fig. 2E, 
F. PPI network analysis and correlation coefficients of the 
differentially expressed FRGs are shown in Fig. 2G, H.

Identification of molecular subtypes and corresponding 
tumor immune microenvironments
Twelve genes were identified as prognostic FRGs by uni-
variate cox analysis (Fig.  3A). We performed consen-
sus clustering analysis of these genes and found that the 
clustering effect was optimal when K = 2 (Fig.  3B–D). 
The K–M curve showed that cluster 2 had worse over-
all survival compared with cluster 1 (Fig.  3E). Next, we 
compared the immune microenvironments of clus-
ters 1 and 2. In the cluster 1 subtype, the immune score 
and ESTIMATE score were higher in the ESTIMATE 
analysis (Fig.  3F). Cluster 1 had higher immune cells 

and immune-related function scores in the ssGSEA 
analysis (Fig.  3G, H). Because of the significant differ-
ences in immune infiltration between the two clusters, 
we assessed the association with the common immune 
checkpoints. The expression level of MHC and immune 
checkpoint genes were higher in the cluster 1 subtype 
(Fig. 3I, J).

Construction of the FRG‑based prognostic signature 
in ChRCC​
To further screen the genes included in the model, the 
prognostic signature was constructed by LASSO Cox 
regression analysis in the training set. When two genes 
(TFRC and SLC7A11) were included, the performance of 
the prognostic model was optimal (Fig. 4A, B). The risk 
score of ChRCC was calculated by the following formula: 
risk score = expression level of TFRC × 0.7940 + expres-
sion level of SLC7A11 × 1.9358. ChRCC patients were 
divided into high- and low-risk groups by the median 
risk score. An alluvial diagram revealed the patient dis-
tribution in the two FRG subtypes and two risk groups 
(Fig. 4C). The risk scores, corresponding survival status, 
and gene expression of high- and low-risk patients in the 
training set are displayed in Fig. 4D. Patients in the high-
risk group had a worse overall survival rate than the low-
risk group in Kaplan–Meier curves (Fig. 4G). The AUC of 
the FRG-based signature for 3-year OS was 0.898, which 
was higher than that of other clinical factors, indicating 
that this signature had a better predictive ability for sur-
vival (Fig. 4J).

Validation of the FRG‑based signature in the testing 
and entire sets
To determine the robustness of the model, the testing 
and entire sets used the same formula to calculate the 
risk score and were stratified by the median risk score of 
the training set. The distribution of FRG risk scores, sur-
vival status, gene expression, and Kaplan–Meier curves 
of testing and entire sets were consistent with the results 
of the training set (Fig.  4E, F). There was a significant 
association between higher risk scores and poorer overall 
survival in testing and entire sets (Fig. 4H, I). The AUC 
values for testing and entire sets were 0.709 and 0.846, 
respectively (Fig. 4K, L).

Independent prognostic value of the FRG‑based signature 
in TCGA for ChRCC​
To assess the independence of the FRG-based signature 
model for clinical application, we used univariate and 
multivariate Cox regression to analyze the clinical fac-
tors and the risk score. Univariate Cox regression anal-
ysis showed that the pathological stage (P = 0.004) and 
FRG risk score (P = 0.008) were significantly associated 

Table 1  patients characteristics of TCGA and our hospital

Feature TCGA​
(N = 66)

Our samples
(N = 60)

Age (yrs) 50 (42–60) 50 (40–62)

Gender, n (%)

  Male 39 (60) 23 (38)

  Female 26 (40) 37 (62)

Pathologic_stage, n (%)

  I 20 (31) 22 (37)

  II 25 (39) 22 (37)

  III 16 (25) 13 (22)

  IV 4 (6) 3 (5)

Pathologic_T, n (%)

  pT1 20 (31) 22 (37)

  pT2 25 (39) 22 (37)

  pT3 18 (28) 14 (23)

  pT4 2 (3) 2 (3)

Pathologic_N, n (%)

  pN0 39 (60) 58 (97)

  pN1 5 (8) 2 (3)

  Unknown 21 (32) 0 (0)

Pathologic_M, n (%)

  M0 34 (52) 58 (97)

  M1 2 (3) 2 (3)

  Unknown 29 (45) 0 (0)

Presence_of_sarcomatoid_features, n (%)

  No 62 (95) 58 (97)

  Yes 3 (5) 2 (3)

  Unknown 49 (43) 0 (0)
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with overall survival (Fig.  5A). In multivariate analysis, 
the FRG risk score was an independent prognostic fac-
tor of overall survival (HR = 1.017, 95% CI = 1.005–1.029, 
P = 0.005; Fig.  5B). Through analysis of the correlation 

between the risk score and clinical information, we 
found that a higher risk score was significantly associ-
ated with regional lymph node metastasis (P = 0.032) 
and distant metastasis (P = 0.013), but not with an older 

Fig. 2  Genetic mutation and differential expression of FRGs in ChRCC. A Mutations frequencies of 60 FRGs in 66 ChRCC patients from TCGA. 
B Frequencies of CNV gain, loss, and non-CNV of FRGs. C Locations of CNV changes in FRGs on chromosomes. D Interaction network among FRGs 
in ChRCC. The thickness of the connection line indicates the strength of the interaction between genes. Heatmap (E) and volcano plots (F) 
for expression of differentially expressed FRGs in tumor and normal tissues. Red and blue represent upregulation and downregulation of genes, 
respectively. The PPI network (G) and correlation (H) between differentially expressed FRGs.
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Fig. 3  Identification of FRGs molecular subtypes and corresponding tumor immune microenvironments. A Forest plots showing P-values and HR 
(95% CI) of univariate cox regression analysis of FRGs and OS. B Consensus matrix heatmap defining two clusters (k = 2). C Curve of the consensus 
clustering cumulative distribution function. D Relative change in the area under CDF curve. E Survival curve of overall survival of clusters 1 and 2. 
F Stromal, immune, and ESTIMATE scores using the ESTIMATE algorithm. Immune cell infiltration (G) and immune function (H) score of the two 
clusters. Expression levels of MHC molecules (I) and immune checkpoint (J) genes in clusters
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Fig. 4  Construction and validation of the FRG-based prognostic signature. A LASSO regression analysis to select the optimal penalty lambda (λ). 
B LASSO coefficients of FRGs corresponding to log(λ). C Alluvial diagram revealing the distribution of patients in the two FRG subtypes and two 
risk groups. Scatter plots of the risk score, and survival status and time, and heatmap for expression of two genes in the training set (D), testing set 
(E), and entire (F) set. K–M curve of high- and low-risk groups in the training set (G), testing set (H), and entire set (I). ROC curves of the risk score 
and clinical characteristics in the training set (J), testing set (K), and entire set (L)
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Fig. 5  Cox proportional regression analysis and correlation with clinicopathological factors of the FRG-based signature. Forest plots of univariate 
(A) and multivariate (B) Cox proportional hazards regression analyses for overall survival of ChRCC patients in the entire set. C Association 
between the risk score, pathological stage, age, and gender. D Prognostic nomogram based on the FRG signature and clinical information. 
E Calibration curve of the nomogram to predict 1-, 3-, and 5-year OS.
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age (P = 0.97), males (P = 0.6), advanced pathological 
stage III-IV (P = 0.6), and advanced pathological T stage 
(P = 0.6) (Fig. 5C).

Construction and validation of a nomogram combining 
the FRG signature and clinical features
Subsequently, we constructed a nomogram model with 
clinical features (pathological stage, age, and gender). 
The nomogram used to predict 1-, 3-, and 5-year over-
all survival of ChRCC patients is shown in Fig. 5D. The 
calibration curve showed that the predicted values​​ from 
this nomogram were approximately in agreement with 
the actual values (Fig. 5E). The C-index of the nomogram 
was 0.877.

Gene set enrichment analysis and tumor immune 
microenvironment
To evaluate the pathways that may be involved in 
regulating tumourigenesis in the high- and low- risk 
group, GSEA was conducted. GSEA showed that many 
immune-related Gene Ontology biological processes 
were enriched in the low-risk group, including positive 
regulation of CD4-positive alpha beta T cell activation 
and differentiation, regulation of CD8-positive alpha 
beta T cell activation, T helper 2 cell differentiation, and 
tumor necrosis factor receptor binding (Fig. 6A). There-
fore, we investigated the association between the FRG-
based signature and tumor immune microenvironment. 
ssGSEA showed that the infiltration levels of immune 
cells (CD8+ T cell, DCs, T helper cells, Th1 cells, and 
TILs) and immune-related functions (APC co-inhibition, 
APC costimulation, cytokine–cytokine receptor, check-
point, cytolytic activity, human leukocyte antigen, para-
inflammation, T cell co-inhibition, T cell costimulation, 
and Type I IFN response) were higher in the low-risk 
group than in the high-risk group (Fig. 6B). The immune, 
stromal, and ESTIMATE scores were higher and tumor 
purity was lower in the low-risk group in accordance with 
the ESTIMATE algorithm (Fig.  6C). MHC molecules 
were significantly overexpressed in the low-risk group 
(Fig. 6D). Except for low expression of IDO1, the low-risk 
group was significantly associated with high expression 
of many immune checkpoint inhibitors (PD-1, CD30, 
LAIR1, CD48, LGALS9, CD244, ICOSLG, TNFSF14, 
TNFRSF25, TMIGD2, and CD86) (Fig. 6E).

Comparison of the tumor mutation burden
To assess the differences in genomic mutations between 
the high- and low-risk groups, we analyzed simple nucle-
otide variation data from TCGA. Genes with the highest 
mutation frequencies in the high-risk group were TP53 
(30%), PTEN (15%), ICE1 (11%), CSF2RB (11%), and 
CFAP47 (11%) (Fig. 7A), and those in the low-risk group 

were TP53 (22%), PTEN (5%), ZAN (5%), and MUC16 
(5%) (Fig.  7B). TMB in the high-risk group was signifi-
cantly higher than that in the low-risk group (Fig.  7C). 
High TMB and high-risk groups had significantly worse 
overall survival than low TMB and low-risk groups 
(Fig. 7D, E).

Drug response prediction
In the Genomics of Drug Sensitivity in Cancer database, 
we explored the association between the signature and 
targeted drugs, and found many drugs that were more 
sensitive in the high-risk group, including gefitinib, 
veliparib, vismodegib, PD184352, SL 0101-1, and BAY 
61-3606 (Fig.  8A). Next, the correlation between the 
expression of genes involved in construction of the sig-
nature and the sensitivity of FDA-approved drugs was 
investigated using the CellMiner platform. Tumor cells 
with higher expression of TFRC had a better therapeu-
tic effect when treated with selumetinib and cobimetinib, 
but had stronger resistance against everolimus, dasat-
inib, erlotinib, and lenvatinib (Fig. 8B). Tumor cells with 
higher expression of SLC7A11 were more resistant to 
arsenic trioxide, parthenolide, and raloxifene (Fig. 8C).

Experimental verification of FRG expression levels
Boxplots of differential expression and K-M curves of 
FRGs (TFRC and SLC7A11) at the mRNA level in the 
TCGA-KICH cohort are shown in Supplementary Figure 
S1A–D. Furthermore, to verify the accuracy of the FRG 
signature, we investigated the expression of the signa-
ture genes (TFRC and SLC7A11) in clinical samples from 
ChRCC patients by IHC analyses. By immunohistochem-
ical staining of 32 pairs of tumor and para-cancer tissues 
from our hospital, we found that the expression levels of 
TFRC (P < 0.0001) and SLC7A11 (P < 0.0001) in tumor 
tissues were significantly higher than those in para-can-
cer tissues (Fig. 9A). Representative IHC-stained sections 
are shown in Fig.  9B. Immunohistochemical analysis of 
tumor tissues from 60 ChRCC patients showed a sig-
nificant association between higher expression of TFRC 
(P = 0.026; Fig. 9C) and SLC7A11 (P = 0.004; Fig. 9D) and 
a more advanced stage. K–M curves showed that high 
expression of TFRC and SLC7A11 was remarkably asso-
ciated with worse survival (log-rank: TFRC, P = 0.019; 
SLC7A11, P = 0.024) (Fig. 9E, F).

Discussion
The link between iron and tumors is a hot research 
topic. Numerous studies have found that excess iron in 
the body increases the incidence of cancer, and iron is 
associated with tumor progression [25]. Ferroptosis, an 
iron-dependent form of cell death, plays an important 
role in tumorigenesis, tumor microenvironment, and 
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Fig. 6  Immune landscape of the prognostic signature (A) Immune-related functions enriched in the low-risk group. Immune cells 
and immune-related functions (B), immune scores and stromal scores (C), expression levels of HLA (D) and common immune checkpoint genes (E) 
in the risk groups (***P < 0.001, **P < 0.01, *P < 0.05, ns, no significance)
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immunotherapy [17]. FRGs are overexpressed in RCCs 
and associated with an advanced stage and worse prog-
nosis, mainly in clear cell renal cell carcinoma (ccRCC) 
and papillary renal cell carcinoma (pRCC) [26–29]. The 
prognostic value of FRGs in chromophobe renal cell car-
cinoma is unclear. Therefore, we evaluated its association 
with the immune microenvironment.

The consensus cluster analysis of ChRCC on the basis 
of FRGs was carried out to identify two clusters, which 
established molecular subtypes of ChRCC. Cluster 1 
with more immune cell infiltration corresponded to the 
immune-inflamed phenotype, which was consistent 
with higher expression of MHC and immune checkpoint 
molecules and a better prognosis [30]. Cluster 2 lack-
ing immune infiltration was closer to the immune desert 
phenotype.

TFRC and SLC7A11 genes were used to construct 
the FRG-based signature, which had the best predic-
tive efficiency. The TFRC gene encodes the transfer-
rin receptor, a membrane glycoprotein that binds to 
transferrin and transfers iron into cells. High expres-
sion of TFRC has been found in many tumors, such 
as lung, prostate, bladder, thyroid, and cervical can-
cers, and its overexpression is associated with a worse 

prognosis [31–36]. High expression of TFRC promotes 
DSS-induced colonic epithelial cell death by activating 
the IL-6/IL-11-Stat3 pathway, which leads to mucosal 
injury and the occurrence of colon cancer [37]. Seny-
ilmaz et al. reported that TFRC activates the JNK sign-
aling pathway to regulate mitochondrial functions and 
induces tumor cell proliferation [38]. Additionally, 
TFRC enhances cellular production of ROS and mito-
chondrial respiration, leading to the development of 
pancreatic ductal adenocarcinoma and induction of 
c-Myc lymphoma-mediated tumorigenesis [39, 40]. 
SLC7A11 (also called xCT) is a transmembrane protein 
that is imports cystine into cells for glutathione intra-
cellular synthesis [41]. This process inhibits ferroptosis 
by enhancing detoxification of lipid peroxidation regu-
lated by GPX4. SLC7A11 is a prognostic risk factor for 
many pathological types of RCC [42] and has been used 
to establish a prognostic model for ccRCC [16, 43, 44]. 
High expression of SLC7A11 is significantly associated 
with poor differentiation and a more advanced stage of 
hepatocellular carcinoma and is an independent prog-
nostic factor for survival [45, 46]. SLC7A11 also pro-
motes the growth and development of non-small cell 
lung cancer and corresponds to shorter 5-year survival 

Fig. 7  Waterfall map of the tumor mutation burden in the high-risk group (A) and low-risk group (B). C Violin plot of TMB differences between risk 
groups. D K–M curve of high and low TMB groups. E Survival curve of four combinations of TMB and risk scores
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Fig. 8  A Comparison of potential targeted drug sensitivities in high- and low-risk groups. Correlation between responses to some FDA-approved 
drugs and expression levels of TFRC (B) and SLC7A11 (C)
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of patients [47]. The mechanism of SLC7A11 promoting 
tumor growth has been widely studied. p53 and BAP1 
(tumor suppressors) mutations [14, 48], increased 
expression of OTUB1 (tumor growth-promoting pro-
tein) [49], and loss of KRAS (proto-oncogene) [50] are 

associated with SLC7A11 overexpression, causing inhi-
bition of ferroptosis and promotion of tumor growth.

Some studies have found that ferroptosis is associated 
with tumor immunity of ccRCC and has the potential 
to become a novel target for immunotherapy [16, 29]. 

Fig. 9  Experimental verification of FRGs in vitro. A Difference in immunohistochemical score of TFRC and SLC7A11 in cancer and para-cancer 
tissues. B Representative immunohistochemical staining of TFRC and SLC7A11 in cancer and para-cancer tissues. Comparison of IHC scores 
in different stages of TFRC (C) and SLC7A11 (D). Kaplan–Meier curves of high and low expression groups of TFRC (E) and SLC7A11 (F)
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We studied the association between the FRG-based sig-
nature and tumor microenvironment of ChRCC. As a 
major anti-tumor effector cell, high levels CD8+ T cells 
are associated with a better prognosis of ChRCC patients 
[51], which is consistent with our findings. Low-risk 
subgroups with higher levels of CD8+ T cells had a bet-
ter prognosis, which also confirmed the difference in 
the immune microenvironment between ChRCC and 
ccRCC, and higher infiltration of CD8+ T cells has been 
associated with shorter survival of ccRCC patients [52]. 
Higher levels of dendritic cells, T helper cells, CD4+ 
T cells, and tumor-infiltrating lymphocytes were also 
observed in the low-risk group. PD-L1 on dendritic cells 
is the direct-action point of immune checkpoint inhibi-
tors and determines the effect of immunotherapy. Tumor 
immunotherapy promotes transmission of signals on den-
dritic cells from CD4+ T cells to CD8+ T cells, and finally 
enhances the activity of cytotoxic T lymphocytes. By 
analysis of ssGSEA and ESTIMATE algorithm, we found 
that the level of immune cell infiltration was higher and 
immune-related functions were more active in the low-
risk group than in the high-risk group, which indicates 
that the low-risk group had better tumor immunity and 
better sensitivity to immunotherapy. The low-risk group 
had higher expression levels of MHC and immune check-
point-related genes. Gu et al. found that deletion of MHC 
molecules is the main reason for immunotherapy resist-
ance [53]. These results suggest that the high-risk group 
had a higher risk of tumor immune evasion [54–56].

TMB indicates the number of mutations that generate 
neoantigens presented to T cells by major histocompat-
ibility complexes. A higher TMB represents an easier rec-
ognition opportunity for T cells because of the presence 
of more neoantigens, which is associated with the effect 
of immunotherapy [54]. In our study, a higher TMB was 
observed in the high-risk group and was associated with 
a poorer prognosis. A high TMB may be due to a higher 
degree of malignancy or tumor progression in high-risk 
groups, and thus, immunotherapy may not be less effec-
tive in the low-risk group [54].

Immunotherapy has become the standard treatment 
for renal cell carcinoma, but clinical trials showed that 
its therapeutic effect on ChRCC was limited. Our study 
suggested screening for sensitive types of ChRCC for sys-
temic therapy. Combination therapy is becoming increas-
ingly important in clinical applications because the effect 
of single immunotherapy appears to be poor. The high-
risk group was more sensitive to gefitinib, veliparib, and 
vismodegib, suggesting that the high-risk group may ben-
efit from targeted therapy. Higher expression of TFRC is 
associated with a better response to selumetinib and cobi-
metinib, and poorer sensitivity of tumor cells to everoli-
mus, dasatinib, erlotinib, and lenvatinib. Selumetinib, a 

selective MEK1 inhibitor, increases the killing effect of 
everolimus in RCC [57], and the combination of MEK 
inhibitor cobimetinib and cabozantinib reduces drug 
resistance of RCC [58]. Everolimus, a mTOR inhibitor, 
prolongs the survival of ChRCC patients, and dasatinib 
and erlotinib are potential therapeutic drugs for ChRCC 
[59]. Hutson et al. found that the objective response rate 
of lenvatinib combined with everolimus for ChRCC treat-
ment was up to 44% [60]. Lower expression of SLC7A11 
is associated with higher responses of cancer cells to arse-
nic trioxide, parthenolide, and raloxifene that inhibit the 
proliferation or migration of RCC cells and are a potential 
therapeutic strategy for RCC [61–63].

There are some limitations in our study. First, RNA 
sequences of ChRCC can only be obtained from TCGA 
database, and other databases such as GEO have a small 
sample size and no clinical information. Second, the 
number of patients with comprehensive therapy such as 
immunotherapy for ChRCC at our center was too small 
to verify the predictive effect of the risk signature on the 
response to immunotherapy or targeted therapy.

Conclusions
In summary, molecular subtypes and prognostic sig-
nature based on FRGs in chromophobe renal cell carci-
noma were identified and significantly associated with 
the tumor microenvironment, tumor mutation burden, 
immunotherapy and targeted therapy response, which 
may help clinicians judge the prognosis of patients and 
formulate a comprehensive treatment plan.
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