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Abstract
Background  Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer (NSCLC) 
and is the leading cause of cancer death worldwide. Its progression is characterized by genomic instability. In turn, 
the level of genomic instability affects the prognosis and immune status of patients with LUAD. However, the impact 
of molecular features associated with genomic instability on the tumor microenvironment (TME) has not been well 
characterized. In addition, the effect of the genes related to genomic instability in LUAD on individualized treatment 
of LUAD is unknown.

Methods  The RNA-Sequencing, somatic mutation, and clinical data of LUAD patients were downloaded from 
publicly available databases. A genetic signature associated with genomic instability (GSAGI) was constructed 
by univariate Cox regression, Lasso regression, and multivariate Cox regression analysis. Bioinformatics analysis 
investigated the differences in prognosis, immune characteristics, and the most appropriate treatment strategy 
among different subtypes of LUAD patients. CCK-8 and colony formation verified the various effects of Etoposide 
on different subtypes of LUAD cell lines. Cell-to-cell communication analysis was performed using the “CellChat” R 
package. The expression of the risk factors in the GSAGI was verified using real-time quantitative PCR (qRT-PCR) and 
Immunohistochemistry (IHC).

Results  We constructed and validated the GSAGI, consisting of five genes: ANLN, RHOV, KRT6A, SIGLEC6, and KLRG2. 
The GSAGI was an independent prognostic factor for LUAD patients. Patients in the high-risk group distinguished 
by the GSAGI are more suitable for chemotherapy. More immune cells are infiltrating the tumor microenvironment 
of patients in the low-risk group, especially B cells. Low-risk group patients are more suitable for receiving 
immunotherapy. The single-cell level analysis confirmed the influence of the GSAGI on TME and revealed the Mode 
of action between tumor cells and other types of cells. qRT-PCR and IHC showed increased ANLN, RHOV, and KRT6A 
expression in the LUAD cells and tumor tissues.

Characterization of genomic instability-related 
genes predicts survival and therapeutic 
response in lung adenocarcinoma
Shuyang Li1,2†, Wei Wang1,2†, Huihan Yu1,2, Siyu Zhang2, Wenxu Bi2, Suling Sun2, Bo Hong2, Zhiyou Fang1,2* and 
Xueran Chen1,2*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-023-11580-0&domain=pdf&date_stamp=2023-11-16


Page 2 of 17Li et al. BMC Cancer         (2023) 23:1115 

Introduction
Lung cancer is the leading cause of cancer-related deaths 
worldwide, with non-small cell lung cancer (NSCLC) 
accounting for about 85% of cases and lung adenocar-
cinoma (LUAD) being the most common subtype [1]. 
Despite advancements in clinical treatments and individ-
ualized therapies, the 5-year overall survival (OS) rate for 
LUAD remains low at around 16% [2]. Therefore, search-
ing for appropriate therapeutic strategies for LUAD 
patients is a research hotspot.

Genomic instability, which increases the likelihood of 
acquiring mutations [3], is a hallmark of most cancers, 
including lung cancer [4], and is caused by factors such 
as smoking, air pollution, and radiation exposure. The 
total number of somatic mutations can be quantified 
by tumor mutation burden (TMB) [5], associated with 
poor prognosis in certain cancers, including NSCLC [6]. 
Abnormalities in transcriptional and post-transcriptional 
regulation are related to genomic instability, suggesting 
the potential of molecular markers as a quantitative mea-
sure of genomic instability [7]. For example, Habermann 
et al. analyzed the gene expression profiles of 48 breast 
cancer specimens and identified 12 genes characterized 
by genomic instability [8]. Geng et al. established a gene 
tag of seven genes associated with genomic instability 
that could predict the prognosis of patients with LUAD 
[9]. The genomic instability is crucial for the occurrence 
and development of lung adenocarcinoma. It is neces-
sary to explore further the effects of genes derived from 
genomic instability on the progression of LUAD.

Tumor microenvironment (TME) refers to the internal 
and external environment during tumors’ occurrence, 
growth, and metastasis. TME comprises immune cells, 
stromal cells, and various cytokines [10], among which 
immune cells play a crucial role in tumor development. 
For instance, current studies suggest that tumor-infil-
trating B lymphocytes (TIL-B) can promote anti-tumor 
immunity through their unique antigen-presenting 
mode, leading to the persistence of an immune “hot” 
TME involving T cells, bone marrow cells, and natural 
killer cells [11]. In addition, the expression of immune 
checkpoints on tumor cells helps them evade host 
immune surveillance [12], whereas inhibiting immune 
checkpoints with immune checkpoint inhibitors (ICIs) 
can restore immune cell function. The expression levels 
of PD1 and PD-L1 significantly affect LUAD patients’ 
response to ICI therapy [13]. Moreover, the roles of 

specific chemokines and their corresponding receptors 
in the immune therapy response for LUAD are complex. 
They may affect tumor immune cell infiltration, immune 
regulation, tumor growth, and metastasis [14]. However, 
the association between genes derived from genomic 
instability and the composition of TME, expression of 
immune checkpoints and chemokines, and ICI efficacy 
remains ambiguous.

In this study, we constructed a genetic signature associ-
ated with genomic instability (GSAGI), including five fac-
tors, ANLN, RHOV, KRT6A, SIGLEC6, and KLRG2. The 
GSAGI showed favorable prognostic results for LUAD 
patients. The Nomogram model created based on this 
was more accurate. In addition, patients in the two sub-
groups distinguished with GSAGI may have differences 
in TME due to different intercellular communication 
patterns. And significant differences in the composition 
of chemokine and immune checkpoint expression pro-
files may also influence the optimal treatment of LUAD 
patients.

Materials and methods
Data collection and preprocessing
The RNA-Sequencing, somatic mutation, and clinical 
data of LUAD patients were downloaded from the TCGA 
(https://portal.gdc.cancer.gov) database. The Ensemble 
(http://www.ensembl.org/) database was used to anno-
tate mRNA. 499 clinical samples with mRNA expression 
profile data and survival data were randomly divided into 
a “training set” (n = 251) and a “testing set” (n = 248) by 
the R package “caret.“ In addition, LUAD patients with 
paired RNA-seq data and clinical data in GSE31210 
(n = 246), GSE30219 (n = 85), GSE50081 (n = 127), 
GSE42127 (n = 133), and GSE41271 (n = 182) from GEO 
(https://www.ncbi.nlm.nih.gov/geo/) database are inde-
pendent external testing sets. The detailed information 
on these patients is listed in Table S1 (Additional file 1: 
Table S1). GSE126045 (n = 16) as an independent external 
testing set for immunotherapy prediction. The R package 
“DESeq2” was used to screen for differential genes.

Functional enrichment analysis
KEGG is a knowledge base for systematic analysis of gene 
functions, linking genomic information with higher order 
functional information [15]. It is now one of the most 
utilized biological databases because of its practical val-
ues. Together with an improved annotation procedure 

Conclusion  This study confirms that genes related to genomic instability can affect the prognosis and immune 
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for KEGG Orthology assignment, an increasing number 
of eukaryotic genomes have been included in KEGG for 
better representation of organisms in the taxonomic tree 
[16, 17]. The R package “clusterProfiler” and “org.Hs.eg.
db” perform the GO and KEGG (www.kegg.jp/kegg/
kegg1.html) pathway enrichment analysis of all candidate 
differential genes [18]. The threshold for significant path-
way enrichment was set to a P-value < 0.05 and visualized 
using R software’s “ggplot2” package.

Construction and validation of the GSAGI
First, univariate Cox regression analysis was performed 
on the candidate differential genes in the TCGA-LUAD 
training set using the R package “survival”, to screen for 
genes that were significantly correlated (P-value < 0.05) 
with survival in LUAD patients. The genes with prog-
nostic value were then filtered by the least absolute 
shrinkage and selection operator (LASSO) algorithm, 
and the penalty parameters were adjusted by 10-fold 
cross-validation with the R packages “glmnet” and “sur-
vivor”. Finally, the multivariate Cox regression analysis 
on the genes screened by the LASSO algorithm to obtain 
the best candidate genes. We constructed the following 
risk score formula using the expression levels (expr) of 
the best candidate differential genes and the regression 
coefficients (coef ) from the multivariate Cox regression 
analysis:Riskscore =

∑n
i=1expri ∗ coefi

The expri represents the expression level of the ith 
gene, and coefi represents the coefficient of the ith gene. 
Patients were divided into high-risk and low-risk groups 
using the median risk score of the samples in each data 
set as the threshold value. Survival curves were plotted 
by the Kaplan-Merier method. The R packages “sur-
vival” and “survminer” were used to compare the sur-
vival of patients in the high-risk and low-risk groups. 
P-value < 0.05 indicates significance. The predictability 
of the prognostic model was assessed by plotting time-
dependent receptor operating characteristic (ROC) 
curves with R package “survROC”.

Nomogram model construction and validation
In the TCGA-LUAD set, we performed a multivariate 
COX regression analysis on patients’ age, gender, dis-
ease stage, smoking history, EGFR mutation status, and 
grouping information based on the GSAGI. P-value < 0.05 
indicates statistical significance. Finally, the GSAGI and 
the disease staging were used to construct a Nomogram 
model as a quantitative analysis tool. The R package 
“rms” [19] was used to produce it. Calibration curves and 
ROC curves validated the predictive performance of this 
Nomogram model.

Genomic enrichment analysis (GSEA)
To explore this gene signature’s impact on LUAD 
patients’ biological function, we downloaded “c5.all.
v7.0.entrez.gmt” from the MSigDB database (http://www.
gsea-msigdb.org/gsea/downloads.jsp) for GSEA annota-
tion. The R package “enrichplot” selected pathways [20].

Predicting chemotherapy response levels
The R package “pRRophetic” [21] inferred the sensitivity 
of chemotherapeutic agents in LUAD patients. The RNA 
expression profiles of 68 LUAD cell lines were obtained 
from the Broad Institute’s Cancer Cell Line Encyclope-
dia (CCLE, https://portals.broadinstitute.org/ccle/) [22]. 
IC50 values of LUAD cell lines to chemotherapeutic 
drugs were obtained from Genomics of Drug Sensitivity 
in Cancer (GDSC, https://www.cancerrxgene.org/) [23].

Cell viability assay
LUAD cells were seeded in 96-well plates at 5,000 cells 
per well and incubated overnight. The cells were treated 
with different concentrations of Etoposide (20, 40, 60, 
80, 100, 120, 150 and 180µM) followed by 24-hour incu-
bation. Next, the cells were treated with WST-8 from 
CCK-8 (NCM Biotech, Suzhou, China) for 0.5-1 h; then, 
their viability was measured by detecting the absorbance 
at OD 450 nm.

Colony formation assay
In a 6-well plate, 3000 LUAD cells were plated in tripli-
cate and incubated overnight, then grown for ten days 
in a growth medium with Etoposide (0, 0.5, 1.0, 1.5, 
and 2.0µM). We then washed the cells thrice with PBS, 
fixed them in cold methanol for 20 min, and cleaned and 
stored them. Settled cell colonies were visualized by incu-
bating the cells with 0.5% (w/v) crystal violet for 0.5  h. 
Extra crystal violet was removed by washing with PBS. 
Visible colonies formed by LUAD cell growth were iden-
tified by ImageJ version 1.8.0.112 software. Colony num-
bers would reflect cell survival and proliferation.

Evaluation of immune cell infiltration
The ESTIMATE algorithm calculated the immune score 
and tumor purity [24]. The R package “CIBERSORT” 
evaluated the infiltration of 22 kinds of immune cells in 
LUAD patients with different risk scores [25]. The differ-
ences in the degree of B-cell infiltration between patients 
in high-risk and low-risk groups were compared using 
the TIMER database (http://timer.cistrome.org/) [26].

Prediction of the response to immunotherapy
The Immunophenoscore (IPS) was obtained according 
to The Cancer Immunome Atlas (TCIA, https://tcia.at/
home), and the higher the IPS, the more responsive the 
patients were to immunotherapy [27]. In addition, the 
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TIDE website (http://tide.Dfci.harvard.edu/) predicts the 
degree of response to immunotherapy in patients with 
different risk scores based on transcriptomic data from 
patients [28].

Single-cell data quality control and identification of major 
cell types
Twenty-six LUAD samples from the GSE148071 dataset 
were used for single-cell level analysis. We ended up with 
4593 cells for downstream analysis after removing cells 
with gene expression values below 200 or above 5000 
and discarding cells with mitochondrial content higher 
than 10%. “NormalizeData” and “ScaleData” functions 
in the “Seurat” R package normalized the expression 
matrix. Then the “FindVariable” function was applied to 
select the first 2000 variable genes and perform princi-
pal component analysis. The first ten main components 
and a resolution of 0.5 were used for cell clustering by 
the “FindClusters” function. The “FindVariable” func-
tion generated groups of differentially expressed genes 
(DEGs). We manually annotated cell types for each cell 
cluster based on the normalized expression of DEGs in 
conjunction with typical markers from the CellMarker 
(http://xteam.xbio.top/CellMarker/) website [29] (Addi-
tional file 2: Table S2). And visualization was performed 
by uniform manifold approximation and projection 
(UMAP).

Cell-cell communication analysis
The R package “CellChat” determines cellular commu-
nication between tumor cells and other cell types [30]. 
The “netVisual bubble” function allows us to observe the 
differences in receptors and ligands of tumor cells inter-
acting with other cells between low and high-grouped 
patients.

Cell lines and RNA extraction and real-time quantitative 
PCR (qRT-PCR)
The human lung adenocarcinoma cell lines (A549, PC-9, 
NCI-H1299, and NCI-H1975) and the human bronchial 
epithelial cell line BEAS-2B were gifted by Zhiyou Fang’s 
group at the Center for Basic Medicine, Institute of 
Health and Medical Technology, Hefei Institute of Mate-
rial Science, Chinese Academy of Sciences. In this study, 
all cell lines were cultured in RPMI-1640 containing 1% 
(100×) streptomycin/penicillin and 10% FBS. The culture 
environment was humid, with a temperature of 37 °C and 
5% CO2. We used an RNA preparation kit (TransGen 
Biotech, 220 Beijing) to extract total RNA from the cell 
lines. The reverse transcription reaction system consisted 
of total RNA, 2  µg; Anchored Oligo(dT)18, 1 µL; 2*TS 
Reactiob Mix, 1 µL; TransScript RT/RI Enzyme Mix, 10 
µL; and RNase-free Water, added to the total system for 
a total of 20 µL. The cDNA was prepared by placing the 

reverse transcription system in HiScript II Q RT Super-
Mix for qPCR (+ gDNA wiper) (Vazyme Biotech, Nan-
jing, NJ), after 42 °C, 5 min; 85 °C, 5 s. ChamQ Universal 
SYBR qPCR Master Mix (Vazyme Biotech, Nanjing) was 
used for quantitative RT-PCR analysis. RT-PCR analysis 
was performed in 3 replicates using a X 960 Real-time 
PCR (Heal Force). The three-step amplification proce-
dure we used was as follows: The first step, denaturation 
at 94 ℃ for 30  s; The second step (40 cycles): denatur-
ation at 95 ℃ for 10 s, annealing at 55–60 ℃ for 20 s, and 
extension at 72 ℃ for 20 s. The third step: terminate the 
extension at 72 ℃ for 20 s. Finally, the melting curve was 
output. Relative mRNA expression was calculated using 
2−ΔΔCT software. β-actin was used as an internal control 
gene. Primers used in the study (Additional file 3: Table 
S3) were purchased from Sangong Bioengineering Co Ltd 
(Shanghai, China).

Tissue samples and immunohistochemistry (IHC)
Tissue sections from six LUAD patients were collected 
at the Hefei Cancer Hospital of the Chinese Academy 
of Sciences, and performed IHC staining on normal 
and tumor samples. Tissue sections were deparaffinized 
and rehydrated through graded ethanol. Citrate buf-
fer was used for antigen repair. 3% H2O2 was used to 
block endogenous peroxidase activity. 5% bovine serum 
albumin (BSA) was used to block non-specific binding. 
The sections were then incubated with primary antibod-
ies against the protein of interest overnight at 4  °C. The 
primary antibody was detected with a secondary anti-
body conjugated with horseradish peroxidase (HRP) 
and visualized using diaminobenzidine (DAB) as a sub-
strate. The sections were counterstained with hematoxy-
lin and mounted with coverslips. The primary antibodies 
we used were: mouse monoclonal anti-human ANLN 
antibody (1:200; Santa Cruz, sc-271,814) mouse mono-
clonal anti-human RHOV antibody (1:200; Santa Cruz, 
sc-515,072), and rabbit monoclonal anti-human KRT6A 
antibody (1:200; Proteintech, 10590-1-AP). To quantify 
the positive staining of immunohistochemical (IHC) 
slides, we used ImageJ software [31].

Statistical analysis and visualization
R version 4.1.2, GraphPad Prism 9.0, GraphPad Prism 
version 9.0, and ImageJ version 1.8.0.112 software were 
used for statistical analysis and visualization. |Log-
2foldchange (FC)| ≥ 1 and adjusted P-value < 0.05 as the 
threshold for differentially expressed genes. P-value < 0.05 
was considered statistically significant. Kaplan-Meier 
curves were used to determine differences in survival 
between patient groups, and Log-rank tests were used to 
calculate statistical significance. Non-normally distrib-
uted continuous variables were analyzed by the Wilcox 
test method. Pearson’s correlation coefficient is used to 
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Fig. 1 (See legend on next page.)
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explore the correlation between two continuous vari-
ables. A one-way ANOVA analysis was utilized to evalu-
ate the differences between more than two groups.

Results
The GSAGI accurately predicts prognosis in LUAD patients
Firstly, the cumulative number of somatic mutations 
per LUAD patient in the TCGA database was cal-
culated to screen for genes associated with genomic 
instability. Samples with TMB ≥ 10 (n = 98) were consid-
ered the high-level somatic mutation group. Samples 
with TMB < 1.43 (n = 98) were considered the low-level 
somatic mutation group to ensure consistency in sample 
size. We next selected genes that co-significantly differ-
entially expressed between LUAD samples and normal 
tissue samples as genes associated with LUAD (|Log2FC| 
≥ 1 and adjusted P-value < 0.05) in the GSE31210 dataset 
of the GEO platform and TCGA-LUAD set (Additional 
file 4: Figure S1A). Of the 1261 genes associated with 
LUAD, 177 genes were significantly up-regulated in the 
high-level somatic mutation group, while 170 genes were 
significantly down-regulated (|Log2FC| ≥ 1 and adjusted 
P-value < 0.05, Fig. 1A). GO and KEGG pathway enrich-
ment analysis found the functions of these 347 candi-
date differential genes were significantly associated with 
genomic instability (Fig.  1B), such as Cell cycle, G2/M 
phase transition, Meiotic cell cycle process, P53 signal-
ing pathway, and DNA replication, et al. We further 
investigated the prognostic impact of these genes on 
LUAD patients. 131 genes of predictive value were iden-
tified by univariate COX regression analysis on patients 
in the TCGA-LUAD training set (Additional file 5: Table 
S4). Using the LASSO algorithm, nine genes were vali-
dated and selected (Additional file 4: Figure S1B, S1C), 
and further identified five genes comprising the GSAGI 
(Fig. 1C) by multivariate COX regression analysis. Mul-
tivariate Cox regression analysis retained the factor 
KRT6A, which has added value for predicting the prog-
nosis of LUAD patients. The risk score for each LUAD 
patient can be obtained from this GSAGI as Risk score 
= (0.190805622) * ANLN expression + (0.120404221) * 
RHOV expression + (0.059586055) * KRT6A expression 
+ (-0.152189144) * SIGLEC6 expression + (-0.124976472) 
* KLRG2 expression.

In the training and testing sets of TCGA, patients in the 
high-risk group had a shorter survival time and a higher 
proportion of dead samples. The heat maps showed that 

ANLN, RHOV, and KRT6A expression levels increased 
with increasing risk scores, while SIGLEC6 and KLRG2 
decreased (Additional file 4: Figure S1D, S1E). In addi-
tion, principal component analysis (PCA) showed that 
LUAD patients with different risk stratification could be 
divided into two subgroups explicitly (Fig. 1D and Addi-
tional file 4: Figure S1F). Kaplan-Meier curve plotted for 
the TCGA-LUAD training set showed that patients in 
the low-risk group had more prolonged OS than those 
in the high-risk group (Fig.  1E). The AUCs of the ROC 
curves at 1, 2, and 3 years were 0.755, 0.722, and 0.766 
(Fig.  1F). In the TCGA-LUAD testing set (n = 248) and 
TCGA-LUAD set (n = 499), low-risk patients also showed 
a significantly better prognosis (Additional file 4: Figure 
S1G, S1I), and ROC curves show good predictive per-
formance (Additional file 4: Figure S1H, S1J). Finally, we 
performed an independent external validation using five 
datasets from the GEO database, including GSE31210, 
GSE30219, GSE50081, GSE42127, and GSE41271. LUAD 
patients were similarly divided into high and low-risk 
groups using the median risk score as the threshold. 
Kaplan-Meier curves for each set demonstrated consis-
tent trends with previous results (Fig. 1G and I K, 1 M, 
1O). The AUCs of the ROC curves at 1, 2, and 3 years for 
each external validation set are more significant than 0.6 
(Fig.  1H J, 1  L, 1  N, 1P). These results suggest that our 
constructed GSAGI has high accuracy and sensitivity in 
predicting the prognosis of LUAD patients.

Exploration of mutational patterns in different risk levels 
LUAD patients
We compared overall somatic mutation levels among 
TCGA-LUAD patients in different risk strata. Patients 
in the high-risk group exhibited significantly higher 
genomic instability (Fig.  2A). Next, seven important 
mutation patterns in LUAD were highlighted for explo-
ration. TP53 mutations were more frequent in high-risk 
group patients (Fig.  2B). As one of the most common 
genetic variations in LUAD, TP53 mutations are sig-
nificantly associated with higher mutation levels and 
poorer prognosis in patients. TP53 mutations can sup-
press tumor immunogenicity, reducing patient response 
to immunotherapy, such as ICIs [32]. The slightly higher 
mutations in KEAP1, ALK, PIK3CA, RET, and PTEN in 
the high-risk group of patients also suggest that patients 
in the high-risk group may have a worse prognosis.

(See figure on previous page.)
Fig. 1  The GSAGI predicts prognosis in LUAD patients. A Volcano map of differentially expressed genes in LUAD patients in high and low somatic muta-
tion groups. B Pathway enrichment analysis of GO and KEGG for 347 candidate differential genes, p-values of pathways shown are all < 0.05. C Hazard 
ratio and P-value of constituents involved in multivariate Cox regression. D PCA of TCGA-LUAD training set to distinguish between high-risk and low-risk 
groups. E, G, I, K, M, O Kaplan-Meier survival curves in the TCGA-LUAD training set (E), GSE30219 testing set (G), GSE50081 testing set (I), GSE31210 test-
ing set (K), GSE41271 testing set (M), and GSE42127 testing set (O) for patients in the high-risk and low-risk groups differentiated by the GSAGI. F, H, J, 
L, N, P ROC curves for patients in the TCGA-LUAD training set (F), GSE30219 testing set (H), GSE50081 testing set (J), GSE31210 testing set (L), GSE41271 
testing set (N), and GSE42127 testing set (P). AUCs at 1, 2, and 3 years are shown in the figures
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Fig. 2  Explore the mutation status of LUAD patients and construct and validate a Nomogram. A Overall somatic mutation levels among TCGA-LUAD 
patients in different risk strata. B The waterfall diagram demonstrates the mutation status of patients with different clinical characteristics and risk strati-
fications in the TCGA-LUAD set. C Forest plots of age, gender, stage, smoking history, EGFR mutation status, and risk stratification for multivariate COX re-
gression analysis. ***P < 0.001. D Nomogram model for predicting OS in LUAD patients. E-G ROC curves show the predictive efficiency of the Nomogram 
model, risk score values, and stage for 1-year (E), 2-year (F), and 3-year (G) OS in LUAD patients
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Fig. 3 (See legend on next page.)
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We further conducted a multivariate Cox regression 
analysis of the clinical features (age, gender, staging, 
smoking history, EGFR mutation status) of patients in 
the TCGA-LUAD set and different risk groups distin-
guished by risk scores (Fig. 2C). The results showed that 
only staging and grouping were independent factors 
affecting the prognosis of LUAD patients. Therefore, the 
nomogram model is based on patients’ staging and risk 
scores in the TCGA-LUAD set (Fig. 2D). The ROC analy-
sis confirmed the effectiveness of the Nomogram model, 
which demonstrated higher predictive accuracy survival 
in LUAD patients compared to risk scores or stage alone 
(Fig. 2E F, and 2G). The calibration curve also confirmed 
the reliability of the Nomogram model (Additional file 
4: Figure S2A). In conclusion, the significant differ-
ences in the number of mutations and mutation patterns 
between patients in the high- and low-risk groups may be 
one of the reasons for the better survival of patients in 
the low-risk group. The nomogram model constructed 
based on GSAGI can predict the survival of LUAD more 
accurately.

LUAD patients in the high-risk group distinguished by 
GSAGI are better suited for chemotherapy
We subsequently investigated the relationship between 
the GSAGI and chemotherapy response rates in LUAD 
patients. The TCGA-LUAD dataset included 103 LUAD 
patients who received chemotherapy alone and had 
matched treatment response information. They were 
categorized into high-risk and low-risk groups using the 
median risk scores as a threshold. However, the GSAGI 
failed to accurately distinguish the prognosis of these two 
patient groups (Additional file 4: Figure S3A). Interest-
ingly, the high-risk group exhibited significantly higher 
response rates to chemotherapy drugs (Fig.  3A). This 
result suggests that LUAD patients in the high-risk group 
may be more suitable for chemotherapy. Still, age, gender, 
disease stage, and genetic mutations may influence OS 
and limit better outcomes.

Next, we predicted the response of LUAD patients to 
commonly used chemotherapy drugs in clinical practice 
[33]. In the TCGA-LUAD training, TCGA-LUAD test-
ing, and TCGA-LUAD sets, the high-risk group showed 
a trend of higher sensitivity to standard chemotherapy 
drugs (Cisplatin, Docetaxel, Etoposide, Gemcitabine, 

Paclitaxel, and Vinorelbine) (Fig.  3B and Additional file 
4: Figure S3B, S3C). The results of GSEA showed that 
the high-risk group was significantly enriched in signal-
ing pathways such as the cell cycle, DNA replication, 
and spindle microtubules (Fig.  3C and Additional file 
4: Figure S3D, S3E). It is reported that the most com-
monly used chemotherapy drugs for LUAD (Paclitaxel, 
Docetaxel, and Vinorelbine) exert anti-tumor effects by 
binding to microtubules. Abnormal activation of micro-
tubules may lead to the proliferation and invasion of 
tumor cells, thereby increasing the sensitivity of tumor 
cells to microtubule-targeted drugs [34]. Moreover, Risk 
scores were significantly positively correlated with the 
expression of a commonly used anticancer drug target: 
DNA topoisomerase IIA (TOP2A), and significantly neg-
atively correlated with the expression of multidrug resis-
tance protein 1 (ABCB1) [35] (Additional file 4: Figure 
S3F, S3G) may explain why high-risk group patients are 
more suitable for chemotherapy.

Meanwhile, we investigated the expression of five char-
acteristic genes in 68 LUAD cell lines from the CCLE 
database. We identified three low-risk group cell lines 
(NCI-H2291, NCI-H1755, and NCI-H1573) and three 
high-risk group cell lines (NCI-H1355, NCI-H2009, and 
NCI-H2030) (Additional file 4: Figure S3H and Addi-
tional file 6: Table S5). The GDSC database showed that 
all three high-risk group cell lines were significantly more 
sensitive to Etoposide (Additional file 4: Figure S3I and 
Additional file 6: Table S5), verified a positive correlation 
between GSAGI score and chemo-sensitive.

In addition, based on results from the CCLE and GDSC 
sites, the A549 cell line had a higher risk score and higher 
drug sensitivity to Etoposide (Additional file 6: Table 
S5 and Fig.  3D), which we experimentally verified. The 
CCK-8 assay showed a dose-dependent decrease in cell 
viability at 24 h when 20, 40, 60, 80, 100, 120, 150, and 180 
µM of Etoposide were treated with both A549 and NCI-
H1299 (Fig.  3E F). And the cell viability of NCI-H1299 
was significantly higher than that of A549 after treat-
ment with the same dose of Etoposide (Fig. 3G). Next, we 
added different concentrations of Etoposide into LUAD 
cell lines. The results showed that the number of clones 
formed by the A549 cell line was more significantly inhib-
ited than NCI-H1299 (Fig. 3H and I J, and 3 K). That is, 
the same dose of Etoposide more significantly inhibited 

(See figure on previous page.)
Fig. 3  Prediction of chemotherapy response level in LUAD patients and cell lines validation. A Histogram of the percentage of patients in the high and 
low-risk groups who received chemotherapy only in the TCGA-LUAD set who responded to treatment. **P < 0.01. B Boxplots reflect the differences in the 
degree of response to chemotherapy drugs between patients in the high-risk and low-risk groups in the TCGA-LUAD training set. ****P < 0.0001. C GSEA 
analysis shows signaling pathways significantly enriched in patients in the high-risk groups in the TCGA-LUAD training set. D Risk scores and IC50s to Eto-
poside in A549 and NCI-H1299 cell lines. E-F An CCK-8 assay was used to evaluate the viability of A549 and NCI-H1299 cells under different concentrations 
of Etoposide (20, 40, 60, 80, 100, 120, 150, and 180 µM) for 24 h. GraphPad Prism was used to analyze and visualize the data from the LUAD cells viability 
assay and the IC50 of Etoposide. G The LUAD cells viability of NCI-H1299 vs. A549. *P < 0.05 and ****P < 0.0001. H, J Colony formation assay of NCI-H1299 
(H) and A549 (J) cell lines was performed to detect the colony formation ability. I, K Quantitative analysis of colony formation formed by LUAD cells was 
performed using ImageJ, followed by GraphPad Prism visualization. *P < 0.05, and ****P < 0.0001 vs. control group
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Fig. 4 (See legend on next page.)
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the survival and proliferation of A549 cells. These results 
demonstrate that LUAD patients with higher scores by 
GSAGI may be better suited to receive chemotherapy 
treatment.

The GSAGI affects the immune characteristics of LUAD
Using the ESTIMATE algorithm, the patients in the low-
risk group exhibited higher immune scores (Fig. 4A and 
Additional file 4: Figure S4A, S4B), indicating that low-
risk group patients may have higher immune cell infiltra-
tion. Meanwhile, patients in the high-risk group showed 
higher tumor purity (Fig.  4B and Additional file 4: Fig-
ure S4C, S4D). Next, the CIBERSORT algorithm was 
used to describe the infiltration of different immune cells 
in patients with different risk groups. Low-risk group 
patients showed higher levels of infiltration of immature 
B cells, activated dendritic cells, immature CD4 T cells, 
and M1 macrophages (Fig. 4C). TIL-B can promote anti-
tumor immunity through their unique antigen presenta-
tion and play a critical role in maintaining a “hot” tumor 
microenvironment (including T cells, bone marrow cells, 
and natural killer cells). We further used four methods in 
the TIMER website to evaluate the level of B cell infiltra-
tion in different risk-stratified LUAD patients. The result 
confirmed that B cell infiltration levels in the low-risk 
group were significantly higher (Fig.  4D and Additional 
file 4: Figure S4E, S4F).

Surprisingly, there was some positive correlation 
between the risk scores obtained from the GSAGI and 
the risk scores of LUAD patients (Fig. 4E). LUAD patients 
with low-risk scores had lower levels of TMB and higher 
levels of immune cell infiltration. Patients in the low-risk 
group may have a “hot” tumor immune microenviron-
ment. At the same time, we found some positive correla-
tions between TMB levels and the expression of ANLN, 
RHOV, KRT6A, and KLRG2, and some negative cor-
relations with SIGLEC6 expression in LUAD patients 
(Fig.  4E). This somewhat suggests that the five GSAGI 
genes we screened may influence TMB levels in LUAD 
patients.

Chemokines and their receptors are involved in regu-
lating immune cell localization and function to promote 

the proliferation and survival of immune cells. Correla-
tion analysis showed a significant negative correlation 
between the expression of some chemokines and their 
receptors and risk score (Fig. 4F) [36]. More importantly, 
there was a significant negative correlation between the 
presentation of joint immune checkpoints (ICOS, CD27, 
PD-L1, CD40LG, B7-H4, PD-1, IDO1, TNFRSF1B) 
and risk score (Fig. 4G) [37]. Next, the IPS was used to 
explore the differences in immunogenicity among LUAD 
patients in different risk groups. Low-risk group LUAD 
patients showed significantly higher immunogenicity 
(Fig. 4H and Additional file 4: Figure S4G, S4H). Further-
more, we used the TIDE website to predict that the low-
risk group had significantly lower TIDE scores (Fig.  4I 
and Additional file 4: Figure S4I, S4J). At the same time, 
the proportion of low-risk group patients who could 
respond to ICI treatment was significantly higher (Fig. 4J 
and Additional file 4: Figure S4K, S4L). Finally, we used 
the dataset GSE126045 from the GEO database of LUAD 
patients who received immunotherapy for validation. We 
divided 16 LUAD patients into low- and high-risk groups 
using the median of GSAGI score. Among the eight 
high-risk group LUAD patients, only one responded to 
immunotherapy, whereas half of the patients in the low-
risk group responded to immunotherapy (Additional file 
4: Figure S4M). The lack of significant differences may 
be due to the small sample size of the testing set. The 
above results suggest that GSAGI can robustly assess the 
immune characteristics of LUAD patients and the degree 
of responsiveness to immunotherapy.

Intercellular communication affects the Tumor immune 
microenvironment in LUAD
Single-cell sequencing technology can characterize 
intra-tumor heterogeneity better than conventional tis-
sue sequencing. We further explored the relationship 
between GSAGI and tumor immune microenvironment 
at single-cell resolution. In the GSE148071 dataset, we 
normalized the single-cell sequencing data of 26 LUAD 
patients and calculated a risk score for each cell by the 
GSAGI. Further, we assessed the risk score of each LUAD 
patient (the average of the risk scores of all cells in each 

(See figure on previous page.)
Fig. 4  The GSAGI predicts the immune characteristics of LUAD. A ESTIMATE algorithm evaluates the immune score of patients in the high-risk and low-
risk groups in the TCGA-LUAD training set. B ESTIMATE algorithm evaluates the tumor purity of patients in the TCGA-LUAD training set. C The CIBERSORT 
algorithm assesses the differences in the degree of infiltration of B cells naive, NK cells activated, T cells CD4 naive, and Macrophages M1 between the 
high-risk and low-risk groups in the TCGA-LUAD set. **P < 0.01 and ****P < 0.0001. D Four algorithms in the TIMER database assess the differences in the 
degree of infiltration of B cells between the high-risk and low-risk groups in the TCGA-LUAD training set. *P < 0.05 and ***P < 0.001. E Positive correlations 
between TMB levels and the expression of ANLN, RHOV, KRT6A, and KLRG2, and some negative correlations with SIGLEC6 expression in LUAD patients. 
F-G Correlation between risk scores of LUAD patients and the expression of 17 chemokines and their receptors (F) and the expression of 7 immune 
checkpoint molecules (G). The colors represent Pearson correlation coefficients, and the sizes of the ellipses represent the P-values. H Two-way bar graphs 
show IPS for patients in the high-risk and low-risk groups in the TCGA-LUAD training set. ***P < 0.001. I Comparison of TIDE scores between patients in the 
high-risk and low-risk groups in the TCGA-LUAD training set. J The percentage bar graph compares the different response statuses of patients receiving 
immunotherapy in the high-risk and low-risk groups in the TCGA-LUAD training set. ***P < 0.001. Red indicates that the patient responded to ICI treat-
ment, blue indicates non-response
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sample) and classified the patients into low and high 
groups (Fig. 5A). UMAP visualized 11 cell clusters in the 
low and 14 in the high groups. (Additional file 4: Figure 
S5A, S5B). We assigned one of the nine major cell types 
to each cluster by standardized expression of typical 
markers on the “CellMarker” website. (Additional file 4: 
Figure S5C, S5D). We pooled groups of cells of the same 
type together for analysis (Fig. 5C and D). Interestingly, 
an increased risk score may result in more tumor cells, 
fewer B cells, and fewer T cells in the TME (Fig. 5B). And 
the difference in the proportions of tumor, B, and T cells 
was statistically significant in the samples with high and 
low subgroups (Additional file 4: Figure S5E). That is, an 
increase in GSAGI scores is associated with a decrease in 
immune cells.

In addition, we examined cellular interactions in the 
TME of patients with two subtypes of lung adenocarci-
noma. A higher number of cells in high-group patients 
may lead to more robust intercellular communication 
compared to low-group patients (Additional file 4: Fig-
ure S5F, S5G). However, we further focused on tumor 
cells and could see that tumor cells interacted more 
strongly with B cells, T cells, NK cells, and macrophages 
in the low group (Fig. 5E F). Understanding the interac-
tions between tumor cells and immune cells helps to 
understand the mechanisms of cancer progression and 
metastasis, so we further explored the receptor-ligand 
interaction Mode of action between tumor cells and 
other types of cells. We identified immunosuppressive 
pathways: the MDK-NCL can inhibit B-cell receptor 
signaling [38], and ANXA1-FPR1 recruits and polar-
izes bone marrow-derived macrophages [39]. Moreover, 
the mode of action of LGALS9-CD45 between tumor 
cells and T cells and the mode of action of LGALS9-
CD44 between tumor cells and B cells in low subgroups 
of patients belong to the immunosuppressive pathway, 
which can be used as a potential immunotherapeutic tar-
get in the low group [40]. More importantly, the CXCL-
CXCR pathway between tumor cells and neutrophils in 
the low group was enriched in immunoreactive isoforms 
(Fig. 5G H), which may also serve as a target for immuno-
therapy [41]. The above results further revealed the role 
of the GSAGI in the tumor immune microenvironment.

Practical application of risk factors in the GSAGI to LUAD
The results of real-time PCR (RT-PCR) showed that the 
mRNA levels of ANLN and RHOV were significantly 
higher in four LUAD cell lines (A549, PC-9, NCI-H1975, 
and NCI-H1299) than in the human lung epithelial cell 
line BEAS-2B (Fig. 6A and B). However, KRT6A only sig-
nificantly upregulated in the PC-9 cell line (Fig. 6C). To 
explore the expression of three risk factors in this gene 
feature in LUAD patient tissues, tumor tissues, and nor-
mal tissues from six LUAD patients at the Hefei Cancer 

Hospital of the Chinese Academy of Sciences were col-
lected for IHC validation. ImageJ software calculated the 
positivity rate, and the results confirmed that ANLN, 
RHOV, and KRT6A were all significantly upregulated in 
the tumor samples (Fig. 6D and I).

Discussion
The development of LUAD is highly complex and closely 
related to the abnormal expression of specific genes. In the 
past few decades, many therapeutic targets and predic-
tive biomarkers have been identified due to the continuous 
development of high-throughput sequencing technologies 
[42]. LUAD is a type of tumor with high genomic instabil-
ity, and genomic instability as the basis of cancer charac-
teristics can accelerate the acquisition of genetic diversity 
and promote the formation of various cancer characteris-
tics. Genomic instability is crucial for the progression and 
recurrence of cancer and is associated with poor progno-
sis, metastasis, and treatment resistance [43]. Therefore, an 
in-depth understanding of the molecular mechanisms that 
affect the genomic instability of LUAD can provide more 
accurate biomarkers for diagnosing and treating tumors. 
However, there are no reliable biomarkers to detect the 
association between genes related to genomic instability 
and the tumor microenvironment and immune features of 
LUAD patients.

In this study, we used the FDA (Food and Drug 
Administration)’s TMB > = 10 criteria for high TMB. The 98 
LUAD samples with TMB > = 10 from the TCGA database 
were used as the high TMB group, and the 98 samples cor-
responding to the lowest TMB values were used as the low 
TMB group. We identified 347 genes that are associated 
with the occurrence of lung adenocarcinoma (LUAD) and 
genomic instability. Based on this, we established a GSAGI 
consisting of five genes that can more accurately predict the 
prognosis of LUAD patients. We found that patients in the 
high-risk group had higher levels of genomic instability. This 
is consistent with the conclusion of Owada-Ozaki et al. that 
NSCLC patients with lower TMB levels may have a better 
prognosis [8]. Further, we found that patients in the high-
risk group were more suitable for chemotherapy, and the 
abnormal activation of microtubules, microfilaments, and 
other pathways in patients may cause better chemotherapy 
results. Moreover, the predicted results from the TIDE web-
site suggest that LUAD patients in the low-risk group are 
better suited to receive immunotherapy. This contradicts 
the previous view that immunotherapy efficacy is better in 
LUAD patients with higher TMB levels [44]. Surprisingly, a 
study by Nie W et al. in 2020 showed that NSCLC patients 
with low TMB may because of significantly higher levels of 
Th1 and Th17 cells more suitable anti-PD-1/PD-L1 immu-
notherapy [45].

Further studies found that LUAD patients in the low-
risk group had higher levels of immune cell infiltration, 
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Fig. 5  Intercellular communication affects the tumor immune microenvironment in LUAD. A Risk scores of 26 LUAD patients. B Histograms showing the 
proportion of cells in the TME of different patients. C-D UMAP plots show the single-cell mapping of low (C) and high (D) subgroups. E-F Interactions 
between tumor cells and other cells in the TME for low (E) and high (F) subgroups. G-H Activation pathways of tumor cells interacting with other cells 
in the TME of low (G) and high (H) subgroups
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Fig. 6  Characterized gene expression validation in cell lines and LUAD tissues. A-C Histograms of different transcript levels of ANLN (A), RHOV (B), and 
KRT6A (C) in LUAD cell lines and human normal lung epithelial cells BEAS-2B. D, F, H IHC of ANLN (D), RHOV (F), and KRT6A (H) in tissues of LUAD patients. 
E, G, I Statistics of IHC positivity in tissues of 6 LUAD patients. *P < 0.05 and **P < 0.01
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especially B-cell infiltration. The significantly higher levels of 
immune cell infiltration in low-risk group may have contrib-
uted to the persistence of a “hot” tumor immune microenvi-
ronment. Thus low-risk group showed to be more suitable 
for ICI treatment. In addition, PD-L1 expression and TMB 
were not significantly correlated in most cancer subtypes, 
and the non-overlapping effects of PD-L1 expression and 
TMB on the response rate to PD-1/PD-L1 inhibitors could 
be widely used to classify immunosubtypes of cancers. 
PD-L1 expression and TMB may each provide information 
for the use of ICI [46]. Previous studies have also shown 
that PD-L1 is a crucial indicator for ICI treatment in LUAD 
patients [47]. The negative correlation between the risk 
score and the expression of immune checkpoints, chemo-
kines, and their receptors may also be one of the reasons 
why LUAD patients in the low-risk group are more suitable 
for ICI treatment. Accordingly, we believe that although 
high TMB levels may increase the chance of the immune 
system recognizing and attacking tumor cells, it is not the 
only factor affecting patients’ immune response. Immune 
checkpoints, chemokines and their receptors, as well as 
TME are also important factors influencing the efficacy of 
ICI in patients with LUAD. At the same time, the GSAGI 
was shown to possibly better identify LUAD patients who 
are more suitable to receive immunotherapy.

Findings at the single-cell level suggest that this GSAGI 
may influence the TME of LUAD. Tumor cells tended to 
receive higher GSAGI scores than immune cells. CellChat 
analyses showed stronger interactions between tumor and B 
cells, T cells, and macrophage cells in low-grouped patients. 
The receptor-ligand mode of action between tumor cells 
and immune cells in LUAD patients (MDK-NCL, ANXA1-
FPR1, LGALS9-CD45, LGALS9-CD44, and CXCL-CXCR 
et al.) may serve as targets for immunotherapy.

The high expression of ANLN, RHOV, and KRT6A is asso-
ciated with significantly worse survival in LUAD patients 
(Additional file 4: Figure S6A, S6B, and S6C). ANLN is a 
myosin-binding protein whose expression level and local-
ization are regulated by the cell cycle, and it is an essential 
component of cytokinesis [48]. The loss of ANLN may affect 
the progression of the cell cycle. ANLN has been reported 
to be significantly upregulated in various tumors [49]. And 
genomic instability shown due to alterations in the cell cycle 
is one of the characteristics of many cancers [50]. This may 
explain the existence of some degree of positive correlation 
between ANLN and TMB. RHOV is an atypical member of 
the Ras superfamily of small GTPases. It regulates the cell 
cycle, promotes cell differentiation, and affects cell adhesion 
and migration [51]. It has been reported that RHOV acti-
vates the JNK/c-Jun pathway, leading to the metastasis of 
LUAD. Similarly, The effect of RHOV on the cell cycle may 
partially influence genomic instability in LUAD patients, 
resulting in a weak positive correlation between RHOV 
expression and TMB. KRT6A, a member of the keratin 

family, has been shown to influence the epithelial-mesen-
chymal transition [52], and its overexpression promotes 
the proliferation and invasion of NSCLC cells. Epithelial 
cells acquire a mesenchymal phenotype during epithelial-
mesenchymal transition, and recent studies have linked epi-
thelial-mesenchymal transition to many cellular functions 
including genomic instability, cancer cell drug resistance, 
and metabolic adaptations [53]. Moreover, a study by Chan-
tapet et al. found that fragment 19 of another member of the 
keratin family, KRT19 (CYFRA 21 − 1), can serve as a serum 
biomarker for diagnosing NSCLC [54]. Therefore, it is nec-
essary to explore further whether KRT6A can be used as a 
serum biomarker for diagnosing NSCLC. According to our 
research, SIGLEC6 is a protective factor for LUAD (Addi-
tional file 4: Figure S6D). Current research indicates that 
SIGLEC6 is expressed explicitly in B cells, monocytes, and 
placental trophoblasts [55]. SIGLEC6 belongs to the sialic 
acid-binding immunoglobulin-like lectin family, a family of 
immune regulatory receptors [56]. The interaction between 
sialylated glycans and SIGLEC6 can modulate immune cell 
function during tumorigenesis, resulting in an immuno-
suppressive tumor microenvironment. Another gene in 
the GSAGI, KLRG2, also showed a favorable impact on the 
prognosis of LUAD patients (Additional file 4: Figure S6E). 
KLRG2 plays a vital role in carbohydrate recognition and 
binding [57]. KLRG2 contains a C-type lectin/C-type lectin-
like domain (CTL/CTLD), and its receptor is expressed on 
various immune cells. In addition, this domain is involved 
in cell adhesion, migration, pathogen recognition, and inter-
cellular signaling. We evaluated the expression of KLRG2 
using the Tumor Immune Single-cell Hub 2 (TISCH2) data-
base, which focuses on the tumor microenvironment. In an 
NSCLC dataset (GSE99254) on the GEO platform, KLRG2 
was mainly expressed on Mono/Macro cells (Additional file 
4: Figure S6F). The results of CIBERSORT analysis showed 
significantly higher levels of M2 macrophages, resting mast 
cells, and monocyte infiltration in the high KLRG2 expres-
sion group of LUAD patients (Additional file 4: Figure S6G). 
These findings suggest that KLRG2 may significantly affect 
regulating the tumor immune microenvironment. However, 
the two current protective factors in GSAGI, SIGLEC6, and 
KLRG2, have not been studied for genomic instability. The 
negative correlation between SIGLEC6 and TMB levels and 
a certain degree of positive correlation between KLRG2 and 
TMB levels found in our study necessitates further confir-
mation. The association between SIGLEC6 and KLRG2 and 
genomic instability necessitates in-depth exploration.

In summary, the GSAGI identified in this study provides 
a direction for prognosis prediction and individualized 
treatment of LUAD patients. Although these studies have 
revealed significant findings, there are also some limitations. 
Firstly, our analysis based on public databases may need to 
be more convincing. Although the GSAGI performed well 
in several external testing sets, prospective studies in the 
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future are necessary to validate the feasibility of this gene 
signature. Secondly, although IHC validation confirmed the 
high expression of ANLN, RHOV, and KRT6A in LUAD 
patients, we need a large clinical sample to increase the 
reliability of the results. The specific mechanisms by which 
these risk factors promote cancer also need further explo-
ration. Finally, the prediction of personalized treatment for 
LUAD patients with different risk stratification needs to be 
further confirmed. The in-depth exploration of molecular 
features associated with genomic instability will provide 
direction for diagnosing and personalized treating LUAD.

Conclusion
This study identified the GSAGI of five genes (ANLN, 
RHOV, KRT6A, SIGLEC6, and KLRG2) by screening genes 
associated with genomic instability. It was able to accurately 
and sensitively predict the prognosis of LUAD patients. The 
GSAGI can predict the tumor immune microenvironment 
in LUAD, which may be because tumor cells and immune 
cells interact in different ways between different subtypes 
of LUAD patients. In conclusion, our study offers the pos-
sibility of predicting the survival of LUAD patients and pro-
vides a basis for individualized treatment plans for LUAD 
patients.
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