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Abstract 

Background Accurate identification of extrahepatic cholangiocarcinoma (ECC) from an image is challenging 
because of the small size and complex background structure. Therefore, considering the limitation of manual deline-
ation, it’s necessary to develop automated identification and segmentation methods for ECC. The aim of this study 
was to develop a deep learning approach for automatic identification and segmentation of ECC using MRI.

Methods We recruited 137 ECC patients from our hospital as the main dataset (C1) and an additional 40 patients 
from other hospitals as the external validation set (C2). All patients underwent axial T1-weighted imaging (T1WI), 
T2-weighted imaging (T2WI), and diffusion-weighted imaging (DWI). Manual delineations were performed and served 
as the ground truth. Next, we used 3D VB-Net to establish single-mode automatic identification and segmentation 
models based on T1WI (model 1), T2WI (model 2), and DWI (model 3) in the training cohort (80% of C1), and com-
pared them with the combined model (model 4). Subsequently, the generalization capability of the best mod-
els was evaluated using the testing set (20% of C1) and the external validation set (C2). Finally, the performance 
of the developed models was further evaluated.

Results Model 3 showed the best identification performance in the training, testing, and external validation cohorts 
with success rates of 0.980, 0.786, and 0.725, respectively. Furthermore, model 3 yielded an average Dice similarity 
coefficient (DSC) of 0.922, 0.495, and 0.466 to segment ECC automatically in the training, testing, and external valida-
tion cohorts, respectively.

Conclusion The DWI-based model performed better in automatically identifying and segmenting ECC compared 
to T1WI and T2WI, which may guide clinical decisions and help determine prognosis.

Keywords Extrahepatic cholangiocarcinoma, Magnetic resonance imaging, Automatic identification, Automatic 
segmentation, Deep learning
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Introduction
Cholangiocarcinoma (CCA) is one of the most aggressive 
human malignant tumors, arising from the biliary epi-
thelium and peribiliary glands [1, 2]. CCA is categorized 
into both intrahepatic and extrahepatic forms (ECC); 
ECC arises in the bile ducts outside the liver parenchyma 
and accounts for approximately 80% of all CCA [3, 4]. 
The incidence and mortality rates of ECC have increased 
gradually over the last decade, and its prognosis remains 
poor [3]. Surgical resection is the most effective thera-
peutic approach for ECC treatment. It is usually diffi-
cult for inexperienced radiologists to accurately identify 
ECC lesions from images because of the small volume 
and complex background structure. A clear and accurate 
boundary is important for volume assessment, tumor 
identification/segmentation, and even effective treat-
ment, such as surgical therapy and local radiotherapy; it 
can help in making the appropriate clinical decisions and 
reduce margin-positive resection or irradiation [5, 6]. 
Meanwhile, with the development of artificial intelligence 
in radiology, precise identification and segmentation of 
tumor are also required for further analysis.

Currently, a variety of noninvasive, economic, and 
repeatable medical imaging technologies, including 
ultrasonography [7], computed tomography [8], positron 
emission tomography [9] and magnetic resonance imag-
ing (MRI) [10, 11], can improve the accuracy of ECC 
diagnosis. MRI is considered the most accurate and least 
invasive modality for detecting ECC due to its superior 
soft tissue contrast, which is essential for tumor staging 
and edge delineation. Another benefit of MRI is the abil-
ity to obtain images reflecting functional tissue informa-
tion, such as diffusion-weighted imaging (DWI) that can 
visualize the microscopic thermal motion of water mol-
ecules in tissue [12, 13]. Hence, precise MRI-based tumor 
identification and segmentation are desirable. However, 
the delineation process was completed manually on 
multi-slice images, which is subjective, labor-consuming, 
and time-consuming. Moreover, manual segmentation 
is prone to error, has high intra- and inter-operator vari-
ability, and greatly depends on the skills of the physician 
or doctor who performs the segmentation task [14]. Con-
sidering all the above problems, an automatic and fast 
tumor identification and segmentation technique, which 
helps in the treatment and surgical planning of ECC, is 
urgently needed to assist intelligent medicine.

Deep learning has achieved great success in medical 
imaging due to their impressive automatic segmenta-
tion performance. With the development of deep learn-
ing, artificial neural network-based techniques have been 
used to tackle segmentation tasks in different diseases or 
organs, such as brain tumor [15–17], lung cancer [18], 
breast tumor [19], hepatocellular carcinoma [20], cervical 

cancer [21], gastric tumor [22], rectal cancer [23], liver 
[24], and pancreas [25]. Currently, most researchers of 
CCA image processing techniques still segment the liver 
and tumor manually to achieve accuracy [26–30]. How-
ever, as mentioned previously, this method is time-con-
suming, has strong subjectivity and poor repeatability, 
and makes it difficult to realize 3D segmentation. In con-
trast, automatic methods have the potential to save time 
and decrease inter-observer variations. Because of the 
heterogeneity of bile duct tissue and the similar density/
intensity of various structures, there is no general seg-
mentation algorithm with high recognition. Therefore, a 
specific, automatic, and high-precision image segmen-
tation algorithm is the development trend of the future. 
To the best of our knowledge, there is a paucity of deep 
learning algorithms for automatic identification and seg-
mentation of ECC.

Therefore, the aim of this study was to investigate the 
performance of an MRI-based deep learning algorithm 
for automatic identification and segmentation of ECC.

Materials and methods
Patients
All patients met the inclusion and exclusion criteria 
(Supplementary material S1). Finally, 177 patients with 
a pathological diagnosis of ECC between January 2011 
and December 2021 were included in our analysis. Of 
these patients, 137 (cohort 1) were from our hospital 
and the remaining 40 (cohort 2) were from other hos-
pitals. Cohort 1 was randomly divided into training 
(n = 109) and testing sets (n = 28) at a ratio of 8:2. Cohort 
2 (n = 40) was included as the external validation cohort. 
All patients experienced preoperative MRI scanning. The 
detailed MRI protocols were listed in Supplementary 
material S2. Besides, some clinical and pathological char-
acteristics of patients were collected. Figure 1 presents a 
general overview of the experimental procedure.

Automatic segmentation model construction
Automatic tumor segmentation
First, manual delineations were performed and served as 
the ground truth in our study. The details were showed in 
Supplementary material S3. For automatic segmentation 
of ECC, image preprocessing and data augmentation was 
performed using Python 3.7 (Supplementary material 
S4). Next, we adopted a 3D VB-Net as the backbone in 
the proposed framework. VB-Net is a modified network 
that combines V-Net with bottleneck modules to reduce 
and combine feature-map channels, which encourages 
much smoother gradient flow and shows easier optimi-
zation/convergence [31]. First, we randomly selected 
80% of the samples (n = 109) as the training set and the 
remaining 20% as the test set (n = 28) from cohort 1. 
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Then, using the VB-Net algorithm, single-modality mod-
els were trained using T1WI (model 1), T2WI (model 2), 
and DWI (model 3) respectively.

As illustrated in Fig. 2a, the VB-Net included one input 
block, four down blocks, four up blocks, and one out-
put block. The input block consisted of one convolution 
module, and the output block consisted of a convolution 
module, global average pooling layer, and Softmax layer. 
Specifically, the down/up block comprised one convolu-
tion/de-convolution module, one bottleneck module, and 
a squeeze-and-excitation (SE) module [2, 32]. Figure  2a 
showed the specific number of bottle structures in the 
bottle module of the four down blocks, which was set as 
1, 2, 3, and 3. The specific number of bottle structures in 

the bottle module of the four upper blocks was set as 3, 3, 
2, and 1.

Figure 2b showed the bottleneck module consisted of a 
certain number of bottleneck structures, which included 
one convolution module (kernel size was set as 1 × 1 × 1, 
stride size was set as 1 × 1 × 1, followed by one batch 
normalization (BN) layer and one rectified linear unit 
(ReLU) layer) to reduce the channel of the feature maps 
and another two convolution modules (kernel size was 
set as 3 × 3 × 3 and 1 × 1 × 1; stride size was set as 1 × 1 × 1 
and 1 × 1 × 1, respectively; followed by one BN layer and 
one ReLU layer) to restore the initial channels of the fea-
ture maps. A bottleneck module was combined in the 
network to reduce the number of network parameters 

Fig. 1 The overview of the experimental procedure
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and thereby speed up network convergence. In our net-
work architecture, both down and up blocks took the 
form of a residual SE structure (Fig. 2c). Supplementary 
material S5 described the details of SE module.

Furthermore, the combined segmentation model 
(model 4) was also trained using the combination of 
T1WI, T2WI, and DWI, and compared with the above 
mentioned single-modality models. The major operation 
was similar to the processes of models 1, 2, and 3. Fig-
ure  3 showed the detailed architecture. The differences 
between the single-modality and combined network were 
described in Supplementary material S6.

Loss functions and validation of segmentation model
In all training processes, the loss functions of dice loss, 
focal loss, and soft dice loss were combined to opti-
mize the model (Supplementary material S7). Then, the 
parameter combinations that resulted in the best train-
ing models were chosen for subsequent analysis. The 
generalization capability of the best models (including 
models 1, 2, 3, and 4) was evaluated using an independ-
ent testing set (20% cohort 1, n = 28) and an external 
validation set (cohort 2, n = 40). All the procedures 
for automatic tumor segmentation were implemented 
in Python 3.7 and PyTorch 1.7.0, with one NVIDIA 
Tesla V100 graphics processing unit. In our method, 

the Adam optimizer (initial learning rate = 0.0001) 
algorithm was chosen to minimize the loss of neural 
network and the batch size was set as 16. The train-
ing process was considered to have converged if the 
loss stopped decreasing for 20 epochs, and the optimal 
training epoch of model was selected based on the met-
ric of DSC in the testing dataset.

Evaluation metrics for segmentation
To evaluate the accuracy of the segmentation algo-
rithm, the results of the automatically segmented data 
were compared with those of the ground truth, using 
both volumetric and surface analysis statistics. Evalu-
ation metrics (Supplementary material S8), including 
the Dice similarity coefficient (DSC), 95th percentile 
of Hausdorff distance (HD95), average surface distance 
(ASD), and Jaccard similarity coefficient (JSC), were 
calculated using python3.7. Besides, we evaluated the 
success rate of identification and segmentation for each 
model, indicating its ability to detect coarse tumor 
locations.

Furthermore, Mann–Whitney U test was used to com-
pare the differences in the above metrics (DSC, HD95, 
ASD, and JSC) between model 3 and the other models in 
the training, testing, and validation groups.

Fig. 2 The architecture of the VB-Net algorithm for single-modality models. The VB-Net included one input block, four down blocks, four up blocks, 
and one output block (a). The bottleneck module consisted a certain number of bottleneck structures (b). c shows the squeeze-and-excitation 
(SE) module. GAP, global averaging pooling layer; FC, fully connected layer; BN, batch normalization layer. Conv (k1,s1): convolution layer whose 
kernel size and stride size was set as 1 × 1 × 1and 1 × 1 × 1, respectively. Conv(k3,s1): convolution layer whose kernel size and stride size was set 
as 3 × 3 × 3and 1 × 1 × 1, respectively
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The application of automatic segmentation model
In order to further validate the automatic identification 
and segmentation ability of our constructed model, 30 
normal participants (group 1), 30 subjects with extrahe-
patic bile duct stones (group 2), and 28 ECC patients in 
the testing cohort (group 3) were included in our study. 
Abdominal MRI images (axial T1WI, T2WI, and DWI) 
of all patients in these three groups were imported into 
our 3D anisotropic SE-VB-Net, namely Ani-SE-VB-Net, 
to observe automatic identification and segmentation of 
extrahepatic bile duct region. The success rate and DSC 
were calculated to further evaluate the performance of 
the proposed model.

Results
Patients
The study sample consisted of 99 females and 78 males 
with an age of 61.0 (55.0, 67.0) years, ranging from 28 to 
87 years. All the tumors were confirmed as adenocarci-
nomas and were divided into well-differentiated (n = 64), 

moderately differentiated (n = 81), and poorly differenti-
ated (n = 32) groups. And 49 subjects were diagnosed 
with lymphatic metastasis by pathological examination. 
The detailed patient characteristics are summarized in 
Table 1.

Automatic segmentation model construction
In this study, automatic identification and segmentation 
models for ECC were successfully developed using an 
Ani-SE-VB-Net. The DWI-based model showed the best 
identification ability in the training, testing, and external 
validation cohorts, with success rates of 0.980, 0.786, and 
0.725, respectively. Furthermore, it yielded an average 
DSC of 0.922, 0.495, and 0.466 for segmenting ECC auto-
matically in the training, testing, and external validation 
cohorts, respectively. In the training set, the other mod-
els, including model 1, model 2 and model 4, also yielded 
high success rates of 0.961, 0.963, and 1.000, respectively, 
in automatically identifying tumor lesions. The average 
DSC values of models 1, 2, and 4 were 0.753, 0.826, and 
0.775, respectively.

Fig. 3 The architecture of the VB-Net algorithm for multi-modality models
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For the testing cohort, model 3, based on DWI, showed 
an average HD95 of 5.464, ASD of 1.431, and JSC of 
0.360. The combined model (model 4) yielded a success 
rate of 0.786, with an average DSC of 0.462, an average 
HD95 of 6.834, an average ASD of 2.922, and an average 
JSC of 0.331, which were superior to those of models 1 
and 2. However, there were 9, 8, and 6 lesions on T1WI, 
T2WI, and DWI, respectively that were not identified, 

with a DSC of 0 in the testing set. Among them, 4 lesions 
were too small (diameter less than 7.0  mm) to be iden-
tified. The remaining cases had unclear boundaries and 
showed isointensity on T1WI/T2WI/DWI with adjacent 
tissues.

For the validation cohort, the DWI-based model dis-
played an average HD95 of 6.767, ASD of 2.394, and JSC 
of 0.332. However, 11 lesions were unidentifiable on DWI 
due to small volume or obscure boundary caused by the 
isointensity of the tumor in this cohort. Nevertheless, a 
satisfactory result was obtained in our study, in which the 
identification ability of the DWI-based model reached 
1.000 in the training, testing, and validation groups when 
lesions with isointensity on DWI or small size (diameter 
less than 7.0 mm) were excluded. Further details are pro-
vided in Table 2.

Figure  4 shows the violin distributed diagram of the 
four metrics (DSC, HD95, ASD, and JSC) in the training, 
testing, and validation datasets. As shown in Fig.  4, all 
metrics were significantly different between model 3 and 
the other models (including models 1, 2, and 4) (p < 0.05) 
in the training dataset. In the testing dataset, the differ-
ences in HD95 (p < 0.05) and ASD (p ≤ 0.01) between 
models 3 and 1 were significant. In addition, there were 
significant differences in HD95 (p ≤ 0.01), DSC (p < 0.05), 
and JSC (p < 0.05) between models 3 and 2. In the exter-
nal validation dataset, DSC, JSC, and HD95 were signifi-
cantly different between models 3 and 1 (p < 0.05), and 
the differences in DSC and JSC (p < 0.05) between models 
3 and 2 were also significant.

In addition, Fig.  5 shows the 2D visualization of the 
ground truths and the prediction of tumor boundaries 
using different models. Our method had segmented 

Table 1 Clinical and pathological characteristics of patients with 
ECC

Lesion size was defined as the maximum diameter on transverse images

The values of age and lesion size were expressed as median (interquartile range) 
due to abnormal distribution

Characteristic Training cohort Testing cohort Validation 
cohort

Patients number 109 28 40

Gender

 Male 65 (59.6%) 15 (53.6%) 19 (47.5%)

 Female 44 (40.4%) 13 (46.4%) 21 (52.5%)

Age (year) 61.0 (53.5, 66.0) 60.0 (50.3, 66.8) 64.0 (58.0, 71.8)

Location

 Perihilar 57 (52.3%) 14 (50.0%) 21 (52.5%)

 Distal 52 (47.7%) 14 (50.0%) 19 (47.5%)

Lesion size (cm) 1.2 (0.9, 1.5) 0.9 (0.7, 1.3) 1.0 (0.8, 1.4)

Differentiation degree

 Well 41 (37.6%) 11 (39.3%) 12 (30.0%)

 Moderately 52 (47.7%) 9 (32.1%) 20 (50.0%)

 Poorly 16 (14.7%) 8 (28.6%) 8 (20.0%)

Lymphatic status

 Positive 31 (28.4%) 7 (25.0%) 11 (27.5%)

 Negative 78 (71.6%) 21 (75.0%) 29 (72.5%)

Table 2 The performance of the single-modality and combined model for automatic segmentation of ECC

Model 1, model 2 and model 3 were constructed based on T1WI, T2WI and DWI respectively. Model 4 was developed based on the combination of the three sequence

DSC Dice similarity coefficient; HD95, 95% Hausdorff distance, ASD Average symmetric surface distance, JSC Jaccard similarity coefficient. All metrics were expressed 
as mean ± SD

Data Modality Success rate DSC HD95 ASD JSC

Training Model 1 0.961 0.753 ± 0.103 1.886 ± 1.363 0.609 ± 0.371 0.614 ± 0.120

Model 2 0.963 0.826 ± 0.099 3.689 ± 9.858 0.906 ± 3.248 0.714 ± 0.126

Model 3 0.980 0.922 ± 0.055 0.720 ± 0.488 0.134 ± 0.104 0.860 ± 0.087

Model 4 1.000 0.775 ± 0.185 4.641 ± 6.777 1.516 ± 2.744 0.662 ± 0.201

Testing Model 1 0.679 0.287 ± 0.223 10.848 ± 7.414 4.141 ± 3.600 0.190 ± 0.174

Model 2 0.714 0.249 ± 0.221 15.626 ± 10.976 5.018 ± 6.660 0.165 ± 0.180

Model 3 0.786 0.495 ± 0.227 5.464 ± 3.994 1.431 ± 1.413 0.360 ± 0.210

Model 4 0.786 0.462 ± 0.245 6.834 ± 7.385 2.922 ± 5.079 0.331 ± 0.221

Validation Model 1 0.375 0.229 ± 0.182 13.854 ± 9.951 5.084 ± 4.921 0.142 ± 0.124

Model 2 0.300 0.222 ± 0.159 8.712 ± 6.934 3.167 ± 3.291 0.135 ± 0.108

Model 3 0.725 0.466 ± 0.232 6.767 ± 6.634 2.394 ± 3.704 0.332 ± 0.191

Model 4 0.500 0.341 ± 0.220 27.364 ± 40.19 17.448 ± 28.698 0.229 ± 0.184
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boundaries similar to ground truths. Figure 6 displays the 
3D visualization of the surface distance between the seg-
mented results and ground truths, with different colors 
representing different surface distances. We mapped the 
ground truths to the corresponding prediction volume of 
each model, and this visualization made the comparison 
more intuitive.

The application of automatic segmentation model
For groups 1 and 2, all patients experienced failed iden-
tification and segmentation. However, for group 3, the 
DWI-based model still showed the best segmentation 
ability with a success rate of 0.786 and a DSC of 0.495 
compared to other models.

Discussion
In our study, we developed the first MRI-based auto-
matic identification and segmentation model for ECC. 
A 3D Ani-SE-VB-Net algorithm was used for auto-
matic identification and segmentation of ECC in T1WI, 
T2WI, and DWI sequences. We used a large-scale data 
augmentation scheme to mitigate the limited size of 
our dataset. Our novel approach has not been previ-
ously explored for ECC with a small size and complex 
background structure, which is beneficial to our patient 
sample. This suggests that the clinical use of 3D Ani-SE-
VB-Net algorithm is promising in terms of automatic 
identification and segmentation of ECC. Therefore, it 
may also be beneficial for the selection of treatment 

Fig. 4 The violin distributed diagram of four metrics in training, testing and validation dataset. Models 1, 2, and 3 were constructed based 
on T1WI, T2WI, and DWI respectively. Model 4 was developed based on the combination of the three sequence. DSC, Dice similarity coefficient; 
HD95, 95% Hausdorff distance; ASD, average symmetric surface distance; JSC, Jaccard similarity coefficient. ns: 0.05 < p ≤ 1.00; *: 0.01 < p < 0.05; **: 
0.001 < p ≤ 0.01; ***: 0.0001 < p ≤ 0.001; ****: p ≤ 0.0001
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Fig. 5 2D visualization of the ground truths and segmented slices using different models. Models 1, 2, and 3 were constructed based on T1WI, 
T2WI, and DWI respectively. GT, ground truth

Fig. 6 3D visualization of the surface distance between segmented results and ground truths with different colors representing different surface 
distances. Models 1, 2, 3 and 4 were constructed based on T1WI, T2WI, DWI and combined sequences respectively. GT, ground truth
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strategies and for improving the prognosis of patients 
with ECC.

Currently, there are some difficulties in the early detec-
tion of ECC and identification of benign and malignant 
bile duct dilatation. From the analysis presented in this 
work, the DWI-based model yielded a success rate of 
more than 70% in identifying tumors in both the test-
ing and external validation cohorts, which suggests that 
Ani-SE-VB-Net has great advantages in the exploration 
of ECC. Moreover, the automatic identification ability 
of deep learning reached 100% for lesions with hyperin-
tensity on DWI and a diameter ≥ 7.0  mm, in our train-
ing, testing, and validation cohorts. Our previous study 
demonstrated that more than 95% of ECC showed hyper-
intensity on DWI [11]. Hence, our model has a better 
ability to automatically identify ECC from abdominal 
MRI. Using our algorithm to automatically identify the 
presence of tumor lesions can not only help inexperi-
enced radiologists diagnose diseases, but also help expe-
rienced experts shorten the reading time and improve 
diagnostic accuracy. Therefore, Ani-SE-VB-Net may be 
a powerful tool for radiologists to automatically identify 
and diagnose ECC and can guide optimal treatment plan-
ning by clinicians.

As we all know, automated delineation of tumor is 
an essential preliminary step for imaging-based tumor 
analysis and monitoring treatment outcome. These 
automated methods provide objective assessments of 
the subjectivity and intra- and inter-observer variability 
of manual measurements and reduce manual effort and 
time, which may be useful for qualitative and quantita-
tive medical image analyses and computer-aided deci-
sion support systems. Currently, automatic segmentation 
techniques have been used for different diseases, espe-
cially tumors, e.g. brain tumor, lung cancer, breast tumor, 
and rectal cancer. For CCA, there are a few analyses that 
need to be explored for automatic segmentation. Selvathi 
et al. proposed the Fuzzy C-Means algorithm to segment 
liver tumors, including CCA [33]. In addition, a recent 
study indicated that volumetric computed tomography 
(CT) texture analysis using fully automatic segmenta-
tion could be utilized as a prognostic marker in patients 
with intrahepatic mass-forming cholangiocarcinoma, 
with comparable reproducibility in significantly less time 
compared to semi-automatic segmentation [34]. How-
ever, these immature automatic segmentations have not 
been introduced in detail and are unable to meet clini-
cal needs. Furthermore, the above mentioned segmen-
tation algorithms were developed based on intrahepatic 
cholangiocarcinomas. Currently, no relevant studies 
have separately reported automatic segmentation algo-
rithms of ECC. It is difficult to automatically segment 
ECC because of its small size and complex background 

structure compared to intrahepatic cholangiocarcinoma. 
Therefore, considering the differences between ECC and 
intrahepatic cholangiocarcinoma, a 3D Ani-SE-VB-Net 
based on MRI was built and validated to automatically 
identify and segment ECC for the first time in our study.

In this study, we found that the constructed model 
demonstrated better performance and reliability in the 
training, testing, and validation cohorts. We established 
three single-mode automatic segmentation models based 
on T1WI, T2WI, and DWI and compared them with the 
combined model using three sequences. Our results indi-
cated that the performance of the DWI-based model was 
much better than that of other models based on T1WI, 
T2WI, and combined sequences.We speculated that 
the inferior recognition performance observed in both 
T1WI and T2WI could be attributed to resemblance in 
texture and intensity features between the target tissue 
and its adjacent structures. In contrast, the majority of 
ECC showed hyperintensity on DWI, which was clearly 
distinguishable from the background tissue [11]. The 
prominence of lesions on DWI may be beneficial to the 
identification and delineation of tumors, which gives a 
better performance of the segmentation model in DWI 
compared to T1WI and T2WI. Consequently, T1WI and 
T2WI provided little effective and complementary infor-
mation to improve segmentation performance for the 
combined model. Furthermore, considering the lower 
registration accuracy of small ECC in comparison to 
larger lesions or organs, the input-wise fusion of T1WI, 
T2WI and DWI may result in some misplaced tumor 
information, thereby reducing performance of model. 
Further analysis demonstrated that our model could suc-
cessfully identify and segment ECC from MRI images 
mixed with those of extrahepatic bile duct stones and 
normal subjects. This suggests that our 3D Ani-SE-VB-
Net showed excellent performance in automatically iden-
tifying and segmenting ECC by analyzing the differences 
in MR signals of different lesions and the heterogeneity of 
intralesional texture.

Of course, some cases also experienced failed segmen-
tation, with a DSC of 0 in our study. A potential reason 
for this could be that some lesions were too small (diam-
eter less than 7.0 mm), which made it difficult to deline-
ate the boundary accurately. Another reason may be that 
some lesions had unclear boundaries and showed similar 
signals (especially some lesions exhibiting isointensity 
on DWI) with adjacent tissues, so that the tumor was 
unidentified or adjacent tissues were included. Huang 
et  al. reported that only a small part of ECC (less than 
5%) exhibited iso or hypointensity on DWI. Therefore, 
a DWI-based deep learning model can show an excel-
lent ability to automatically identify and segment ECC in 
most cases [11]. What this suggests is that our automatic 
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segmentation model still has a certain degree of clinical 
guidance.

Our study had some limitations. First, our study was 
retrospective and the segmentation algorithm was applied 
on a limited dataset involving ECC only. Therefore, pro-
spective studies with a considerably large number of 
datasets are needed to further validate the robustness of 
our segmentation model and to make the segmentation 
algorithm more sensitive to smaller tumors. Second, the 
described segmentation algorithm was limited to axial 
images on T1WI, T2WI, and DWI sequences. However, 
other sequences such as T1-weighted dynamic contrast-
enhanced images (T1-DCEI) were not included in the 
present study. T1-DCEI could provide a smaller layer 
thickness and make the lesion significantly different from 
the background tissue, which may facilitate tumor recog-
nition and segmentation. We plan to design a segmen-
tation algorithm that incorporates DWI and T1-DCEI 
to expand the indications for using our segmentation 
model. Finally, Ani-SE-VB-Net was selected and applied 
to our automated segmentation. However, there may be 
other methods suitable for this purpose that are yet to 
be considered, e.g. a multi-scale cascaded convolutional 
network. This framework consisted of three components: 
the multi-scale detection network (feature pyramid net-
work), the cascade network and the classification net-
work. These components worked together to maintain 
high sensitivity and eliminate false positives. Therefore, 
other available algorithms will be further tried to develop 
more accurate model in the future.

Conclusion
In conclusion, we present the first 3D model for auto-
mated identification and segmentation of ECC with Ani-
SE-VB-Net, which demonstrated enormous potential 
in the identification and segmentation of tumors with 
small sizes and complex background structures such as 
ECC. It should be noted that varying intensity patterns, 
ill-defined boundaries, and small volumes are some chal-
lenges in labeling tumors. Therefore, using the model on 
unseen cohorts requires caution and one cannot expect 
the same performance level.
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