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Abstract 

S100A16 protein belongs to  the  S100 family of  calcium-binding proteins, which is  widely distributed in  human 
tissues and  highly conserved. S100 calcium-binding proteins possess broad biological functions, such as  can-
cer cell proliferation, apoptosis, tumor metastasis, and  inflammation (Nat Rev Cancer 15:96–109, 2015). The 
S100A16 protein was  initially isolated from  a  cell line derived from  astrocytoma. The S100A16 protein, consisting 
of  103 amino acids, is  a  small acidic protein with  a  molecular weight of  11,801.4  Da and  an  isoelectric point (pI) 
of 6.28 (Biochem Biophys Res Commun 313:237–244, 2004). This protein exhibits high conservation among mam-
mals and  is  widely expressed in  various human tissues (Biochem Biophys Res Commun 322:1111–1122, 2004). 
Like other S100 proteins, S100A16 contains two EF-hand motifs that  form a  helix-loop-helix structural domain. The 
N-terminal domain and  the  C-terminal domain of  S100A16 are connected by  a  "hinge" linker.S100A16 protein 
exhibits distinct characteristics that distinguish it from other S100 proteins. A notable feature is the presence of a single func-
tional Ca2 + binding site located in  the  C-terminal EF-hand, consisting of  12 amino acids per  protein monomer  
(J Biol Chem 281:38905–38917, 2006). In contrast, the N-terminal EF-hand of S100A16 comprises 15 amino acids instead 
of the typical 14, and it lacks the conserved glutamate residue at the final position. This unique attribute may contribute 
to the impaired Ca2 + binding capability in the N-terminal region (J Biol Chem 281:38905–38917, 2006). Studies have 
shown an integral role of S100 calcium-binding proteins in the diagnosis, treatment, and prognosis of certain diseases  
(Cancers 12:2037, 2020). Abnormal expression of  S100A16 protein is  implicated in  the  progression of  breast 
and  prostate cancer, but  an  inhibitor of  oral cancer and  acute lymphoblastic leukemia tumor cell proliferation 
(BMC Cancer 15:53, 2015; BMC Cancer 15:631, 2015). Tu et al. (Front Cell Dev Biol 9:645641, 2021) indicate that the over-
expression of  S100A16 mRNA in  cervical cancer(CC) such as  cervical squamous cell carcinoma and  endocervical 
adenocarcinoma as compared to the control specimens. Tomiyama N. and co-workers (Oncol Lett 15:9929–9933, 2018) 
(Tomiyama, N) investigated the role of S100A16 in cancer stem cells using Yumoto cells (a CC cell line),The authors 
found upregulation of S100A16 in Yumoto cells following sphere formation as compared to monolayer culture. Despite 
a certain degree of understanding, the exact biological function of S100A16 in CC is still unclear. This article explores 
the  role of  S100A16 in  CC through  a  bioinformatics analysis. Referencing the  mRNA expression and  SNP data 
of cervical cancer available through The Cancer Genome Atlas (TCGA) database, we analyzed S100A16 and its associated  
regulatory gene expression network in  cervical cancer. We further screened genes co-expressed with  S100A16 
to hypothesize their function and relationship to the S100A16 cervical cancer phenotype.
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Our results showed that data mining can effectively elucidate the expression and gene regulatory network of S100A16 
in cervical cancer, laying the foundation for further investigations into S100A16 cervical tumorigenesis.

Keywords  Cervical cancer, S100A16 protein, Molecular mechanisms, TCGA​

Introduction
Cervical cancer is one of the most common malignant 
tumors in gynecology and a serious threat to wom-
en’s health worldwide; it ranks fourth among cancers 
in women and is especially prevalent in the develop-
ing world [1]. Improvement in cervical cancer screen-
ing and early detection methods and the availability and 
increased administration of the HPV vaccine in recent 
years, has reduced the cervical cancer burden on public 
health, but its pathogenic mechanisms remain unclear. 
The main treatment modalities for cervical cancer 
include surgery, chemotherapy, radiation therapy, and 
targeted therapy. Clinical research on the etiology of cer-
vical cancer is still ongoing.

Recent advancements in gene microarray, high-
throughput sequencing techniques, and bioinformatics 
continue to provide novel approaches for disease research 
[1]. Our study screened the differential gene expressions 
in cervical cancer and healthy tissues based on the TCGA 
database. Through analysis of the copy number varia-
tion of hub genes, gene set variations, immune cell infil-
tration, weighted gene co-expression network analysis 
(WGCNA), and gene module function enrichment, we 
explored the related molecular mechanisms and provided 
a new research approach to the diagnosis and treatment 
of cervical cancer.

Materials
TCGA data acquisition and differential analysis
The TCGA database (https://​portal.​gdc.​cancer.​gov/.) is 
the largest cancer gene information resource for infor-
mation pertaining to gene expression data, copy number 
variation, and single nucleotide polymorphisms (SNP). 
We downloaded the original mRNA expression data and 
known SNPs in cervical cancer for subsequent analysis. 
A total of 309 specimens were collected (normal group, 
n = 3; tumor group, n = 306) to analyze the expression dif-
ferences of S100A16. We downloaded the series matrix 
files of GSE44001 from the NCBI GEO public database. 
The annotation platform was GPL14951. The data for 300 
cervical cancer patients complete with expression pro-
files and survival information were retrieved. This study 
was approved by the Ethics Committee.

Expression of S100A16 protein in cervical cancer tissues
A total of 63 pairs of pathological slides were collected 
from cervical cancer surgical patients at the Second 

Hospital of Lanzhou University from January 2020 to 
July 2022. The pathology confirmed the presence of cer-
vical cancer. A microscopic imaging system was used to 
capture images of the slides. Initially, the entire tissue 
was observed at 100 × magnification, followed by image 
acquisition at 400 × magnification. The results were 
photographed and recorded. After completing immu-
nohistochemical staining on tissue microarrays (pri-
mary antibody at a ratio of 200:1), the cell nuclei were 
stained blue with hematoxylin, and positive expression 
shown by DAB staining appeared as brownish-yellow. 
Each specimen was photographed at 200 × magnifica-
tion. The staining results were blindly assigned by three 
pathologists with independent diagnostic qualifications. 
The scoring criteria included: (1) staining intensity of the 
protein, and (2) percentage of positive cells. The prod-
uct of (1) and (2) was used to determine the score, which 
was then averaged and grouped. The presence of a yel-
low or brown area in S100A16 protein immunohisto-
chemical staining was considered positive. The scoring 
criteria for protein staining intensity were as follows: 
no staining (0 points), light staining (1 point), moderate 
staining (2 points), and strong staining (3 points). The 
scoring criteria for the percentage of positive cells were 
as follows: > 10% (1 point), 11%-50% (2 points), 51%-75% 
(3 points), and > 75% (4 points). Additionally, in order to 
understand the relationship between the expression level 
of S100A16 protein and clinical indicators, the expres-
sion of S100A16 protein was divided into a high-expres-
sion group (IHC score ≥ 12) and a low-expression group 
(IHC score < 12).

Co‑expression analysis
The co-expression status of S100A16 in cervical cancer 
was analyzed with a pre-established filter and selection 
threshold of a 0.3 correlation coefficient and p-value 
of 0.05. After selecting the most significant genes with 
S100A16 expression, the “corrplot” and “circlize” pack-
ages were used to develop the heatmap and circular 
plot for S100A16 correlative analysis.

Immune cell infiltration analysis
The CIBERSORT algorithm was used to analyze the 
RNA-seq data of cervical cancer patients and iden-
tify relative proportions of 22 immune cells to uncover 
any correlation in gene expression level and immune 
response.

https://portal.gdc.cancer.gov/
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Gene set variation analysis (GSVA)
GSVA is a non-parametric unsupervised method to 
assess the enrichment of transcriptomic gene sets. 
Through comprehensively scoring the gene sets of 
interest, GSVA converts gene-level changes to path-
way-level changes and then determines the biological 
function of the sample. We downloaded gene sets from 
the Molecular Signatures Database (MSigDB), devel-
oped a comprehensive score for each gene set using the 
GSVA algorithm, and evaluated the potential biological 
function changes across different samples.

Gene set enrichment analysis (GSEA)
GSEA is commonly used for disease classification 
and is closely related to biological significance. In this 
study, patients were divided into high and low S100A16 
expression groups. The differences in the signaling 
pathways between the high and low expression groups 
were further analyzed using GSEA. The background 
gene set and pathway subtypes were the version 7.0 
annotated gene sets downloaded from the MSigDB 
database. Differential expression analysis of signaling 
pathways between subtypes was performed, and the 
significantly enriched gene sets (adjusted p value < 0.05) 
were sorted based on consensus scoring.

Drug sensitivity analysis
Based on the largest pharmacogenomics database 
(https://​www.​cance​rrxge​ne.​org/) we used the R soft-
ware package “pRRophetic” to predict the chemo-
therapy sensitivity for each tumor specimen. The 
estimated IC50 with each specific chemotherapy drug 
was obtained using the regression method, and 10-fold 
cross-validation was performed to test the regression 
and prediction accuracy using the GDSC training sets. 
All parameters had the default and “combat” values 
selected removing the batch effect and taking the aver-
age of duplicate gene expression.

Nomogram model construction
A nomogram was built based on regression analysis of gene 
expression level and clinical symptoms. Line segments were 
used with tick marks to draw on the same plane accord-
ing to a predetermined scale, thereby conveying the inter-
relationships between variables in a predictive model. The 
multivariate regression model assigned scores to individual 
value levels of each influencing factor based on its degree 
of contribution in the model to the outcome variable (i.e., 
magnitude of the regression coefficient). The individual 
scores were added together to obtain the total score, ulti-
mately allowing for calculation of the predicted value.

WGCNA
By constructing a weighted gene co-expression network, 
we investigated S100A16 and any associated genes. The 
co-expression networks for all genes in the cervical can-
cer datasets were constructed using the WGCNA-R 
package, and the top 10,000 genes with variance were 
screened using this algorithm with a soft threshold set to 
5. The weighted adjacency matrix was converted to a top-
ological overlap matrix (TOM) that estimated network 
connectivity, and hierarchical clustering constructed a 
tree of the TOM matrix. Different branches of the clus-
tering tree represented different gene modules that were 
further differentiated by color. Based on their weighted 
correlation coefficients, the genes were classified by 
expression patterns and combined with similarly express-
ing genes into one module, grouping all genes into multi-
ple modules.

Functional enrichment analysis of gene modules
R package “ClusterProfiler” was used to annotate the 
biological function of the modular genes selected from 
the WGCNA key (the magenta module was most cor-
related with S100A16). Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
was used to evaluate the associated functional catego-
ries. The GO and KEGG enriched pathways with both 
p and Q values below 0.05 were considered significant 
categories.

Statistical analysis
Statistical analysis was performed using R program-
ming language (version 4.2.1). For immunohisto-
chemical scores, non-parametric test for paired data 
(Wilcoxon signed rank test) was performed using SPSS 
(version 25.0). P < 0.05 was considered statistically 
significant.

Results
The expression pattern and prognosis of S100A16 
in cervical cancer
S100A16 expression was significantly upregulated in cer-
vical cancer specimens (Fig.  1A). Our survival analysis, 
ranked by degree of S100A16 gene expression, indicated 
that in the GSE44001 dataset, the overall survival (OS) 
within the high S100A16 expression group was signifi-
cantly shorter than groups with low S100A16 expression 
(Fig.  1B). Using clinical information and S100A16 gene 
expression level, we established univariate and multivari-
ate Cox regression models and constructed forest plots 
that showed N in cervical cancer patients was associated 
with the risk and had a statistical difference between the 
groups (Fig. 1C).

https://www.cancerrxgene.org/
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Immunohistochemical analysis of S100A16 in cervical 
cancer
Immunohistochemical staining of cervical cancer cells 
and the corresponding adjacent normal healthy cervical 
tissue specimens (ANT) was performed to investigate 
whether the S100A16 protein expression was altered 
in the tissues of cervical cancer patients. Our research 
revealed a statistically significant (p < 0.05) increase in 
the levels of S100A16 protein in 63 tumor specimens 
compared to the corresponding cervical paracancerous 
specimens (Fig. 2). According to the scoring criteria of 
immunohistochemistry, the 63 cervical cancer patients 
were divided into two groups: a high-expression group 
with 43 cases (68%) and a low-expression group with 20 
cases (32%). The results indicated a significant correla-
tion between the expression level of S100A16 protein 
and the pathological grading and depth of muscular 
infiltration in the cervix (P < 0.05). However, there was 
no significant difference in age, lymph node metas-
tasis, tumor size, and tissue type among the patients 
(P > 0.05) (Table 1).

Co‑expression gene analysis of S100A16 in cervical cancer
We further explored the co-expression network of 
S100A16 using the expression profiles of cervical can-
cer patients annotated in the TCGA database. A total of 
2,934 genes that were significantly correlated (correla-
tion coefficient filter criterion of 0.3 and p value of 0.05) 
with S100A16 expression were screened and resultant 
heatmaps of the top 5 genes with positive or negative cor-
relation coefficients (Fig.  3A) along with co-expression 
correlative circular charts are shown in Fig. 3B.

The relationship between S100A16 and immune cell 
infiltration in cervical cancer
The tumor microenvironment consists primarily of can-
cer cells and tumor-associated fibroblasts, immune cells, 
extracellular matrix, growth factors, and inflammatory 
factors. The composition and unique physiochemical 
properties of the tumor microenvironment significantly 
affects cancer diagnosis, survival outcome, and clinical 
sensitivity to treatment. By analyzing the relationship 
between S100A16 and the subsequent immune response 

Fig. 1  A Expression of S100A16 mRNA in tumor and normal tissues. Blue represents control tissues, and red represents tumor tissues. B Increased 
S100A16 expression in cervical cancer is associated with a poor prognosis. C Univariate and multivariate forest plots. Green indicates protective 
factors, and red indicates risk factors
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Fig. 2  Expression level of S100A16 protein in human cervical cancer tumor specimens (tumor) and corresponding adjacent normal tissue 
specimens (ANT) detected by immunohistochemical staining

Table 1  The relationship between the expression of S100A16 and the clinical pathological indicators in cervical cancer patients

clinical parameters S100A16 expression c2 P-value

LOW (n = 20) High (n = 43)

age

  ≤ 50 years 10 23 0.067 0.796

  > 50 years 10 20

pathology grading

  G1 1 1 20.989 0.000

  G2 15 30

  G3 4 12

Lymph node metastasis

  yes 2 6 0.107 0.744

  no 11 44

Involved with vessel

  yes 4 23 0.977 0.323

  no 9 27

Invasion depth

  ≥ 1/2 4 25 5.751 0.016

  < 1/2 14 20

Tumor in diameter

  ≥ 4 cm 3 14 0.456 0.5

  < 4 cm 10 36

Issue types

  squamous carcinoma 12 47 1.576 0.665

  Adeno squamouses carcinoma 0 1

  endometrioid adenocarcinoma 0 1

  adenocarcinoma 1 1
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within the TCGA datasets we probed the potential can-
cer progression molecular mechanisms influenced by 
S100A16. Specifically, S100A16 had significant positive 
correlations to population of resting mast cells and acti-
vated dendritic cells and had significant negative correla-
tions with naïve B cells and resting CD4 memory T cells 
(Fig. 4).

The signaling pathways related to S100A16 in cervical 
cancer
We examined the specific signaling pathways associ-
ated with S100A16 to explore the underlying molecular 
mechanisms by which S100A16 influenced tumor pro-
gression. The GSVA results showed that patients with 
high S100A16 expression had enrichment in several 
signaling pathways, such as the p53 regulatory pathway 
and increased levels of reactive oxygen species (Fig. 5A). 
Moreover, GSEA indicated S100A16 enrichment in such 
signaling pathways as oxidative phosphorylation, protea-
somes, and ribosomes (Fig. 5B, C). These findings suggest 
S100A16 involvement in cervical cancer development 
through such pathways.

Mutation analysis
We downloaded the processed SNP-related data of cervi-
cal cancer, selected the top 30 genes with relatively high 
mutation frequency, compared the differences of the 
mutated genes between the two groups, and constructed 
the mutational landscape map using the R package Com-
plexHeatmap (Fig. 6). Our results showed differences in 
gene mutation frequency between high and low S100A16 
expression levels.

The relationship between chemotherapy drugs 
and S100A16 expression in cervical cancer
The therapeutic benefit of surgery combined with chem-
otherapy in early-stage cervical cancer is clear. Based on 
drug sensitivity data in the GDSC database, our study 
predicted the chemotherapy sensitivity of each tumor 
specimen using the R package pRRophetic to further 
investigate any relation between S100A16 expression lev-
els and sensitivity to common chemotherapeutic drugs. 
Our results showed a relation in S100A16 and sensitivity 
to gemcitabine, ABT.263, ABT.888, AP.24534, AS601245, 
and axitinib (Fig. 7).

Nomogram model for cervical cancer patients
Based on the S100A16 expression levels, we presented 
the results of our regression analysis in the form of a 
nomogram. Regression analysis of patients in our study 
showed that the values of the different clinical indica-
tors of cervical cancer and the distribution of S100A16 
expression had varying degrees of contribution through-
out the scoring process (Fig. 8A). Predictive analysis for 
3-year and 5-year OS (Fig. 8B) rates indicated a trend in 
our nomogram model-predicted OS that was similar to 
the actual observed OS.

Weighted gene co‑expression network analysis 
and functional enrichment analysis
To determine the co-expression network of S100A16, 
we performed WGCNA. The soft threshold β was deter-
mined by the function “sft$powerEstimate,” with the soft 
threshold set to 5. Subsequently, the gene modules were 
inspected based on the TOM matrix. During analysis, a 

Fig. 3  A Gene heat map. The heatmap shows the top 10 genes with the most significant correlation in CESC patients with high or low expression 
of S100A16. B Circular plot showing the network of important S100A16-related genes in the high or low expression group of S100A16 in CESC 
patients
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total of 16 gene modules were detected, and we found 
that the magenta module had the highest correlation 
with S100A16 (Fig. 9A, B). Subsequent pathway analysis 
using magenta modular genes was performed, and the 
GO results showed enriched genes primarily in pathways 
such as chromosome segregation, nuclear division, and 
organelle fission (Fig.  9C). Additionally, KEGG results 
showed enrichment mainly in pathways such as cell cycle, 
DNA replication, and oocyte meiosis (Fig. 9D).

Discussion
Cervical cancer is one of the most common malignant 
tumors in women. At present, persistent HPV infec-
tion is the most important risk factor leading to cervical 
cancer. However, other factors such as age and genetic 
factors also influence the progression of cervical can-
cer [2, 3]. Current standard of care for cervical cancer 
is surgery and chemotherapy; however, the prognosis of 
cervical cancer patients remains uncertain. Therefore, it 
is particularly imperative to search for new diagnostic 

methods, markers of tumor progression, and novel thera-
peutic targets.

As a member of S100 proteins, S100A16 was initially 
isolated from astrocytomas [4, 5]. It can promote chro-
mosomal rearrangement and instability and in this 
respect, it is oncogenic [6, 7]. In addition, S100A16 
showed aberrant expressions in different neoplastic tis-
sues further suggesting its involvement in tumorigen-
esis [8–15]. Previous studies have found a correlation 
between S100A14 and the occurrence and progression 
of cervical cancer. Overexpression of S100A14 is closely 
associated with the staging and lymph node metastasis 
of cervical cancer. S100A14 has been shown to promote 
cell cycle progression, cell growth, migration, and inva-
sion of cervical cancer cells [16]. In this study, a close 
correlation was observed between the high expression 
of S100A16 and GJB3. GRAEBER et  al. [17] conducted 
in  vitro experiments using HeLa cells transfected with 
GJB3 and found that the expression of the junction pro-
tein supports the invasion of tumor cells into normal 

Fig. 4  Correlation between S100A16 gene expression and immune cell content
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tissues, and this process does not require heterotypic 
gap junction coupling. As a member of the S100 protein 
family,Studies have shown that S100A16 overexpression 
was associated with varying tumor occurrence and pro-
gression rates [10, 11, 18]. High S100A16 expression in 

lung adenocarcinoma, ovarian cancer, cervical cancer 
and breast cancer were associated with a poor progno-
sis, whereas high expression in colorectal cancer and oral 
squamous cell carcinoma was associated with a favorable 
prognosis [8–11, 19, 20]. By analyzing the differences in 

Fig. 5  A Important biological pathways related to S100A16 were obtained by GSVA in CESC; B S100A16 expression was positively correlated 
with the oxidative phosphorylation, proteasome, and ribosome signaling pathways. C Correlation of the genes of the oxidative phosphorylation, 
proteasome, and ribosome
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Fig. 6  Waterfall plot of S100A16-related mutation genes obtained through mutation analysis in CESC

Fig. 7  Chemotherapy drug sensitivity analysis based on S100A16 expression
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S100A16 expression between tumor tissues and normal 
tissues in the TCGA datasets, we found that S100A16 
expression was significantly increased in tumor tissue 
samples, and cervical cancer patients with high S100A16 
expression had more rapid disease progression and 
shorter survival time. These results implicate S100A16 as 
potential therapeutic target in cervical cancer. However, 
the exact mechanisms by which it affects tumor progres-
sion remain unclear and a topic for further investigation.

The tumor microenvironment has a significant 
impact on cancer diagnosis, survival outcome, and 
sensitivity to clinical treatment. Among them, the 
immune system establishes the microenvironment 
adaptive to the cancer cells through modulating vari-
ous cytokines and chemokines, thereby promoting or 
repressing tumor growth [21]. Tumor cells leverage the 
autogenous regulation of the immune system to build 
an immunosuppressive network in the tumor micro-
environment. Cells regulating the immunosuppressive 
network include regulatory T cells (Tregs), dendritic 
cells (DCs), and natural killer cells (NKs) [22]. Because 
of the interaction between tumor cells and immune 
cells, large quantities of regulatory cells and inhibi-
tory factors that are detrimental to immune response 
and favorable to tumor growth, migrate to the vicinity 
of tumor cells [23]. These immune effectors and sup-
pressors are closely related to cancer development. 
On the other hand, the tumor microenvironment may 
also influence the metabolic reprogramming of tumors, 
maintaining immune cell function and modulating the 
immune system through metabolic competition and 
symbiosis [24]. Through the relationship between hub 

genes and tumor immune infiltration from the TCGA 
datasets, this study investigated the potential molecu-
lar mechanisms of hub genes and cervical cancer pro-
gression. We discovered that S100A16 was significantly 
positively correlated with resting mast cells, dendritic 
cells, and activated t cells, and significantly negatively 
correlated with naïve B cells and resting CD4 mem-
ory T cells. Inside tumors [25], MCs interact with the 
infiltrated immune cells, cancer cells, and extracellular 
matrix through direct cell-to-cell interactions or release 
of mediators capable of reshaping the tumor microen-
vironment. By releasing the classical or non-classical 
proangiogenic factors, MCs actively promote angiogen-
esis and induce neovascularization. In addition, MCs 
support tumor invasion by releasing extensive matrix 
metalloproteinases (MMPs) [18]. Furthermore, tumor 
cells induced the differentiation of neighboring den-
dritic precursors to the Gr-1( +) conventional dendritic 
cell subpopulation and binding with cytotoxic T-lym-
phocyte-associated antigen 4 (CTLA-4), suppressing 
their proliferation and promoting the immune escape 
of cancer cells. Thus, inhibiting Gr-1( +) and CTLA-4 
can improve tumor immune response [26]. In the pre-
sent study, the positive correlation of dendritic cells and 
S100A16 confirmed previous findings. T cells are pro-
duced by activated monocytes/macrophages in lymph 
nodes. Through the expression of T cell receptor (TCR) 
α/β, CD4+ or CD8+ T cells recognize tumor antigens 
and autoantigens and act on specific cancer cells, 
thereby exerting anti-tumor immunity. For instance, 
miR-18a acts by inhibiting proliferation and inducing 
cell death of CD4+ T cells [27]. Moreover, Tregs often 

Fig. 8  A Nomogram model for predicting 3-year and 5-year survival rates of CESC patients (B) Calibration curve for 3-year OS based 
on the nomogram model
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accumulate in tumor tissues maintaining the immuno-
suppressive environment of the tumor and facilitating 
invasion and metastasis [28, 29].

Genomic instability is one of the hallmarks of cancer, 
characterized by an increased rate of changes in the cell 
genome, which promotes cancer progression and resist-
ance to treatment. The most common form of genomic 
instability in cancer is chromosomal instability, driving 

uncontrolled cell proliferation and tumor development 
[30]. CC cells also exhibit abnormal chromosomes, which 
contain various gene rearrangements, including trans-
locations, deletions, and gene amplifications. Given the 
importance of spindle-kinetochore interactions during 
cell division, any defects in mitosis are associated with 
chromosomal instability. The instability may be attrib-
uted to chromosomal segregation defects [31].

Fig. 9  A Dendrogram of sample clustering in CESC; B Gene set enrichment analysis (GSEA) of S100A16-related biological pathways in CESC; C GO 
analysis results of differentially expressed genes; D KEGG analysis results of differentially expressed genes
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During tumor development, the enhancement of gly-
colysis in cells is mainly due to irreversible damage to 
oxidative phosphorylation function. The mechanisms 
leading to oxidative phosphorylation pathway damage 
and the primary energy metabolic pathways (glycolysis 
and oxidative phosphorylation) relied upon differ among 
different types of tumor cells. However, almost all tumor 
cells exhibit varying degrees of impairment in mitochon-
drial oxidative phosphorylation function. The specific 
mechanisms still require further in-depth research.

High expression of the S100A16 protein was correlated 
to disease progression and prognosis of cervical cancer, 
and thus we investigated the hub genes and sensitivi-
ties to common chemotherapeutic drugs [32]. Our study 
results suggest that cervical cancer patients with high 
S100A16 expression were highly sensitive to drugs, such 
as gemcitabine and axitinib. Treating SiHa cells using 
an agonistic anti-CD40 monoclonal antibody or gemcit-
abine alone could not inhibit the proliferation of SiHa 
cells in  vitro, whereas the activation of CD40 on SiHa 
cells enhanced their sensitivity to gemcitabine [32]. Pre-
liminary research showed that when used concomitantly 
with cisplatin, gemcitabine may be helpful in the treat-
ment of recurrent or advanced cervical cancer [33].

The biological functions of S100A16 in tumors remain 
obscure. Studies have shown that S100A16 activates 
the AKT signaling pathway in prostate cancer to pro-
mote cell invasion, metastasis, and proliferation [18]. 
Additionally, the activation of the AKT cellular pathway 
promotes cell survival and inhibits apoptosis [34, 35]. 
S100A16 plays a crucial role in cisplatin resistance dur-
ing chemotherapy for the treatment of lung cancer. Zhou 
et al. reported that S100A16 promotes epithelial to mes-
enchymal transition (EMT) through the Notch pathway 
in breast cancer [36], while EMT enhanced the inva-
sion and metastasis of epithelial cells and was associated 
with resistance to chemotherapy in a variety of tumors 
[37, 38]. On the contrary, in oral squamous carcinoma, 
the prognosis was better for patients with high S100A16 
expression [10] suggesting that S100A16 had different 
buffering or inhibitory functions in adenocarcinoma and 
squamous carcinoma in an expression-dependent man-
ner. A study by Li et al. showed that S100A16 enhanced 
the expression of TWIST1 by activating the STAT3 sign-
aling pathway, which subsequently promoted the EMT 
and invasiveness of pancreatic cancer cells [39]. In addi-
tion, inhibition of S100A16 expression could slow the 
metastasis of pancreatic cancer cells. Ou et  al. showed 
that S100A16 could repress the proliferation, migra-
tion, and invasion of colorectal cancer cells through the 
JNK/p38 MAPK pathway [40]. A study by Zhang et  al. 
showed that S100A16 [41] promoted the proliferation, 
migration, and tumor angiogenesis of cervical cancer 

HeLa cells via regulating the PI3K/PKB signal transduc-
tion pathway, while the PI3K/PKB signaling pathway 
was closely related to cancer proliferation, invasion, 
differentiation, and drug resistance [42, 43]. Zhu et  al. 
showed that S100A16 could promote the proliferation of 
prostate cancer cells through the AKT and ERK signal-
ing pathways [18]. The results of this study showed that 
high S100A16 expression significantly enriched the p53 
and apoptosis pathways. In addition, research has shown 
that CIZAR induced apoptosis not only by reinstating 
the p53/Rb-dependent pathway in HPV-positive cells, 
but also by activating the p53/Rb-independent pathway 
and mitochondrial death signaling pathway in cervical 
carcinoma cells, which was unrelated to HPV infection 
[44]. SOX14 overexpression in cervical carcinoma trig-
gered the accumulation of p53, indicating that potential 
interactions exist between the SOX14 and p53 signaling 
pathways [45]. 

Conclusions
In summary, S100A16 mRNA and protein were abnor-
mally upregulated in cervical cancer, and their over-
expression indicated a poor prognosis and malignant 
tumor progression in cervical cancer patients. These 
results preliminarily present an opportunity for improve-
ment in the diagnosis and treatment of cervical cancer, 
by revealing S100A16 as a new target for cervical cancer 
therapy and uncovering its apparent role in cellular sus-
ceptibility to an array of current chemotherapeutic drugs. 
Global results of this study also implicated S100A16 as 
an up-regulator of multiple tumor growth progression 
processes, highlighting the potential importance of con-
tinued investigation and further studies into the patho-
genic mechanisms of S100A16 in cervical cancer cells 
and its relationship to immune response and key cellular 
pathways. 
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