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Abstract 

Background  Researches have manifested that the disorder of iron metabolism is participated in Gastric cancer (GC), 
but whether iron metabolism-relevant genes (IMRGs) is related to the survival outcome of GC remain unknown.

Methods  Eleven tumor as well as nine adjacent normal tissues from GC patients were underwent mRNA sequencing, 
and the The Cancer Genome Atlas Stomach Cancer (TCGA-STAD) datasets were acquired from the TCGA database. 
Cox analyses and least absolute shrinkage and selection operator (LASSO) regression were applied to build a IMRGs 
signature. The relationship between signature genes and the infiltration profiling of 24 immune cells were investi-
gated using single-sample GSEA (ssGSEA). Meanwhile, the potential biological significance, genes that act synergisti-
cally with signature genes, and the upstream regulatory targets were predicted. Finally, the abundance of the signa-
ture genes were measured via the quantitative real-time PCR (qRT-PCR).

Results  A IMRGs signature was constructed according to the expression and corresponding coefficient of DOHH, 
P4HA3 and MMP1 (The Schoenfeld individual test showed risk score was not significant with P values = 0.83). The 
prognostic outcome of patients in the high-risk group was terrible (p < 0.05). Receiver operating characteristic (ROC) 
curves confirmed that the IMRGs signature presented good efficiency for predicting GC prognosis (AUC > 0.6). The 
nomogram was performed well for clinical utilize (C-index = 0.60), and the MMP1 expression significantly increased 
in the cohorts at age > 60 and Stage II-IV (p < 0.05). The positive correlation of P4HA3 and MMP1 expression as well 
as the negative correlation of DOHH expression with risk score (p < 0.0001) and worse prognosis (p < 0.05) were 
detected as well. Furthermore, 11 differential immune cells were associated with these signature genes (most 
p < 0.01). Finally, qRT-PCR revealed that the abundance of DOHH, P4HA3 and MMP1 were high in tumor cases, indicat-
ing the complex mechanism between the high expression of DOHH as a protective factor and the high expression 
of P4HA3 and MMP1 as the risk factors in the development of GC.

Conclusion  An iron metabolism-related signature was constructed and has significant values for foretelling the OS 
of GC.
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Introduction
Gastric cancer (GC) is a malignancy springing from the 
mucosal epithelial cells of stomach wall, which is one of 
the common digestive tract tumors. By 2020, the inci-
dence of GC ranks fifth, and the mortality rate of GC 
ranks fourth [1]. At present, the treatment of gastric can-
cer is still mainly surgical treatment, combined with sys-
temic chemotherapy, immunotherapy, targeted therapy, 
radiotherapy, and other auxiliary treatment mode. How-
ever, these treatments did not raise the five-year survival 
rate of patients with advanced GC [2]. In addition, GC 
patients are characterized by low early diagnosis rate, 
low radical resection rate and low 5-year survival rate 
[4–6]. Relevant research results show that advanced GC 
patients’ median survival time is less than 1 year, and the 
five-year survival rate is about 18% [5–8]. The prognosis 
of metastatic GC patients is very poor, as the median of 
survival time is just 4–9 months [9]. Therefore, we need 
to find biomarkers with good prognosis prediction for 
GC, and to provide a new basis for clinical gene detec-
tion, targeted therapy and individualized treatment of 
GC.

Iron is an essential nutrient for promoting cell metab-
olism, proliferation and growth. The hydrogen peroxide 
was catalyzed by ferrous iron to generate reactive oxygen 
species through Fenton reavtion, which not only causes 
lipid and protein damage, but also oxidative damage 
DNA, inducing mutations and facilitating the emergence 
and preservation of tumors. Iron metabolism disorder is 
engaged in tumor occurrence, angiogenesis, invasion as 
well as metastasis, which is a general appearance in many 
tumors. Related studies have found that there are abnor-
mal iron metabolism in lung cancer, prostate cancer, liver 
cancer, breast cancer, and, kidney cancer [10–13]. Some 
researches have also manifested that iron metabolism 
disorder is engaged in the process of gastric cancer, but 
whether it is linked to the prognosis of GC and the spe-
cific molecular mechanism are still unknown.

In this study, we first screened the DE-IMRGs from 
the GC expression profile of The Cancer Genome Atlas 
(TCGA) database, then constructed the prognostic sig-
nature of iron metabolism related GC, and probed the 
linkage between the immune cells and signature genes. 
Finally, the expression of signature genes was confirmed 
through external datasets and quantitative real-time 
PCR (qRT-PCR), which is a great significance for GC 
to explore potential therapeutic targets and molecular 
mechanisms.

Materials and methods
Data sourse
This research was allowed by the ethical committee of The 
First Affiliated Hospital of Kunming Medical University. 

All patients in this study signed written informed consent 
documents.

Specimen acquisition & sequencing: 11 tumor tissues 
and 9 normal tissues from GC patients were included in 
mRNA-seq analysis, where normal tissues were selected 
at least 1.0 cm from the tumor margin. These specimens 
were all gathered from The First Affiliated Hospital of 
Kunming Medical University and were freshly frozen and 
reserved at -80 °C immediately after surgery. Afterward, 
the total RNA from tissue cases was extracted using TRI-
zol reagent (Invitrogen, CA, USA). The RNA integrity 
was assessed by Bioanalyzer 2100 (Agilent, CA, USA) 
and then a final cDNA library with the average insert size 
of 300 + 50 bp by PCR was estimated. Finally, the mRNA 
sequencing was run relying on the illumina Novaseq™ 
6000 (LC Bio Technology CO.,Ltd. Hangzhou, CHN).

Collection of TCGA data and iron metabolism-rele-
vant genes (IMRGs): Additionally, the mRNA data, clin-
icopathological data and DNA methylation information 
from the TCGA Stomach Cancer (STAD) datasets were 
regained from the TCGA database (https://​www.​cancer.​
gov/​ccg/​resea​rch/​genome-​seque​ncing/​tcga, accessed 
on 13 October 2017), including 373 tumor cases and 32 
normal cases. The 428 IMRGs cohorts (v7.4) was down-
loaded from the Molecular Signatures Database (MSigDB 
v2023.1.Hs) database (https://​www.​gsea-​msigdb.​org/​
gsea/​msigdb) with the keywords of Iron metabolism and 
we retrieved 428 IMRGs.

Identification of differentially expressed genes (DEGs)
The mRNA data from the sequencing data were selected 
for identification of the DEGs through edgeR package 
[14, 15]. Similarly, the mRNA data from the 373 tumor 
and 32 normal cases of TCGA database were used to 
identify the DEGs via edgeR package [14, 15]. The DEGs 
were displayed in the volcano map by ggplot2 package. 
The overlapping genes of the IMRGs, the DEGs of TCGA 
and the DEGs of sequencing data were selected by Venn 
tool. These overlapping genes were DE-IMRGs.

The correlation between DEGs and CpG site methylation
The CpG site methylation levels of DE-IMRGs were 
extracted from the TCGA, and the relationship were esti-
mated between the DE-IMRGs and CpG site methylation 
levels via psych [16] in R (|cor|> 0.25).

Construction and evaluation of a IMRGs signature
The univariate and multivariate cox regression analyses 
were firstly run to select survival-related genes using sur-
vminer R package (version 0.4.8). The prognostic genes 
were further confirmed using LASSO regression algo-
rithm via glmnet R package (version 4.1–3). After that, 
the 345 cancer cases with complete survival data in the 

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
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TCGA database were classified into two cohorts, namely 
training cohort (242) and validation cohort (103), accord-
ing to 7:3. The formula for calculation of risk score was 
‘h0(t)*exp(β1X1 + β2X2 + … + βnXn)’ via survival in R. 
The Global Schoenfeld residual test was employed for 
checking Proportional Hazard (PH) assumptions and 
estimating the partial residuals estimated by the Cox pro-
portional hazards model via a residual plot. Further, the 
cases were separated into low- and high-risk group based 
on the median of risk-score. Besides, the Kaplan–Meier 
survival curve as well as the ROC curve were produced to 
evaluate the signature, and were drawn via survival and 
the survivalROC in R software.

Independent prognostic analysis of IMRGs signature
All of the clinicopathological factors of 345 cancers with 
complete clinical information were subjected to the 
model for COX independent prognostic analysis to assess 
the independent clinical prognostic factors. Afterward, 
the nomogram was built for GC patients to predict the 
survival of via the R package rms.

Correlation analysis between the IMRGs signature 
and clinical characteristics
The clinical information (Age, gender, pathological M, N, 
T stage, tumor stage and treatment type), survival infor-
mation of GC data in the TCGA database were collected, 
as well as the classification of low- and high-risk groups 
and signature genes. Heatmap of signature genes expres-
sion between different clinical subgroups was displayed 
using pheatmap (version 1.0.12) and magrittr (version 
2.0.1) and the statistic results were exhibited with the 
box plots using Wilcoxon test. And meanwhile, the sur-
vival differences of 345 patients with GC in high- and 
low- expression patterns of signature genes was analyzed 
using Kaplan–Meier survival analysis.

Immune infiltration analysis
The ssGSEA algorithm and Wilcoxon test were applied 
to estimate the infiltration profile of immune cell and the 
differences in immune infiltration between two risk sub-
groups. Meanwhile, the relation between the 24 immune 
cells and signature genes were investigated based on the 
ssGSEA algorithm.

Gene Set Enrichment Analysis (GSEA)
GSEA were conducted for the potential biological signifi-
cance and classical functions involving signature genes in 
GC. Using ‘c5.go.v7.4.entrez.gmt’ (GO) and ‘c2.cp.kegg.
v7.4.entrez.gmt’ (KEGG) downloaded from the GSEA 
website (http://​www.​gsea-​msigdb.​org/​gsea/​msigdb, 
accessed on 6 September 2023) as the background 
gene set, the high- and low- expression groups of each 

signature gene were divided based on the median value 
of the expression values for GSEA using clusterProfiler 
[17] (version 4.0.2) and org.Hs.eg.db (version 3.13.0), and 
threshold was set to | NES |> 1, NOMP < 0.05, q < 0.25.

Collaborative gene analysis of signature
In order to study the genes that cooperate with the sig-
nature genes, R package psych [16] was run to count the 
pearson correlation between the three signature genes 
with all genes, and then performed the correlation anal-
ysis according to |Pearson coefficient value|> 0.6 with 
FDR < 0.05 threshold.

The function annotation of different collaborative genes 
were analyzed via the ClusterProfiler [17–20]. Addition-
ally, enrichment analysis was performed separately for 
each collaborative gene based on a significance threshold 
p < 0.05 and visualized by ggplot2 in R.

Transcription factors (TFs)‑miRNA‑mRNA network 
of signature genes
In order to reveal which miRNAs targeting signature 
genes and which TF interacting with signature genes may 
be involved in the prognosis in GC, TRRUST database 
(http://​www.​grnpe​dia.​org/​trrust, accessed on 6 Septem-
ber 2023) and miRWalk database (http://​mirwa​lk.​umm.​
uni-​heide​lberg.​de/, accessed on 6 September 2023) were 
utilized for prediction analysis. The TF-miRNA-mRNA 
network was constructed and visualized using Cytoscape 
software.

qRT‑PCR
The total RNA of the tumor cases (10) and the normal 
cases (10) were extracted using TRIzol Reagent (Invit-
rogen, CA, USA). The sweScript RT I First strand cDNA 
SynthesisAll-in-OneTM First-Strand cDNA Synthe-
sis Kit (Servicebio, WuHan, CHN) was used for reverse 
transcription. The primer sequences were showed in the 
Table S1. The reference gene GAPDH was used in qRT-
PCR experiments. Finally, the relative abundance of sig-
nature genes was detected by the 2xUniversal Blue SYBR 
Green qPCR Master Mix (Servicebio, WuHan, CHN) and 
standardized with the 2−ΔΔct method.

Results
Identification of DEGs
In the sequencing data, 11,481 DEGs were screened from 
the tumor and normal cases (Fig. 1A). In TCGA database, 
5062 DEGs were screened from the tumor and normal 
cases (Fig. 1B). Finally, 58 DE-IMRGs were obtained from 
5062 DEGs of TCGA, 11,481 DEGs of sequencing data 
and 428 IMRGs (Fig. 1C).

http://www.gsea-msigdb.org/gsea/msigdb
http://www.grnpedia.org/trrust
http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
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The linkage between DEGs and methylation of CpG site
Ten DEGs whose expression were associated with CpG 
sites were obtained to explore the potential regulation of 
DNA methylation on gene expression (Table  1), includ-
ing SLC11A1, FANCG, CCND1, ALKBH2, CDK5RAP1, 
CDO1, HMBS, NTHL1, FXN and KIF23.

Construction and evaluation of a IMRGs signature
The 58 DE-IMRGs of the TCGA database were 
imported to univariate COX regression and five prog-
nosis related genes (P4HA3, DOHH, POLD1, MMP1 
and FANCE) were obtained (Fig.  2A). These five genes 
were further imputed in multivariate Cox regression 
analysis, indicating DOHH (coef = -0.38, HR = 0.68, 
p = 0.05), P4HA3 (coef = 0.30, HR = 1.36, p = 0.09) and 
MMP1 (coef = 0.08, HR = 1.08, p = 0.11) were selected 
as signature genes (Fig.  2B). Further, the LASSO algo-
rithm confirmed the importance of three prognostic 
genes, and DOHH, P4HA3, and MMP1 were involved 
in the Cox proportional hazards model for construction 
of the IMRGs signature (Fig. 2C). The Schoenfeld indi-
vidual test showed risk score was not significant with P 
values = 0.83 (Fig. 2D), suggesting the PH assumption of 
the IMRGs signature remained inviolate.

The patients in training cohort were classified into 
low- and high-risk groups (Fig.  3A). In addition, the 
signature genes of P4HA3 and MMP1 were positively 
linked to risk-score, but the DOHH was negatively 
associated with risk-score (Fig. 3B). The Kaplan–Meier 
curve showed that patients with higher risk had a 
poorer prognosis with p < 0.01 (Fig. 3C). In details, the 
AUCs for OS (1-, 2-, 3-, 4- and 5-years) were 0.617, 
0.604, 0.629, 0.653 and 0.711 (Fig. 3D).

Likewise, the GC patients of validation cohort were 
segmented into low- and high-risk groups (Fig.  4A). 
The correlation of risk-score and signature genes 
(Fig.  4B), and the result of Kaplan–Meier curve were 
similar with training cohort (p = 0.01) (Fig. 4C). More-
over, the AUCs for 1-year was 0.675; 2-years was 0.649; 
3-years was 0.609; 4-years was 0.602 and 5-years was 
0.602 (Fig. 4D).

Independent prognostic analysis of IMRGs signature
The 345 patients of TCGA with complete information 
including treatment type, risk-score, ajcc pathologic 
stage, gender, ajcc pathologic m, age at index and ajcc 
pathologic t were included for univariate Cox regres-
sion analysis. As shown in Fig.  5A, treatment type 
and risk-score were related with risk model. Moreo-
ver, treatment type and risk-score were selected as 
independent prognostic factors by multivariate Cox 
regression analysis (Fig. 5B). Next, treatment type and 
risk-score were included to establish a nomogram and 
the C-index of nomogram model was 0.60 (Fig.  5C). 
Furthermore, the calibration effect of 1- and 3-years in 
calibration curve were performed well (Fig. 5D). Deci-
sion curve analysis (DCA) shows that the nomogram 
model achieves better net benefit than 1-year OS rate 
(Fig. 5E).

Correlation analysis between the IMRGs signature 
and clinical characteristics
The heatmap and box plots showed that the expression 
of the P4HA3 and MMP1 were high in GC patients 
of high-risk group. However, the abundance of the 
DOHH was high in GC of low-risk group (p < 0.0001) 

Fig. 1  Identification of DE-IMRGs. A The volcano plot shows the DEGs between tumor and normal in the sequencing data. B volcano plot shows 
the DEGs between tumor and normal in TCGA database. C The Venn plot shows the DEGs from the sequencing data and TCGA database and IMRGs
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(Fig. 6A-B). And meanwhile, patients with high expres-
sion of P4HA3 and MMP1 had worse prognosis than 
that with low expression, otherwise, individuals with 
high expression of DOHH had a high survival probabil-
ity (p < 0.05) (Fig.  6C), consist with the results gener-
ated above. Further, it can be seen that the expression 
of MMP1 was related to the age and tumor stage of GC 
patients, that is, the MMP1 expression significantly 
increased in the cohorts at age > 60 and Stage II-IV 
(p < 0.05) (Fig. 6B).

Immune infiltration analysis
For studying the imparity of immune infiltration in 
patients with differing risks, the spearman correlations 
for 24 immune cells were calculated. The 11 immune 
cells were different between the two risk GC subgroups 
(Fig.  7A). The relationship between the signature genes 
and 24 immune cells and signature genes shown that 
P4HA3 was significantly associated with 17 immune 
cells; MMP1 was significantly associated with 12 immune 
cells; DOHH was significantly related to 18 immune cells 
(Fig. 7B).

GSEA of signature genes
For the biological functions and signaling pathways 
involving signature genes, GSEA were employed under 
the GO and KEGG analysis (Fig.  8A-B). It was indi-
cated that P4HA3 was mainly enriched in the cytokine-
cytokine receptor, interaction pathways in cancer and 
the functions of extracellular matrix structural constitu-
ent. DOHH is mainly functionally related to the KEGG 
pathways of cell cycle, calcium signaling pathway, as well 
as the GO functions of DNA replication and muscle con-
traction. MMP1 might be relevant to the enrichment of 
Toll-like/Nod-like receptor signaling pathways and vari-
ous catabolic processes. Besides, it was observed that 
ascular smooth muscle contraction term was common to 
DOHH and MMP1.

Collaborative gene analysis of signature genes
To investigate genes that act synergistically with sig-
nature genes, the pearson correlations were calculated 
between pairwise genes with the criteria of |Cor|> 0.6, 
FDR < 0.05 (Fig.  9A). The P4HA3 were associated with 
49 genes, such as ADAMTS2, ANTXR1 and APCDD1L 
(Fig. 9A). The DOHH were associated with 33 genes, such 
as ADAMTS2, ANTXR1 and APCDD1L (Fig.  9A). The 
MMP1 were associated with 2 genes including IL24 and 
MMP3 (Fig.  9A). The GO and KEGG results of 84 col-
laborative genes were shown in the Fig. 9B-C. The top 8 
GO terms were collagen-containing extracellular matrix 
and extracellular matrix organization etc. The KEGG 

Table 1  DEG-CpGs

Symbol logFC-exp cor p-value

SLC11A1 1.603420664 0.5011 0.036827

FANCG 0.669374024 -0.3843059 2.87E-13

CCND1 0.578168838 -0.3466985 6.35E-11

ALKBH2 0.705188653 -0.3018947 1.65E-08

CDK5RAP1 0.588938787 -0.2978591 2.6E-08

CDO1 -1.39378896 -0.2903042 6E-08

HMBS 0.889997626 -0.2693556 5.39E-07

NTHL1 0.755057612 -0.2686109 5.81E-07

FXN 0.698112433 -0.2547962 2.23E-06

KIF23 1.595989666 -0.2520228 2.9E-06

PLOD3 0.856492524 -0.2372911 1.1E-05

GLRX3 0.51508111 -0.2336994 1.51E-05

RAD51 1.522265757 -0.2295502 2.15E-05

ATP6V1C1 0.516632482 -0.2265069 2.78E-05

PUS1 0.939137431 -0.2249831 3.15E-05

FANCI 1.382012951 -0.2147057 7.27E-05

XRCC2 1.635300181 -0.2004757 0.000217

P4HA3 1.973571416 0.1896872 0.000473

ATP6V1C2 1.244956964 -0.183886 0.000707

CYP27B1 1.336683143 -0.183343 0.000733

UBE2T 1.532447267 -0.1635036 0.002646

PRIM2 0.761406132 -0.1614566 0.002997

PALB2 0.654905467 -0.1583963 0.003602

HYAL2 0.650940956 -0.1528398 0.00499

POLA1 0.703782535 -0.1504755 0.005714

ALOX12B 1.390150295 0.1495621 0.006019

CYP4B1 -1.92512197 -0.1439937 0.008208

SCARA5 -1.92784436 0.1277368 0.01916

CCNB1 1.735808613 -0.1267312 0.02014

REP15 -2.2991481 -0.1202464 0.02753

RTEL1 0.967633929 -0.1037375 0.05749

ABCE1 0.893800372 0.1032949 0.05857

POLD1 0.879078201 -0.0991999 0.06936

TMPRSS6 -1.56762532 0.09883517 0.0704

RFWD3 0.760886638 -0.09304779 0.08858

FANCB 1.564025495 -0.09022061 0.09874

FANCA 1.248125352 -0.08374725 0.1255

PLOD1 0.844171575 -0.07410696 0.1754

COL7A1 1.812713075 -0.06719322 0.2193

DNA2 0.987347716 0.06629113 0.2255

FANCM 0.640403824 0.06592408 0.2281

PPEF1 1.314169478 0.06155626 0.2605

DOHH 0.680727916 -0.05825401 0.287

MMP1 1.558222571 -0.05223964 0.3398

CYP26B1 1.312969294 -0.04155381 0.4477

PPAT 1.01160099 0.03998513 0.4651

BRIP1 0.876330825 -0.03070913 0.5748

FANCE 0.816669612 -0.02599784 0.6349

YARS2 0.514504526 -0.00627551 0.9088

BRCA1 1.050006084 0.000138788 0.998
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pathways of enrichment were ‘Protein digestion and 
absorption’ as well as ‘AGE-RAGE signaling pathway in 
diabetic complications’.

Construction of the TF‑miRNA‑Gene network targeting 
signature genes
In order to further elaborate the upstream regulatory miR-
NAs and TFs effecting signature genes, the TF-miRNA-
mRNA network was predicted and pictured in Fig.  10, 
where 24 TF targeting MMP1 (such as NF-κB, STAT3, 
ETS1, CITED2, BACH1) as well as 53 miRNAs interact-
ing with three signature genes were predicted. It can be 
seen that the hsa-miR-6815-3p and hsa-miR-331-3p were 
common to regulate the expression of P4HA3 and DOHH.

qRT‑PCR
The expression of DOHH, P4HA3 and MMP1 were 
detected via qRT-PCR. The abundance of these genes 
were higher in tumor cases than normal cases (Fig. 11).

Discussion
In order to investigate the prognostic IMRGs signature 
in GC, DOHH, P4HA3 and MMP1 was selected using 
univariate and multivariate Cox regression analyses. The 
Kaplan Meier curves manifested the worse outcome of 
patients in the high-risk group. ROC curves confirmed 
that the IMRGs signature presented good efficiency 
for predicting GC prognosis. Further, the positive cor-
relation of P4HA3 and MMP1 expression as well as the 
negative correlation of DOHH expression with risk score 
and worse prognosis were detected as well, and the 
MMP1 expression significantly increased in the cohorts 
at age > 60 and Stage II-IV. Finally, qRT-PCR revealed 
that the abundance of DOHH, P4HA3 and MMP1 were 
high in tumor cases, indicating the complex mechanism 
between the high expression of DOHH as a protective 
factor and the high expression of P4HA3 and MMP1 as 
the risk factors in the development of GC. We make the 
case that this study has valuable significance for foretell-
ing the OS of GC.

Fig. 2  Construction and evaluation of a IMRGs signature. A Univariate Cox regression analysis selected 5 prognosis related genes (P4HA3, DOHH, 
POLD1, MMP1 and FANCE); B Multivariate Cox regression analysis selected 3 prognosis related genes (DOHH, P4HA3 and MMP1) as signature genes. C 
LASSO coefficients profiles (left) to determine the number of factors and cross-validation diagram (right) for tuning parameter selection in the least 
absolute shrinkage and selection operator (LASSO) model. From left to right along the x-axis, with the increases of lambda, the compression 
parameter increases and the absolute value of the coefficient decreases. The number on top are the number of variables with non-zero regression 
coefficients in the LASSO model. Variables with non-zero coefficients are important features for our screening. D The Schoenfeld individual test 
showed P values = 0.83
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Iron is required for cell proliferation and growth, and 
it promote the formation of toxic-free radical species. 
Besides, iron metabolism-relevant pathways, contain-
ing uptake-export, storage, and regulation processes, 
may be aberrantly mediated during the course of can-
cer progression [21]. For instance, transferrin receptor 1 
(TFR1), which is a carrier in the regulation of cell growth 
as well as iron uptake, is aberrantly expressed in tumors 
and is intimately linked to tumour proliferation as well as 
metastasis [22–24]. This has led to TFR1 being an ideal 
target for cancer prevention and cure [25]. Besides, a 
recent study on GC shows that the combination of amino 
acid, lipid, and iron metabolism might play a role in 
malignancies by participating in ferroptosis-related met-
abolic regulation mechanisms, and the prediction model 

targeting ferroptosis in GC has also been widely studied 
[26]. Prior investigations have shown that iron metabo-
lism probably contribute to a number of cancers, namely 
lung cancer [27], leukemia [28], prostate cancer [29], and 
kidney cancer [30]. Nevertheless, present researches has 
centered on the involvement of iron metabolism in can-
cer progression and management, with hardly ever dis-
cussing the value of iron metabolism-related genes in 
cancer prognosis foretelling. Thus, the prognostic signa-
ture of iron metabolism in GC required to be adequately 
probed.

As a HEAT-repeat protein, DOHH has eight tan-
dem helical hairpins on a symmetric dyad. DOHH 
encompasses two possible iron coordination sites 
(one on each dyad) which comprised of two rigorous 

Fig. 3  Construction of the signature genes prognostic signature based on signature genes in the training cohort. A The distribution of the risk 
score, OS. B Heatmap of the signature genes correlated with risk-score. C Kaplan Meier analysis of two risk groups. D AUC value of prediction 
performance of the model for survival rate (1, 2, 3, 4 and 5 year)
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conserved His-Glu motifs, and the activity of DOHH 
activity could be recovered nothing but by the append-
ing of Fe2+ to the apoenzyme [31]. DOHH catalyzes 
the last process of maturation of eIF5A, an momentous 
protein in proliferation of eukaryotic cell [32–35]. The 
metal chelating compounds could efficiently suppress 
deoxyhypusine hydroxylation in eIF5A, and arrest the 
progression of cell cycle in mammalian cells, including 
human cancer cells and HUVEC cells, at the bound-
ary of G1/S [35, 36]. P4HA3 is expressed at very low 
levels in normal adults and fetal tissues [37]. A recent 
research relying on the bioinformatic analysis and 

TCGA database found that up-regulation of P4HA3 
was highly linked to genes responding to ECM gen-
eration in breast cancer, and higher expression of 
P4HA3 is relevant to worse prognosis [38]. Previous 
studies have shown P4HA3 is significantly up-regu-
lated in GC, and up-regulation of P4HA3 is epigeneti-
cally activated by Slug, which is correlated with GC 
metastasis and poor survival [39]. MMP-1 have been 
authenticated to have agonist activity against PAR1, 
which is expressed in most human tissues, contain-
ing the majority of cell types in the blood vessel wall, 
platelets, and inflammatory cells, and is thought to 

Fig. 4  Construction of the signature genes prognostic signature in the validation cohort. A The distribution of the risk score, OS. B Heatmap 
of the signature genes correlated with risk-score. C Kaplan Meier analysis of two risk groups. D AUC value of prediction performance of the model 
for survival rate (1, 2, 3, 4 and 5 year)
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Fig. 5  Building and evaluation of a nomogram model linked to signature. A Univariate Cox regression analysis; B Multivariate Cox regression 
analysis to select independent prognostic factors. C The nomogram model comprised of independent prognostic factors; D Calibration curves 
of OS (1-, 3-, and 5-year) predicted by the nomogram; E The DCA curves to show the expected net benefits based on the nomogram prediction 
at different threshold probabilities. None: assume an event will occur in no patients (horizontal black line); All: assume an event will occur in all 
patients (green line)
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be the primary enzyme responsible for collagen deg-
radation [40–44]. Although basal expression of MMP-
1 is widespread, some disease states lead to further 

increasing expression of MMP-1, a result that is usu-
ally linked to adverse outcomes. Combined with these 
studies, the prognosis prediction of GC was composed 

Fig. 6  The linkage between the IMRGs signature and clinical characteristics. A Heatmap for the expression of three signature genes in different 
clinical sub-groups. B The boxplot for the expression of three signature genes in different clinical sub-groups (age, risk score, tumor pathologic 
stage); C Kaplan Meier analysis of high- and low- expression groups of each signature gene
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of three iron metabolism related genes, including 
DOHH, P4HA3 and MMP1. The external verification 
set further proved the good performance of three gene 
signature in predicting GC prognosis Jianming Wei 
et  al. found that LC22A17 associated with poor over-
all survival in GC [45]. Yuehong Cui et  al. found that 
NOTCH1 and NOTCH3 associated with poor overall 
survival and low expression of NOTCH2 associated 
with poor overall survival in GC [46]. In the current 
research, we postulated that the iron metabolism-rele-
vant signature for OS can adequately foretell the clini-
cal consequences of GC patients.

The concept of immunity promoting or suppress-
ing the tumours is widely accepted, and one of the 
most influential anticancerous therapies that have 
been exploited in these years is the therapy targeting 
immune checkpoints. And the development of tumours 
is not only regulated by the intrinsic variations in can-
cerous cells but also dependent on the lymphocyte 
infiltration and activation [47]. Our results uncovered 
that the immune state was notably disparate between 
the two risk GC patients, containing the the propor-
tions of Macrophages, dendritic cells (DCs), Eosino-
phils, Immature dendritic cells (DCi), Neutrophils, 
Natural killer cells (NK), Mast cells, Plasmacytoid den-
dritic cells (DCp), Tem, Gamma delta T cells (γδT) and 
Thi cells. Huang XM et al. found that ICOS( +) Tregs 
associated with poor overall survival in GC and pDCs 
play a underlying role in recruiting ICOS( +) Tregs 
[48]. Sammarco G et al. found that mast cells exerted 

a cancer promotion role in GC through the release of 
angiogenic and lymphangiogenic factors [49]. Eosino-
phils have either anti-tumor impacts or stimulate the 
development of tumour by secreting various cytokines 
and factors containing eosinophil-derived neurotoxin, 
peroxidase, eosinophil cationic protein, and major 
basic protein [50]. Macrophages was comprised of two 
main types, namely M1 and M2. Macrophage M2 exert 
an momentous role in tumor progression, facilitating 
pro-angiogenic and immunosuppressive signal in the 
tumor while M1 macrophage infiltration may be linked 
to a favorable survival rate [51]. People suffering from 
GC displayed a notably higher neutrophil infiltration 
in GC tumuor tissues. These tumour-infiltrating neu-
trophils revealed a phenotype of activated CD54+ and 
expressed high level programmed death-ligand 1 (PD-
L1), which was an immunosuppressive molecule and 
relevant to disease progression and lowered GC patient 
survival [52]. As vital lymphocytes in innate immunity, 
NK cells exert important impact in restraining GC ini-
tiation, progression, and metastases, and can improve 
NK cells’ killing activity toward GC. Gene therapy 
have been uncovered to directly or indirectly activate 
NK cells [53]. The memory T cell (Tm) comprises of 
two populations, namely the effector memory T cells 
(Tem) and central memory T cells (Tcm), and the ratio 
of CD4( +)/CD8( +) Tem were notably increased in GC 
than healthy controls [54]. In addition, the prognostic 
genes (DOHH, P4HA3 and MMP1) have remarkable 
linkages with immune cell, suggesting the complexity 

Fig. 7  The imparity of immune infiltration in patients with differing risks. A Comparison of 24 immune cells between high-risk group and low-risk 
group; B The linkage heat map between the signature genes and 24 immune cells
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between iron metabolism and immunity. Moreover, 
GO and KEGG analyses performed using these 84 col-
laborative genes suggested that these 84 collaborative 
genes were primarily engaged in ‘AGE-RAGE signal-
ing pathway in diabetic complications’ and ‘protein 

digestion and absorption’. In fact, previous studies 
revealed that ‘AGE-RAGE signaling pathway in dia-
betic complication constitute the main mechanisms 
of vascular oxidative stress and enable the activation 
of NADPH oxidase (Nox) and NF-κB, thus incepting 

Fig. 8  Single gene set enrichment analysis (GSEA) for three signature genes, including P4HA3, DOHH, MMP1. A GO analysis; B KEGG analysis
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a vicious cycle of oxidative stress and inflammation 
[55–60]. Previous studies have demonstrated that the 
receptor activator of NF-κB ligand signaling pathway 
can promote the metastasis of tumor cells [61, 62]. 
The ‘protein digestion and absorption’ pathway had 
been found to be linked to pancreatic neuroendocrine 
tumours as well as breast cancer [63, 64]. Expres-
sion of DOHH, P4HA3 and MMP1 was assessed with 

qRT-PCR in tumor cases and the normal cases. The 
results demonstrated that the abundance of DOHH, 
P4HA3 and MMP1 were higher in tumor cases than 
normal cases. The experiment verified the aforemen-
tioned conclusion.

All in all, this study manifested that the IMRGs (DOHH, 
P4HA3 and MMP1) presented good efficiency for pre-
dicting GC prognosis, implying that this gene signature 

Fig. 9  The network, KEGG and GO analyses of collaborative genes. A The PPI (Protein–Protein Interaction) network of signature genes; B GO 
analysis on BP, CC, and MF; C KEGG analysis on the enrichment pathway of collaborative genes
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relevant to iron metabolism was a promising biomarker 
in foretelling the prognosis of GC, which would provide 
new idea on the digging of underlying predictive bio-
markers for GC patients. Nevertheless, this study had 
certain limitations. For instance, public data may have 
certain boundedness when we analyze the prognostic 
performance of gene signatures. Additional data, includ-
ing primary data from patients with GC, are required to 
affirm the predictive effect of these gene signature.
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