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Abstract 

Background  Thyroid cancer (THCA) has become increasingly common in recent decades, and women are three 
to four times more likely to develop it than men. Evidence shows that estrogen has a significant impact on THCA 
proliferation and growth. Nevertheless, the effects of estrogen-related genes (ERGs) on THCA stages, immunological 
infiltration, and treatment susceptibility have not been well explored.

Methods  Clinicopathological and transcriptome data of patients with THCA from the Gene Expression Omnibus 
(GEO) and The Cancer Genome Atlas (TCGA) were cleaned before consensus clustering. Differential expression analy-
sis was performed on the genes expressed between THCA and paraneoplastic tissues in TCGA, and Wayne analysis 
was performed on the ERGs obtained from the Gene Set Enrichment Analysis MsigDB and differentially expressed 
genes (DEGs). Univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses were used to iden-
tify the set of estrogen-related differentially expressed genes (ERDEGs) associated with progression-free intervals (PFI) 
and to establish a prediction model. Receiver operating characteristic curves were plotted to calculate the risk scores 
and PFI status to validate the predictive effect of the model. Enrichment analyses and immune infiltration analyses 
were performed to analyze DEGs between the high- and low-risk groups, and a nomogram plot was used in the risk 
model to predict the PFI of THCA.

Results  The expression of 120 ERDEGs differed significantly between the two groups (P < 0.05). Five (CD24, CAV1, 
TACC1, TIPARP, and HSD17B10) of the eight ERDEGs identified using univariate Cox and LASSO regression were vali-
dated via RT-qPCR and immunohistochemistry analysis of clinical tissue samples and were used for clinical staging 
and drug sensitivity analysis. Risk-DEGs were shown to be associated with immune modulation and tumor immune 
evasion, as well as defense systems, signal transduction, the tumor microenvironment, and immunoregulation. 
In 19 of the 28 immune cells, infiltration levels differed between the high- and low-risk groups. High-risk patients 
in the immunotherapy dataset had considerably shorter survival times than low-risk patients.

Conclusion  We identified and confirmed eight ERDEGs using a systematic analysis and screened sensitive drugs 
for ERDEGs. These results provide molecular evidence for the involvement of ERGs in controlling the immunological 
microenvironment and treatment response in THCA.
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Introduction
Thyroid cancer (THCA) is the most common endocrine 
tumor, and its rate of occurrence has steadily increased 
worldwide over the last 30 years [1]. Between 2000 and 
2016, the number of cases of THCA in China increased 
by 20 times and was most noticeable among women. 
According to China’s national cancer statistics, the rate 
of female THCA increased from the seventh most com-
mon cancer in 2012 to the third most common cancer 
in 2016. In a statistical study of Chinese tumor regis-
tries performed in 2020, THCA had the second highest 
incidence rate among Chinese patients with cancer aged 
15–44 years, after breast cancer in women and liver can-
cer in men [2]. Although the mortality rate of thyroid 
cancer (THCA) is relatively low, the number of women 
diagnosed with THCA continues to increase. This trend 
not only adds to the national medical and family burden 
but also raises concerns about the health and fertility of 
women when they reach childbearing age. The expres-
sion of estrogen receptor in patients with thyroid cancer 
is reportedly higher than that in normal thyroid tissue 
[3], and thyroid hormone receptor can mediate its effect 
on mitochondrial processes by increasing the expression 
of the gene encoding estrogen receptor [4]. This indi-
cates that estrogen and related genes play an important 
role in thyroid cancer, but the specific mechanism needs 
further exploration. Therefore, studying how estrogen 
and other female hormones affect the initiation, progres-
sion, and outcomes of THCA is crucial. This study aimed 
to use a database and experimental validation to better 
understand the role of estrogen-related genes (ERGs) in 
THCA.

Correlation analysis was used to identify estrogen-
related differentially expressed genes (ERDEGs). Fur-
thermore, examining the links between risk scores and 
molecular functions, pathways, consequences, immu-
nological infiltration, and immunotherapy was a major 
focus. In addition, the associations between ERDEGs, 
clinicopathology, and drug sensitivity were investigated. 
Finally, we used RT-qPCR and immunohistochemistry 
(IHC) labeling to establish ERDEGs in clinical THCA 
and paracancerous tissue samples.

Materials and methods
Data sources and pre‑processing
We obtained the GSE33630 dataset on THCA from 
the Gene Expression Omnibus (GEO) database using 
the GEOquery package [5]. The GSE33630 dataset 
[6] included 105 samples: 11 from undifferentiated 
THCA, 49 from papillary thyroid cancer (PTC), and 45 
from healthy individuals. The data platform used was 
GPL570. In total, 60 THCA samples and 45 normal sam-
ples were used to generate normalized data using the 

Limma package [7]. A total of 553 normal individuals 
and patients with tumor (TCGA-THCA, n = 553 cases) 
obtained from The Cancer Genome Atlas (TCGA) using 
the Biolinks package were included in the THCA RNA-
Seq dataset [8]. To acquire information such as sex, sur-
vival status, follow-up period, and disease stage from 
TCGA-THCA-matched patients, the data type counts 
and fragments per kilobase of exon model per million 
mapped fragments were chosen and converted to tran-
scripts per kilobase of exon model per million mapped 
reads (TPM) format.

Differential expression analysis
From TCGA, we obtained a normal (01A) and tumor 
group (11A) of THCA. Differential analysis of genes 
(count values) in different groups was performed using 
the R package Deseq2 [9]. A threshold of P < 0.05 was set 
for differentially expressed genes (DEGs), where log2FC > 
0 and log2FC < 0 denoted differential genes upregulated 
and downregulated in the disease group, respectively. 
ERGs were obtained using Gene Set Enrichment Analy-
sis (GSEA) MSigDB (www.​gsea-​msigdb.​org) and inter-
sected with DEGs to obtain ERDEGs. In the follow-up 
analysis, patients in the tumor group were divided into 
high- and low-risk groups according to the median risk 
score of the patients in the model. Differential analysis 
of genes (count values) in the different groups was per-
formed using the R package Deseq2 [9]. A threshold of 
P < 0.05 was set for DEGs, where log2FC > 1 and log2FC 
< 1 denoted differential gene upregulated and downregu-
lated in the high-risk group, respectively.

Risk model construction
Patients in TCGA-THCA were split into training and 
validation sets based on a 7:3 ratio, and univariate Cox 
regression analysis was used to examine how different 
factors affected the progression-free interval (PFI). Varia-
bles with a P < 0.1 were associated with PFI and included 
in the follow-up analysis. Least absolute shrinkage and 
selection operator (LASSO) regression is a machine 
learning approach commonly used to construct diagnos-
tic models and uses regularization to address the occur-
rence of overfitting during curve fitting and improve the 
accuracy of the model. We used the glmnet package [10] 
to further screen for ERDEGs associated with PFI as key 
genes with the following parameters set: seed (8), family 
= "cox".

Immunotherapy analysis
Datasets relevant to immunotherapy were gathered using 
the IMvigor 210 CoreBiology package [11]. Patients 
undergoing immunotherapy had their risk score deter-
mined using LASSO–Cox regression coefficients. 

http://www.gsea-msigdb.org


Page 3 of 20Zhang et al. BMC Cancer         (2023) 23:1048 	

Treatment outcomes were compared between high- 
and low-risk patient groups by classifying patients into 
groups based on their median scores.

Enrichment analysis 
Gene ontology (GO) analysis is often used for large-
scale functional enrichment studies examining biological 
processes (BP), molecular functions (MF), and cellular 
components (CC). Many researchers use the Kyoto Ency-
clopedia of Genes and Genomes (KEGG), a database of 
genomes, biological processes, diseases, and treatments. 
Using the clusterProfiler R package [12] to perform GO 
annotation and KEGG pathway enrichment for DEGs, 
a p-value of 0.05 was considered statistically significant. 
Both the GO annotation study of DEGs and the KEGG 
pathway enrichment analysis employed a significance 
level of P < 0.05. Gene set enrichment analysis (GSEA), 
a computational method commonly used to estimate 
changes in pathways and BP activity in samples of gene 
expression datasets, was applied to gene expression pro-
file data from the high- and low-risk groups of TCGA-
THCA patients to investigate the differences in BP 
between different subgroups. Using GSEA, based on the 
MSigDB database, we found that the gene set "c2.all.v7.2. 
symbols.gmt" was highly enriched (P < 0.05).

Immune infiltration (Single‑sample gene set enrichment 
analysis, ssGSEA)
We used the GSVA package [13] to perform ssGSEA 
on gene expression data from patients with THCA and 
estimate the composition and abundance of 28 types of 
immune cells. We then compared the immune cell differ-
ences between high- and low-risk groups, as well as the 
key genes associated with immune cells.

Nomogram
Nomogram plots, also called column plots, were con-
structed based on the results of the multivariate analyses. 
In these analyses, multiple predictors were combined and 
assigned based on certain proportions to show how vari-
ables related to each other in a graphical format predict 
the outcome. We used multivariate Cox regression to 
determine how often THCA worsened based on the risk 
score, sex, and pathological stage. We plotted the nomo-
gram and used calibration curves to determine the accu-
racy of the model.

GEO validation of ERDEG and correlation analysis 
with stage
We conducted a validation of gene expression patterns 
linked to PFI using the GEO dataset. Subsequently, we 
identified key genes with statistically significant expres-
sion differences and consistent trends. These key genes, 

along with their associated risk scores, were further 
analyzed in relation to pathological, T, N, and M stages. 
Baseline information is presented in Table 1.

Drug sensitivity analysis
The CellMiner database (https://​disco​ver.​nci.​nih.​gov/​
cellm​iner/) was used to query mRNA expression pat-
terns and drug activity in NCI-60 cells. CellMiner is a 
web-based resource that provides genomic and phar-
macological data based on NCI-60 transcripts and 
drug response data. The National Cancer Institute has 
collected transcription and medication response data. 
The CellMiner website provides access to the tran-
script expression levels of 22,379 genes, 360 miRNAs, 
and the pharmacological reactions of 20,503 chemicals. 
Using Pearson’s correlation coefficient, we determined 
the relationship between gene expression and chemical 
sensitivity.

The changes in the cancer genome strongly affect the 
clinical response to treatment, and in many cases are 
effective biomarkers for drug response. The Genomics 
of Drug Sensitivity in Cancer (GDSC) database (www.​
cance​rRxge​ne.​org) is the largest public resource for 
information on cancer cell drug sensitivity and molecu-
lar markers of drug response. The GDSC database can 
be used to find tumor drug response data and genomic 
sensitivity markers. We used the pRRophetic algorithm 
to predict the sensitivity of patients in different clinical 
variable groups to common anti-cancer drugs or small 
molecule compounds by calculating IC50 values based 
on the expression matrix of the TCGA-THCA dataset 
and displayed the results through group comparison 
graphs. The cut-off for statistical significance was set at 
P < 0.05.

Table1  TCGA-THCA baseline information table

Overall

n 496

PFI.time (mean (SD)) 3.11 (2.63)

Stage (%)

  I 279 (56.5)

  II 52 (10.5)

  III 110 (22.3)

  IV 53 (10.7)

Tstage (%)

  T1 141 (28.5)

  T2 162 (32.8)

  T3 169 (34.2)

  T4 22 (4.5)

https://discover.nci.nih.gov/cellminer/
https://discover.nci.nih.gov/cellminer/
http://www.cancerRxgene.org
http://www.cancerRxgene.org
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Human tissues
The Thyroid Surgery Department of the First Affiliated 
Hospital of Gannan Medical University in Ganzhou, 
China, provided 28 pairs of THCA and normal thyroid 
tissues from the same patients. Rapid freezing in liquid 
nitrogen was used to preserve all samples. The neigh-
boring tissues were more than 1 cm from the edge of 
the tumor. Pathologists evaluated the samples and 
found no visible tumor cells. This study was approved 
by the respective research ethics boards of the hospi-
tals. All patients provided written informed consent.

Reverse transcription‑qPCR (RT‑qPCR)
Total RNA was extracted from the tissues using TRI-
zol reagent (TransGen Biotech, Beijing, China). Spec-
trophotometric analysis of the RNA was performed 
using a Smart Spec Plus device (Bio-Rad, Hercules, 
CA, USA). The A260/A280 atomic absorption ratio 
was used to determine purity. Data were analyzed 
using reverse transcription (RT) reactions. The mRNA 
reverse transcription procedure was performed using 
Oligo dT primers. qPCR was conducted using a Pre-
start Green PCR kit (Transgene Biotech, Beijing, 
China) and an Applied Biosystems 7300 real-time PCR 
machine (Applied Biosystems, Foster City, CA, USA). 
Primers for messenger RNA were as follows: CD24 
forward primer: CTC​CTA​CCC​ACG​CAG​ATT​TATTC, 
and reverse primer: AGA​GTG​AGA​CCA​CGA​AGA​
GAC; CAV1 forward primer: GCG​ACC​CTA​AAC​ACC​
TCA​AC and reverse primer: ATG​CCG​TCA​AAA​CTG​
TGT​GTC; TACC1 forward primer: TCA​GCG​AAT​CAG​
ACA​AGA​CAGC and reverse primer: CCG​GGT​CTC​
TTC​GTA​TTC; TIPARP forward primer: AGA​ACG​
AGT​GGT​TCC​AAT​CCA and reverse primer: TGG​
GTG​CAA​AAG​ATC​AGT​CTG; HSD17B10 forward 
primer: CTG​GTG​AGA​TGC​CAG​AAT​G and reverse 
primer: CCA​ACC​TGA​CCC​TCG​AAG​G.

Immunohistochemistry (IHC)
Two different tissue pathologists confirmed the diagnosis 
in each case by examining slides stained with hematoxy-
lin and eosin. Representative formalin fixed and paraffin 
embedded sections were obtained from each sample for 
the analysis. Freshly cut slices (5 μm thick) were taken 
from the tumor blocks buried in each formalin-fixed 
wax bag. In accordance with a standard scheme, IHC 
was performed on tissue cuttings buried in wax bags. 
Immunostained sections were scanned at 200× magnifi-
cation using a digital scanning system (Tissue FAXS Plus, 
Vienna, Hungary) and analyzed quantitatively using the 
ImageJ software.

Statistical analyses
R software (https://​www.r-​proje​ct.​org/, version 4.0.2) 
was used for all data computations and statistical analy-
ses. Differences between continuous factors in the two 
groups were examined using the Mann–Whitney U test 
(Wilcoxon rank-sum test). The Kruskal–Wallis test was 
used to compare three or more groups based on a con-
stant measure. Receiver operating characteristic (ROC) 
curves were drawn, and the area under the curve (AUC) 
was computed in R [14] to evaluate the precision of the 
risk score predictions. All statistical tests had a signifi-
cance level of P <0.05, and all p-values were two-tailed. 
GraphPad Prism 8’s t-test was used to compare RT-qPCR 
findings from different tissues, and ImageJ was used to 
evaluate and compare the IHC results. The significance 
level was set at P < 0.05.

Results
Technology roadmap
Figure  1 shows a flowchart of the study. ERGs that 
showed significant differences between normal and 
tumor samples in the TCGA-THCA cohort expres-
sion analysis (|Log2FC| > 1, FDR < 0.05) were selected. 
Thereafter, a risk model was built using LASSO regres-
sion analysis, and the eight ERDEGs and risk scores 
were computed. Patients in the TCGA-THCA cohort 
were divided into high- and low-risk groups according 
to the median value of their risk ratings and then used 
for additional GO, KEGG, GSEA, immune infiltration, 
and immunotherapy research. The ERDEGs were verified 
using data from the GEO cohort. Finally, THCA and nor-
mal tissues were used for in vitro validation.

ERDEGs in THCA
First, we used the DEseq2 program for differential analy-
sis to identify genes whose expression levels were differ-
ent between tumor and normal tissue samples. A total of 
12,725 genes were found to be differentially expressed, 
with 6,480 upregulated and 6,245 downregulated genes; 
all DEGs are displayed on a volcano map (Fig. 2A). Heat 
maps were constructed for the 25 genes with the largest 
log2FC and 25 genes with the smallest log2FC (Fig. 2B). 
After crossing 12,725 THCA-related genes with 183 
ERGs, 120 ERDEGs were identified (Fig. 2C).

Prognostic model construction and validation
We divided the 496 patients in the TCGA-THCA data-
set into training and validation sets by 7:3 (training sets: 
348 cases; verification sets: 148 cases), using univariate 
Cox regression analysis based on the training sets, ana-
lyzing the relationship between variables and PFI. We 
obtained a total of nine variables (P < 0.1), drew forest 

https://www.r-project.org/
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Fig. 1  Flow chart of overall project analysis

Fig. 2  Estrogen-related differentially expressed genes. A log2 fold change vs. ˗log10 (adjusted P-value); red nodes indicate upregulated 
and differentially expressed genes, blue nodes indicate downregulated and differentially expressed genes, and grey nodes indicate genes that are 
not significantly differentially expressed. B Patient IDs with associated differentially expressed genes; red represents high gene expression, blue 
represents low gene expression, pink bars represent tumor tissue, and blue bars represent normal tissue. C Blue circles indicate differentially 
expressed genes in TCGA normal and disease groups, red circles indicate ERGs, and the intersection was taken to obtain ERDEGs. TCGA: The Cancer 
Genome Atlas; ERGs: estrogen-related genes; ERDEGs: estrogen-related differentially expressed genes 
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charts for demonstration (Fig.  3A), preformed LASSO 
regression (Fig. 3B and C), and filtered eight key genes 
(UGT2B11, CD24, CYP3A5, TIPARP, TACC1, CNOT9, 

HSD17B10, and CAV1) associated with PFI. We then 
established the LASSO regression model based on 
these eight genes in the training set.

Fig. 3  LASSO regression model. A Univariate Cox regression analysis. B Coefficient distribution plot of eight key genes related to PFI, where each 
line represents a gene and the ends of these genes point to a vertical coordinate, which is the coefficient. LASSO calculates a coefficient for each 
gene. C Feature selection analysis plot of the key genes. The parameter corresponding to the dashed line on the left is lambda.min (the number 
above is “8” indicates that the coefficients of eight genes can be retained). D ROC curve of training set based on risk score versus survival state. E 
Survival curve for high and low risk groups in the training set. F ROC curve of the validation set based on risk scores versus survival status. G Survival 
curve of high and low risk groups in the validation set. H Survival curves for high and low risk groups in the immunotherapy dataset. LASSO: Least 
absolute shrinkage and selection operator; ROC: Receiver operating characteristic; ERDEGs: estrogen-related differentially expressed genes
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A validation set was used for authentication. In the 
training dataset, we plotted the ROC curve for risk scores 
and their association with PFI status. The area under the 
curve (AUC) was 0.7333 (Fig. 3D), and we also generated 
a survival curve for the high- and low-risk groups, yield-
ing a p-value of 4e-04 (Fig. 3E). These results demonstrate 
that the LASSO regression prediction model, established 
using the eight key genes, can effectively assess the PFI 
of patients. In the validation dataset, we similarly plot-
ted the ROC curve for risk scores and their correlation 
with PFI status. The AUC was 0.6877 (Fig.  3F), and the 
survival curve for the high- and low-risk groups showed 
a p-value of 0.0412 (Fig. 3G). These findings reaffirm the 
model’s ability to accurately evaluate PFI, validating its 
predictive capability. Therefore, the LASSO regression 
model established by the eight key genes can well assess 
patient PFI. We also evaluated the total survival time of 
patients in the high-risk group using immunotherapy 
data, which was significantly shorter than that of patients 
in the low-risk group (Fig. 3H).

Functional enrichment analysis
Risk scores were calculated based on coefficients from 
the LASSO–Cox regression, and all patients with THCA 
were divided into high- and low-risk groups accord-
ing to their median. We examined the BP, MF, CC, and 
pathways (P) involved in the ERDEGs in the high- and 
low-risk groups. These key genes mostly affect BPs such 
as antibacterial humoral, coagulation, fibrinolysis, and 
acute inflammatory responses (Fig. 4A; Table S1). They 
also affect MF-like receptor–ligand activity, signaling 
receptor activator activity, G protein-coupled recep-
tor binding, and cytokine activity (Fig.  4B; Table S2). 
Moreover, they affect the CC-like collagen-containing 
extracellular matrix, neuron projection term matrix, 
neuron projection terminus, secretory granule lumen, 
and cytoplasmic vesicle lumen (Fig.  4C; Table S3), as 
well as signaling pathways such as the neuroactive 
ligand–receptor interaction, IL-17 signaling pathway, 
cytokine–cytokine receptor interaction, complement, 
and coagulation cascades (Fig.  4D; Table S4). We also 
identified significantly enriched pathways of neuroac-
tive ligand–receptor interaction and the IL-17 signaling 
pathway [15–17] (Fig. 4E and F).

Riskscore = UGT2B11 ∗ −0.79669+ CD24∗

− 0.25591+ CYP3A5 ∗ 2.00033

+ TIPARP ∗ −0.35507+ TACC1∗

− 0.67401+ CNOT9 ∗ 0.23137

+HSD17B10 ∗ −1.49204 + CAV1∗

− 0.12741

GSEA
By comparing the high- and low-risk groups, GSEA was 
used to identify the molecular pathways of ERDEGs that 
affect prognosis (Table 2). Antigen processing and pres-
entation (Fig. 5A), natural killer cell-mediated cytotoxic-
ity (Fig.  5B), inflammatory response pathway (Fig.  5C), 
reactome signaling by interleukins (Fig.  5D), reactome 
interleukin 4 and interleukin 13 signaling (Fig. 5E), reac-
tome interleukin 1 family signaling (Fig.  5F), cytokine 
receptor interaction (Fig. 5G), chemokine signaling path-
way (Fig. 5H), and autoimmune thyroid disease (Fig. 5I) 
biological functions were significantly enriched in the 
high-risk group.

Immuno‑infiltration analysis
Furthermore, to assess the differences in immune cell 
infiltration in the high- and low-risk groups, we calcu-
lated the immune cell infiltration scores for each patient 
with THCA using the ssGSEA algorithm, demonstrating 
the distribution of immune cell infiltration in each sam-
ple (Fig. 6A) and showing the differences in immune cell 
infiltration in the high- and low-risk groups using heat 
maps and box plots, respectively (Fig.  6B and C). The 
results showed that 19 of the 28 immune cells were sig-
nificantly associated, suggesting that the key ERDEGs 
may be significantly associated with these immune cells 
and that macrophages are significantly upregulated in the 
high-risk group.

Construction of a prognostic model of ERDEGs
We created a model based on risk score, T-stage, M-stage, 
and sex to predict PFI in patients with THCA, plotted a 
nomogram (Fig. 7A), and tested the model. Figure 7B–D 
show the calibration plots for patients with THCA at 1-, 
3-, and 5-year intervals. The prediction model had some 
predictive power for the PFI in patients with THCA. For 
example, a female THCA patient (20.5) with a pathologi-
cal stage of T3 (21.5), M1 (100), and a higher risk score 
(79.5) would obtain 221.5 points. Her 1-, 3-, and 5-year 
PFIs were 66%, 45%, and 31%, respectively.

Validation of prognostic genes
The key ERDEGs were significantly differentially 
expressed at the mRNA level between normal individu-
als and patients with THCA in TCGA (Fig.  8A), and 
the GSE33630 dataset showed significant differences in 
CD24, CAV1, TACC1, TIPARP, and HSD17B10 between 
the normal and patients with THCA groups (Fig. 8B–F). 
Notably, TIPARP was highly expressed in the tumor rela-
tive to the normal group expression, and CD24, TACC1, 
HSD17B10, and CAV1 were less expressed in the tumor 
relative to the normal group. We selected TCGA and 
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Fig. 4  GO and KEGG enrichment analysis. A GO enrichment analysis bubble plot for biological processes (BP) showing number of genes vs. GO 
term; node size indicates number of genes enriched, node color indicates padj. B GO enrichment analysis bubble plot for molecular function (MF) 
showing number of genes vs. GO term; node size indicates number of genes enriched, node color indicates padj. C GO enrichment analysis bubble 
plot for cell components (CC) showing number of genes vs. GO term; node size indicates number of genes enriched, node color indicates padj. 
D KEGG enrichment analysis bar graph showing the number of genes for each KEGG term; color indicates the P-value. E, F Neuroactive ligand–
receptor interaction and pathway of the IL-17 signaling pathway [15–17]. GO: Gene Ontology; BP: Biological Processes; MF: Molecular Function; CC: 
Cell Components; KEGG: Kyoto Encyclopedia of Genes and Genomes
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GEO datasets in which CD24, CAV1, TACC1, TIPARP, 
and HSD17B10 were differentially expressed in both the 
normal and THCA groups for subsequent analysis.

The Correlation among ERDEGs, risk score and THCA stages
Using TCGA (Fig. 9A–P), we examined the relationships 
among CD24, CAV1, TACC1, TIPARP, and HSD17B10, 
along with risk score and pathological stages (T, N, and 
M) in patients with THCA. The risk score was strongly 
linked to patient pathological (Fig.  9A), T (Fig.  9B), N 
(Fig. 9C), and M stages (Fig. 9D), with a high-risk score 
accompanied by a worsening clinical stage. The patholog-
ical (Fig. 9E), T (Fig. 9F), and N stages (Fig. 9G) were all 
significantly linked to CD24 expression, and overall, high 
CD24 expression was linked to an earlier clinical stage. 
There was a strong link between the expression of CAV1, 
patient pathology, and T-stage (Fig. 9H and I). In patients 
with THCA, TACC1 expression was linked to M-stage, 
and patients with high TACC1 expression had less dis-
tant metastasis (Fig.  9J). In patients with THCA, the 
expression was linked to both pathological and N stages 
(Fig. 9K and L). Figure 9M and O shows that the patho-
logical, T, and N stages of thyroid cancer patients were 
linked to HSD17B10 expression.

ERDEGs and drug sensitivity analysis 
We analyzed the relationship between the CD24, CAV1, 
TACC1, TIPARP, and HSD17B10 genes and drug sen-
sitivity using the CellMiner database and identified 16 
drugs with the lowest p-values for correlation analysis 
(Fig.  10). Afatinib, AZD-9291, and ibrutinib were more 
sensitive when CD24 was present, whereas afatinib, 
ipamperone, okadaic acid, vemurafenib, and the geldana-
mycin analog were less sensitive when CD24 was present. 
CD24 negatively correlated with sensitivity to bafetinib, 
pipamperone, okadaic acid, vemurafenib, and geldana-
mycin analogs. CAV1 positively correlated with sensi-
tivity to staurosporine, simvastatin, and zoledronate, 
and CAV1 was negatively correlated with sensitivity to 
tamoxifen, raloxifene, cyclophosphamide, and SR16157.

To explore the drug sensitivity of patients under differ-
ent clinical variables, we used drug sensitivity data from 
the GDSC database to predict the sensitivity of samples 
with different clinical variables to common anti-cancer 
drugs. Then we used the Mann-Whitney U test (Wil-
coxon rank sum test) to evaluate the difference in sen-
sitivity to different anti-cancer drugs between different 
groups of patients. Subsequently, we retained the top 20 
drugs with relatively large differences in different groups 
and presented the results. Based on the above results, we 

Table 2  Gene set enrichment analysis

ID NES p.adjust

REACTOME_NEUTROPHIL_DEGRANULATION 1.98801794 0.04943101

REACTOME_SIGNALING_BY_INTERLEUKINS 1.65023093 0.04943101

NABA_SECRETED_FACTORS 1.65132116 0.04943101

REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION 1.74875177 0.04943101

NABA_ECM_REGULATORS 1.95330908 0.04943101

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 1.82767481 0.04943101

REACTOME_KERATINIZATION 1.93027521 0.04943101

REACTOME_INTERFERON_SIGNALING 1.70414715 0.04943101

NABA_ECM_AFFILIATED 1.70801112 0.04943101

WP_CHEMOKINE_SIGNALING_PATHWAY​ 1.57964021 0.04943101

KEGG_CHEMOKINE_SIGNALING_PATHWAY​ 1.59981557 0.04943101

REACTOME_TOLL_LIKE_RECEPTOR_CASCADES 1.6401511 0.04943101

REACTOME_CELL_SURFACE_INTERACTIONS_AT_THE_VASCULAR_WALL 1.96439752 0.04943101

REACTOME_INTERLEUKIN_1_FAMILY_SIGNALING 1.65087184 0.04943101

KEGG_CELL_ADHESION_MOLECULES_CAMS 1.65415851 0.04943101

REACTOME_IMMUNOREGULATORY_INTERACTIONS_BETWEEN_A_LYMPHOID_AND_A_NON_
LYMPHOID_CELL

2.23279633 0.04943101

REACTOME_FORMATION_OF_THE_CORNIFIED_ENVELOPE 1.92979623 0.04943101

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 1.88112564 0.04943101

REACTOME_ANTIGEN_PROCESSING_CROSS_PRESENTATION 1.62170743 0.04943101

REACTOME_INTERLEUKIN_4_AND_INTERLEUKIN_13_SIGNALING 1.74429783 0.04943101
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found that among the 20 drugs with significant differ-
ences, four different clinical variables M stage, N stage, 
Stage stage and M stage had different sensitivity expres-
sions (Figure S1-S4), which also further emphasized 
the importance of individualized treatment for tumor 
patients.

Validation of key genes by RT–qPCR and IHC
RT–qPCR and IHC staining showed that THCA samples 
from our clinical center expressed CD24, CAV1, TACC1, 
TIPARP, and HSD17B10. Compared to CD24, TACC1, 
and HSD17B10, TIPARP was more common in tumors 
than in normal tissues, but CAV1 was not (Fig. 11).

Fig. 5  GSEA enrichment analysis. A–I KEGG ANTIGEN PROCESSING AND PRESENTATION, KEGG NATURAL KILLER CELL MEDIATED CYTOTOXICITY, 
WP INFLAMMATORY RESPONSE PATHWAY, RE ACTOME SIGNALING BY INTERLEUKINS, REACTOME INTERLEUKIN 4 AND INTE RLEUKIN 13 SIGNALING, 
REACTOME INTERLEUKIN 1 FAMILY SIGNALING, KEGG CYTOKINE RECEPTOR INTERACTION, KEGG CHEMOKINE SIGNALING PATHWAY, and KEGG 
AUTOIMMUNE THYROID DISEASE were significantly enriched in the high-risk group. KEGG: Kyoto Encyclopedia of Genes and Genomes
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Discussion
THCA accounts for 3% of all cancers worldwide, and 
the number of cases has increased dramatically over the 
past 30 years. Notably, women experience three to four 
times as many cases as men; however, the underlying 
reason remains unclear [18, 19]. The sex-based differ-
ence in THCA incidence rate among people aged 0–19 
years grows with age and it becomes evident in adoles-
cence. In addition, studies on women with a high rate of 
THCA have found that the number of pregnancies, age at 

menarche, natural or artificial menopause, and hormonal 
contraception are all closely related to the rate of THCA. 
This suggests that estrogen and its related genes and/or 
receptors play major roles in the development of THCA 
[20, 21]. Although estrogen generally exerts its biological 
effects by binding to estrogen receptors, estrogen recep-
tor mRNA expression in papillary thyroid cancer is lower 
than that in normal thyroid tissues. Estrogen receptor 
mRNA expression is not related to sex, age, stage, or 
lymph node metastasis [22]. In addition, the expression of 

Fig. 6  ssGSEA immuno-infiltration analysis. A Heat map of immune cell correlations; red represents positive correlations and blue represents 
negative correlations. B Heat map of differences in immune infiltration abundance between high- and low-risk groups; red represents high 
expression, blue represents low expression, blue annotated bars indicate low risk groups, and pink annotated bars indicate high risk groups. C Box 
plot of differences in immune infiltration abundance between high and low risk groups; the horizontal axis indicates immune cells and the vertical 
axis indicates immune cell infiltration abundance
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estrogen and progesterone receptors in pediatric thyroid 
cancer is not related to sex, American Thyroid Associa-
tion risk score, persistent structural diseases, or pubertal 
status. Therefore, studying tumor-related genes that reg-
ulate estrogen and progesterone is necessary to explain 
the higher incidence of female cases in the post-pubertal 
period [23]. Recent studies have shown that the enrich-
ment analyses of DEGs in papillary thyroid cancer and 
normal thyroid tissue are mainly enriched in the estrogen 
response pathway. As the expression of ERGs increases, 
the likelihood of PTC progression to advanced tumors 
also increases, and the overall prognosis of patients 
becomes poor [24]. Therefore, it is important to study 
how ERGs affect the clinical prognosis, immune invasion, 
and drug sensitivity of THCA, but not only PTC.

In this study, we performed differential expression analy-
sis to identify 120 ERDEGs, and built a risk model based 

on 8 of them and validated their reliability. Based on the 
risk model, differences in enrichment pathways, immune 
infiltration, and immunotherapy between the high- and 
low-risk groups were compared. We confirmed that the 
model was a good way to measure PFI in patients with 
TCGA-THCA, and examined the overall survival time of 
patients in the high- and low-risk groups in the immuno-
therapy dataset. The patients in the high-risk group had 
significantly shorter survival times than those in the low-
risk group. This further confirmed the role of ERDEGs in 
development and prognosis. We validated the expression of 
prognosis-related genes in the GEO dataset, and key genes 
with significant differences in expression and consistent 
trends (CD24, CAV1, TACC1, TIPARP, and HSD17B10) 
were subjected to follow-up analysis. We further verified 
the expression of the five ERDEGs using RT-qPCR and 
IHC in surgical specimens from patients with THCA.

Fig. 7  Predictive model. A Nomogram plot of thyroid cancer patients based on risk score, T-stage, M-stage, and sex. B 1-year calibration plot. C 
3-year calibration plot. D 5-year calibration plot
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In particular, CD24 is less common in tumor tissues 
than in normal tissues. In cases in which CD24 is more 
common, the clinical stage occurs earlier. This is con-
sistent with previous research on databases. An ear-
lier study [25] showed that THCA cells with low CD24 
expression expressed higher levels of stem cell mark-
ers and lower levels of thyroid differentiation markers, 
suggesting that THCA cells with low CD24 expression 
have higher tumor stemness and may be responsible for 
tumor recurrence, metastasis, and drug resistance. One 
study found that THCA cases in TCGA were grouped 
according to RNA expression of tumor stem cell mark-
ers and analyzed for recurrence-free survival between 
groups, showing that the low CD24 expression group 
had a significantly worse 12-year recurrence-free sur-
vival rate, CD24 participates in the molecular subtype 
identification of PTC, and high PROM 1, high ALDH 
1A 3, and low CD24 in the tall cell variant of papillary 
thyroid carcinoma have significantly poorer recur-
rence-free survival rates [26]. In another study, CD24 
was low in papillary thyroid cancer, and its expression 
was negatively correlated with multifocality [27]. In a 
multicenter study on THCA, CD24 expression was 11 
times higher in people under the age of 18 years than in 
adults [28]. CD24 interacts with the inhibitory receptor 
Siglec-10 on innate immune cells to achieve immune 
escape [29], which may be why THCA is more likely to 
spread in children. Moreover, it is possible that estro-
gen-mediated downregulation of CD24 expression is 

responsible for the high failure rate of selective estro-
gen receptor modulators in breast cancer treatment 
[30]. Whether there is a relationship between CD24 
and the development, recurrence, and non-uptake of 
iodine in thyroid cancer needs to be explored in further 
experiments. The drug sensitivity analysis of key genes 
showed that CD24 was positively correlated with the 
sensitivity of targeted drugs afatinib, AZD-9291, and 
ibrutinib, whereas CD24 was negatively correlated with 
the sensitivity of bafatinib, pipamperone, okadaic acid, 
vemurafenib, and geldanamycin analog drugs. For late-
stage, recurrent, and refractory patients with THCA 
in clinical practice, we can select sensitive drugs by 
detecting the expression of CD24 and avoid insensitive 
drugs.

The expression levels of CAV1 vary among different 
tumors. Single-cell RNA analysis showed that CAV1 
affects the glycolytic activity in pancreatic cancer fibro-
blasts and is related to the expression of glycolytic 
enzymes. An increase in glycolysis in cancer-associated 
fibroblasts and a decrease in CAV1 expression can pro-
mote tumor progression [31]. In cervical cancer, expres-
sion of CAV1 increases, and the long-term survival rate 
of patients is reduced [32]. CAV1 is not expressed in 
normal thyroid tissue but is highly expressed in thyroid 
cancer, especially in microcarcinoma [33]. In our study, 
51.6% of THCA tissues highly expressed CAV1, and its 
high expression was accompanied by early pathologi-
cal- and T-stage. This phenomenon may be due to the 

Fig. 8  GEO database validation. A Differences in expression of key genes between normal and thyroid cancer patients in TCGA; blue represents 
the normal group and red represents the tumor group. B–F Differences in expression of key genes between normal and thyroid cancer patients 
in the GSE33630 dataset; blue represents the normal group and red represents the tumor group. GEO: Gene Expression Omnibus
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difference in the stage distribution of cases between 
TCGA and our clinical study. TCGA has more inter-
mediate and advanced thyroid cancer cases, whereas 
our study had more early-stage cases. CAV1 promotes 

tumor angiogenesis and mediates the unlimited prolif-
eration and self-renewal of tumor stem cells at the initia-
tion stage of malignancy [34, 35]. Bioinformatics studies 
have shown that CAV1 is a common hub gene that plays 

Fig. 9  Clinical correlation analysis. A–D Risk scores were significantly differentially expressed at different pathological stages. E–G The CD24 
gene was significantly associated with the pathological stage, T-stage, and N-stage of patients. H, I CAV1 expression was significantly associated 
with the pathological stage and T-stage of thyroid cancer patients. J TACC1 expression was significantly associated with the M-stage of thyroid 
cancer patients. K, L TIPARP expression was significantly associated with the pathological stage and N-stage of thyroid cancer patients. 
M–O HSD17B10 expression was significantly associated with the M-stage of thyroid cancer patients. Significant differences were found 
between the different pathological stages, T-stage, and N-stage of thyroid cancer patients; no significant differences in the M-stage were observed
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an important role in the occurrence and development 
of parathyroid and thyroid follicular adenomas. Enrich-
ment analysis has shown that it is closely related to cell 
proliferation [36]. Further research is required to explore 
whether and how CAV1 participates in the early develop-
ment of THCA. During the metastatic stage of malignant 

tumors, CAV1 is involved in adhesion movement, loss of 
nest apoptosis, and autophagy in tumor cells [37, 38]. In 
addition, CAV1 expression can directly or indirectly pro-
mote tumor multidrug resistance [39, 40] and affect the 
interaction of tumor cells with the mesenchymal micro-
environment [41]. However, tumor heterogeneity leads to 

Fig. 10  Estrogen-related genes and drug sensitivity analysis. Drug sensitivity analysis of CD24, CAV1, TACC1, TIPARP, and HSD17B10 (CellMiner 
database)
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two-sided CAV1 expression; thus, the role of CAV1 as an 
oncogene or oncogenic factor is controversial. In-depth 
studies on the CAV1 signaling pathway and its relation-
ship with tumors are expected to provide new avenues 
for the diagnosis, treatment, and prevention of related 
tumors. In our drug sensitivity analysis, we found a nega-
tive correlation between CAV1 expression and sensitiv-
ity to several estrogen receptor modulators. Whether 
estrogen receptor modulators can achieve the expected 
efficacy in clinically low-CAV1-expressing THCA cases 
with advanced stages and high malignancy requires fur-
ther investigation. In THCA with high CAV1 expres-
sion, staurosporine, simvastatin, and zoledronate can be 
selected.

In THCA, the higher the TACC1 expression, the lower 
the occurrence of distant metastasis. TACC1 plays a 
role in tumor growth by binding to many different com-
plexes, and the downregulation of human TACC1 may 
alter how polarized cells control mRNA homeostasis and 
contribute to the development of cancer [42]. Research-
ers have examined how TACC1 functions as a regulator 
in breast and ovarian cancers; however, there has not 
been a separate report on THCA. Our bioinformatics 
analysis showed that TACC1 expression in THCA was 
lower than that in paracrine tissue. In 2021, a case report 
showed that patients with low-grade primary spinal glio-
mas developed rapid and malignant transformations after 
pregnancy and delivery. FGFR1 and TACC1 genes were 

Fig.11  IHC and RT-qPCR in thyroid tissues. A, B Representative immunohistochemical staining (Bar=100um). C RT-qPCR of CD24, CAV1, TACC1, 
TIPARP, and HSD17B10 in thyroid carcinoma and adjacent tissues. IHC: Immunohistochemistry
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fused with FGFR1 activation, and the function of the 
tumor suppressor gene STED2 was lost in high-through-
put sequencing. We speculated that disease progression 
and malignant transformation are related to the altera-
tion of TACC1 function by high estrogen levels dur-
ing pregnancy [43]. In addition, drug sensitivity analysis 
showed that the expression of TACC1 negatively corre-
lated with the sensitivity to AP-26113, which is expected 
to be highly effective in cases of THCA with low TACC1 
expression. The exact mechanism and whether it has any 
effect need to be further explored, and the best treatment 
for patients with ATC is multikinase inhibitors (MKIs). 
However, the efficacy and toxicity of MKIs are hetero-
geneous and difficult to predict before treatment initia-
tion. Even after the occurrence of serious adverse events, 
treatment needs to be interrupted [44]. For this group of 
patients, we can consider testing the expression of CD24, 
CAV1, and TACC1, and select the corresponding sensi-
tive drugs based on the test results.

TIPARP is a member of the polyadenosine diphosphate 
ribose polymerase family and is involved in the cellular 
stress response and DNA damage repair [45]. The less 
active TIPARP in breast cancer, the less likely patient sur-
vival [46]. TIPARP directly targets HIF-1α and recruits 
E3 ubiquitin-protein ligase to promote the degradation 
and inactivation of HIF-1α to inhibit tumor growth [47]. 
Estradiol induces the expression of TIPARP in breast 
cancer cells via ER-α, TIPARP is a negative feedback 
regulator of ER-α that inhibits the transcriptional activity 
and expression of ER-α in breast cancer cells and reduces 
its recruitment to target genes, and TIPARP knockdown 
increases the transcriptional activity and expression of 
ER-α to promote estradiol-induced cell proliferation 
[48]. However, the TIPARP inhibitor RBN-2397 has been 
shown to induce STAT1 phosphorylation and upregu-
lates type I IFN signaling, leading to a durable and com-
plete regression of NCI-H1373 cell xenograft tumors. 
Although TIPARP exhibits opposing effects in different 
tumor cells, in general, TIPARP is involved in the regula-
tion of tumor cells by estrogen and is a potential target 
for the study of anti-tumor drugs. The role and mecha-
nism of TIPARP in tumors remain unclear, especially in 
THCA, where the mechanism of action of TIPARP has 
not been reported. Our study showed that the expression 
of TIPARP is significantly higher in tumors than in para-
neoplastic tissues and that the expression of TIPARP cor-
relates significantly with the pathological and N stages of 
patients with THCA.

HSD17B10 is an enzyme found in mitochondria that 
converts 17-estradiol into estrone, a weaker chemical 
[49]. Estradiol is thought to play an important role in 
normal aging [50, 51], where it regulates mitochondrial 
homeostasis by reducing oxidative stress and preventing 

cytochrome release and apoptosis to maintain the mito-
chondrial structure. When estradiol is oxidized to the 
weaker estrone, this estrogen is controlled using pro-
teomic data and bioinformatics on thyroid tissue, and 
HSD17B10 was used to identify possible markers for thy-
roid follicular tumors and carcinomas [52]. Overexpres-
sion of HSD17B10 in pheochromocytoma cells leads to 
abnormal cell growth in the laboratory and in the body, 
and high levels of HSD17B10 are linked to poor patient 
prognosis. In prostate cancer, HSD17B10 is administered 
in combination with steroids and produces dihydrotes-
tosterone in the absence of testosterone [53], which is 
a different way of producing androgens. In colorectal 
cancer, high HSD17B10 expression is associated with 
improved overall survival [54]. This study showed that 
the expression of HSD17B10 is significantly lower in 
paracancerous tissue than in tumor tissue and that the 
expression of HSD17B10 correlates with the pathologi-
cal, T, and N stages of patients with THCA. HSD17B10 
is closely related to the conversion of estradiol, and the 
relationship between the two and the development of 
THCA requires further investigation.

In this study, we examined all the ERGs linked to the 
development of THCA. We created and tested a risk 
score model for the TCGA-THCA cohort based on the 
risk score, T-stage, M-stage, and sex. The results showed 
that the risk score model accurately predicted PFI at 1, 
3, and 5 years for patients with THCA. In addition, 
GSEA showed that these ERDEGs may be involved in 
the immune regulation of THCA. Immune infiltration 
analysis showed that compared with the low-risk group, 
in the high-risk group, significant differences in 19 types 
of immune cells were observed, and macrophages were 
significantly upregulated. The immune system plays a key 
role in tumor development. Tumor cells are recognized 
and destroyed through immune mechanisms, whereas 
tumor immune escape results in the clonal growth of 
tumor cells and the development of tumors. Immune 
cells play dual roles in the growth and progression of 
THCA. Tumor-infiltrating immune cells can perform 
both anti-tumor and pro-tumor functions in THCA, and 
a number of soluble factors (cytokines, chemokines, angi-
ogenic factors, and lymphangiogenic factors) released 
by immune cells mediate the pro-tumor and anti-tumor 
effects of immune cells in THCA. Tumor-associated 
macrophages (TAMs) are the most studied immune cells. 
TAMs are distributed differently in different subtypes 
of THCA, with low infiltration of TAMs in PTC, a high 
density of TAMs in THCA, and a poor prognosis [55, 56]. 
In  vitro studies have reported that TAMs promote the 
invasion of human TC cell lines through CXCL8 and IL-8 
secretion [57]. A study analyzing the GSE129562 dataset 
identified 729 DEGs between T1aN1b or T3N1b and the 
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corresponding normal thyroid tissue. Among these, 138 
DEGs were identified as immune-related genes, indi-
rectly suggesting that immunity is involved in the pro-
gression of THCA [58]. This indirectly validated part of 
the study on immune infiltration analysis.

However, the above conclusions were derived from 
bioinformatics analyses. When we screened key genes, 
because the number of genes obtained by P < 0.05 was 
too small, we used a threshold of P < 0.1 to expand the 
potential genes. Further, we used LASSO regression when 
building prognostic models because our study aimed 
to conduct preliminary exploratory analysis to identify 
more potential biomarkers and trends, which was sup-
ported by the subsequent preliminary model validation. 
Some published literature used the same P-threshold 
and modeling analysis methods, but in future analyses, 
we hope to implement a stricter P-threshold and choose 
more appropriate modeling analysis methods. We used 
RT-qPCR and IHC to evaluate the expression of ERDEGs 
in human THCA and paracancerous tissues from the 
same patients. Further studies are required to elucidate 
the cancer phenotypes associated with these key genes. 
Also, the molecular mechanisms underlying the relation-
ship between estrogen and ERDEGs are poorly under-
stood. The mechanisms by which ERDEGs regulate the 
proliferation, invasion, metastasis, and iodine uptake of 
THCA remain poorly defined. In future work, we will 
study the correlations among estrogen, ERGs, and bio-
logical characteristics of THCA, such as tumor microen-
vironment drug sensitivity, in order to better explain the 
reason for the high incidence rate of female thyroid can-
cer and improve the treatment options.

Conclusion
In conclusion, we developed and tested a risk scoring sys-
tem for ERGs based on TCGA datasets for THCA patient 
prognosis assessment and risk stratification, and set up 
a histone chart model to predict progression-free inter-
vals of 1, 3, and 5 years. We identified eight ERDEGs that 
may be potential targets for understanding the biological 
mechanisms of THCA. GSEA and tumor immune inva-
sion analyses also showed that ERGs may be involved in 
immunomodulatory and autoimmune thyroid diseases. 
These results provide new insights for THCA research, 
primarily molecular evidence for the critical role of ERGs 
in regulating the THCA immune microenvironment, and 
therapeutic response.
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(E), IPA.3 (F), PLX4720 (G), SL.0101.1 (H), SB.216763 (I), NU.7441 (J), Rapamy-
cin (K), Sorafenib (L), WO2009093972 (M), GSK269962A (N), JNJ.26854165 
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Genome Atlas. *** indicates p value < 0.001, which is highly statistically 
significant. Yellow represents T1I, blue represents T2, purple represents T3, 
green represents T4.
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