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Abstract 

Background  Radiation pneumonitis (RP) is one of the common side effects after adjuvant radiotherapy in breast 
cancer. Irradiation dose to normal lung was related to RP. We aimed to propose an organ features based on deep 
learning (DL) model and to evaluate the correlation between normal lung dose and organ features.

Methods  Patients with pathology-confirmed invasive breast cancer treated with adjuvant radiotherapy follow‑
ing breast-conserving surgery in four centers were included. From 2019 to 2020, a total of 230 patients from four 
nationwide centers in China were screened, of whom 208 were enrolled for DL modeling, and 22 patients 
from another three centers formed the external testing cohort. The subset of the internal testing cohort (n = 42) 
formed the internal correlation testing cohort for correlation analysis. The outline of the ipsilateral breast was marked 
with a lead wire before the scanning. Then, a DL model based on the High-Resolution Net was developed to detect 
the lead wire marker in each slice of the CT images automatically, and an in-house model was applied to segment 
the ipsilateral lung region. The mean and standard deviation of the distance error, the average precision, and average 
recall were used to measure the performance of the lead wire marker detection model. Based on these DL model 
results, we proposed an organ feature, and the Pearson correlation coefficient was calculated between the proposed 
organ feature and ipsilateral lung volume receiving 20 Gray (Gy) or more (V20).

Results  For the lead wire marker detection model, the mean and standard deviation of the distance error, AP (5 mm) 
and AR (5 mm) reached 3.415 ± 4.529, 0.860, 0.883, and 4.189 ± 8.390, 0.848, 0.830 in the internal testing cohort 
and external testing cohort, respectively. The proposed organ feature calculated from the detected marker correlated 
with ipsilateral lung V20 (Pearson correlation coefficient, 0.542 with p < 0.001 in the internal correlation testing cohort 
and 0.554 with p = 0.008 in the external testing cohort).
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Background
Breast cancer remains the most common cancer in 
women and one of the leading causes of cancer-related 
death [1]. Adjuvant radiotherapy is the essential treat-
ment strategy for early breast cancer patients who 
receive breast-conserving surgery, which decreases 
local recurrence and improves overall survival [2]. 
However, radiation pneumonitis (RP) often occurs dur-
ing and after radiotherapy. The incidence of clinical RP 
is reported to be 14% to 19.56% [3–5], which negatively 
affects patients’ quality of life. In the early identification 
of high-risk patients, clinicians can take early interven-
tion measures to reduce the incidence of RP.

The fundamentally effective approach to decrease 
the incidence of RP is to limit the lung radiation dose. 
Several parameters have been reported to be involved 
in the process of RP, including clinical factors and dosi-
metric factors [3, 4, 6]. Dosimetric parameters, includ-
ing ipsilateral lung volume receiving 20 Gray (Gy) or 
more (V20), V30, the dose at least delivered to 25% of 
the volume of the ipsilateral lung and mean lung dose, 
have been demonstrated to be related to RP in breast 
cancer [4, 6].

We hypothesized that patient-specific body geom-
etry reflects the lung irradiation dose. Thus, our study 
attempts to construct an organ feature to reflect specific 
geometry using body markers. However, labeling markers 
manually is time-consuming. In recent years, deep learn-
ing (DL) has shown excellent performance in medical 
image segmentation, recognition, and classification [7–
13]. However, using a DL model in body marker detec-
tion that guided radiotherapy has not yet been reported. 
In our study, we attempts to construct a DL model for 
marker detection and propose the normal lung dose cor-
related organ features in breast cancer in the setting of 
adjuvant radiotherapy.

Methods
Patients
Patients in the prospective study (ClinicalTrial.gov 
NCT05609058, 08/11/2022) who underwent breast-con-
serving surgery and sentinel node biopsy or axillary dis-
section, and pathology confirmed invasive breast cancer 
with no residual microscopic disease from four nation-
wide centers in China were included.

Between Jan 2019 and Oct 2020, a total of 230 patients 
from four nationwide centers in China were screened, of 
whom 208 in one center were enrolled for DL modeling 
and were divided into the training cohort (n = 128), the 
validation cohort (n = 20), and the internal testing cohort 
(n = 60), and 22 in other three centers were used as an 
external testing cohort. Patients with invasive breast 
cancer without supra/infraclavicular nodal irradiation 
(n = 42) formed the internal correlation testing cohort 
which was a subset of the internal testing cohort and was 
used to validate the performance of the automatically cal-
culated organ features.

Position and radiation planning
All patients were immobilized on a breast bracket 
(CIVCO Medical Solutions, Orange City, IA, USA) for 
CT simulation in the supine position. The outline of the 
ipsilateral breast was marked with a lead wire by physical 
examination before the CT scan. A treatment planning 
CT scan was performed with 5.0  mm thickness slices 
from the Atlas (C1) to the second lumbar vertebra (L2) 
level to cover the whole breast using a 16-slice CT scan-
ner (GE Discovery RT, GE Healthcare, Chicago, IL, USA).

The clinical target volume (CTV) was defined as the 
whole breast according to the marked outline and the 
fascia of the pectoralis major. The tumor bed target vol-
ume for the boost was determined according to surgi-
cal changes and silver clips. The planning target volume 
(PTV) boost and PTV were formed by extending a 
5.0 mm margin from CTV and CTV boost, respectively, 
within 5.0  mm inside of the body outline. Patients who 
had more than 4 positive axillary nodes or one to three 
positive nodes with risk factors received additional supra/
infraclavicular nodal irradiation. The radiation dose was 
delivered by intensity modulation radiation therapy with 
tangential beams. PTV was given 50 Gy in 25 fractions. 
PTVboost was given 60 Gy in 25 or 30 fractions.

One attending radiation oncologist (L.M.) marked 
lead wire on CT images using the Deepwise Research 
Platform (Deepwise Inc., Beijing, China, http://​label.​
deepw​ise.​com) and a senior radiation oncologist (N.L.) 
reviewed all the markers.

The automatic segmentation of the ipsilateral lung
The pulmonary lobe region of the CT images was seg-
mented by the previously trained in-house segmentation 

Conclusions  The proposed artificial Intelligence-based CT organ feature was correlated with normal lung dose 
in adjuvant radiotherapy following breast-conserving surgery in patients with invasive breast cancer.
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model first. The segmentation model was a 2.5D U-Net-
based model that was constructed with a 2D encoder and 
a 3D decoder. The 2D encoder had the same structure as 
ResNet34, and the pre-trained weight on ImageNet was 
used to initialize the parameters. The model was trained 
using 1434 CT images with 58,019 slices and reached an 
average Dice of 92.8.

After the region of the pulmonary lobes was seg-
mented, the area of the ipsilateral lung was calculated 
and documented.

The lead wire marker detection model
In this study, we developed a DL model to detect the 
lead wire marker on CT images. The lead wire marker 
detection model was built based on HRNet [14]. The 
model included four stages, in which parallel multireso-
lution convolutions were used. Multiresolution fusion 
was performed between the stages. In the final stage, the 
branches of the different resolutions were combined to 
generate two heatmaps. The location of the maximum 
values of the two heatmaps matched the two lead wire 
markers on each CT slice. This procedure is shown in 
Fig. 1.

Before reaching the network, the CT images were 
clipped into [-140, 210] and then normalized to [0, 1]. For 
the prediction of each slice, the target slice and its adja-
cent two slices were combined to form three channels. 
The Adam optimizer was used to minimize the mean 
square error loss, with an initial learning rate of 0.0001. 
The model was trained on the training cohort for 2000 
epochs, and the model that reached the lowest loss in the 
validation cohort was used.

After the model was trained, the mean and standard 
deviation of the distance between the location of the pre-
dicted marker and the labeled marker were measured, 
and the average precision (AP) and average recall (AR) 
were calculated.

Construction of lung dose‑related organ features
The lung dose-related organ feature was constructed 
by estimating the volume of the lung in the tangential 
beams. For each slice, the two detected lead wire mark-
ers were used to determine the margin of the exposed 
lung region. Then, the margin was moved 5.0  mm 
inward according to the PTV outline. The segmented 
area of the ipsilateral lung region outside the exposed 
margin was calculated, and the sum of the calculated 

Fig. 1  The overall workflow of our study. a The structure of the lead wire marker detection model. The model includes four stages, and at the 
final stage, the feature maps were concatenated together to predict the lead wire marker location. b Illustration of the proposed organ feature 
construction procedure
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areas for each slice was then divided by the total ipsilat-
eral lung region a and used as the proposed organ fea-
ture. Figure 1b illustrates this procedure.

Statistical analysis
All statistical results were calculated in Python and R 
(version 3.6.0; https://​www.r-​proje​ct.​org/). The correla-
tion between the proposed organ feature and ipsilateral 
lung V20 was assessed by the Pearson correlation coef-
ficient. A Pearson correlation coefficient between 0 and 
0.3 (or between 0 and -0.3) indicates a weak relationship 
between the two variables. A Pearson correlation coef-
ficient between 0.3 and 0.5 (or between -0.3 and -0.5) 
indicates a moderate strength relationship between the 
two variables. A Pearson correlation coefficient between 
0.5 and 1 (or between -0.5 and 1) indicates a correlation 
between the two variables [15]. A p-value of < 0.05 was 
considered to indicate a significant difference.

Results
Enrollment and clinical characteristics
Details of the patient’s baseline characteristics are shown 
in Table 1, and the pipeline is shown in Fig. 2. Left-sided 
breast cancer accounted for 51.4% (n = 107). The median 
volumes of PTV and PTV-boost were 666.7 (range 
214.6–1841) cm3 and 96.83 (range 28.49–260.13) cm3, 
respectively. The median ipsilateral lung V20 was 17.54 
(range 7.75–29.08) %.

The performance of the lead wire marker detection model
Table 2 shows the performance of the lead wire marker 
detection model. In the internal testing cohort, the 
mean and standard deviation of the distance between 

Table 1  Baseline characteristics

PTV Planning target volume, ipsilateral lung V20 Ipsilateral lung volume receiving 
20 Gray or more

Internal correlation 
cohort (n = 208)

External 
testing cohort 
(n = 22)

Age, years

  Median 47 50

  Range 27–68 32–64

Sex

  Female 208 (100%) 22 (100%)

Tumor location

  Left 98 (47.1%) 9 (40.9%)

  Right 110 (52.9%) 13 (59%)

PTV, cm3

  Median 667 623.61

  Range 214.6–1841 331.46–1303.6

PTVboost, cm3

  Median 101.89 62.16

  Range 37.4–260.13 28.49–165.48

Ipsilateral lung V20, %

  Median 17.41 18.04

  Range 7.75–29.08 8.26–24.66

Fig. 2  The flowchart of the inclusion and exclusion pipeline of our study

https://www.r-project.org/
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the predicted location of the lead wire marker and the 
labeled lead wire marker was 3.415 ± 4.529. In the exter-
nal testing cohort, the distance was 4.189 ± 8.390. The 
AP and AR at a distance tolerance of 5 mm were 0.860 
and 0.883, respectively, in the internal testing cohort 
and reached 0.848 and 0.830, respectively, in the exter-
nal testing cohort. When the tolerance was 10 mm, the 
AP and AR on both testing cohorts were greater than 
0.9.

The correlation between the proposed organ feature 
and ipsilateral lung V20
The proposed organ feature that was calculated by the 
automatically detected marker correlated with ipsilat-
eral lung V20 (Pearson correlation coefficient, 0.542 
with p < 0.001 in the internal correlation testing cohort 
and 0.554 with p = 0.008 in the external testing cohort).

As for the proposed organ feature that was calculated 
by the manually labeled lead wire marker, a similar 
result can be found (Pearson correlation coefficient was 
0.560 with p < 0.001 in the internal correlation testing 
cohort and 0.613 with p < 0.001 in the external testing 
cohort). The Pearson correlation coefficient was higher 
than the automatically detected marker-based organ 
feature, but no significance was found (paired t-test, 
p = 0.921 in the internal correlation testing cohort and 
0.586 in the external testing cohort) (Table 3). Figure 3 
showed two example cases with different chest geom-
etry that had a relationship with differences in lung 
radiation dose.

Discussion
In this study, we developed a deep-learning-based lead 
wire marker detection model. The model resulted in 
high AP and AR in both the internal and external test-
ing cohorts. The proposed organ feature built upon 
the automatically detected lead wire marker correlated 
with the lung V20 in patients with early invasive breast 
cancer who received breast-conserving surgery.

The lung is a critical dose-limiting organ during 
adjuvant radiotherapy in breast cancer, with radiation 
pneumonitis being a common complication. Ipsilateral 
lung V20 has been widely used as a critical dosimet-
ric indicator for RP in breast cancer. It is reported to 
be positively related to the incidence of RP [4, 16–20]. 
According to receiver operating characteristic curve 
analysis, Lind and colleagues suggested a significant 
correlation between ipsilateral lung V20 and clinical 
RP (p = 0.008) and radiological RP (p = 0.009) in breast 
cancer [16]. For V20, using a cutoff point of 20.2%, clin-
ical RP could be predicted with an accuracy of 88.7%, 
a sensitivity of 83.3%, and a specificity of 89.6% [17]. 
Consistent with these results, a lower incidence of RP 
was found when ipsilateral lung V20 ≤ 20% as compared 
to V20 > 20% (12.5% vs. 28.4%, respectively) [4]. Ozgen 
et al. also revealed that V20 (cutoff value of 23%) played 
a significant role in predicting RP (p = 0.017) [18]. In 
the retrospective study of Koreans, ipsilateral lung V20 
was reported to be significantly associated with RP 
(p = 0.018) [20]. Similarly, our study aimed to develop 
a model that could reflect the normal lung dose. Ipsilat-
eral lung V20 was the most widely used predictor of RP 
and thus was selected as a pivotal endpoint parameter.

DL in predicting irradiation dose has been explored 
in various tumors and has shown promising results 
[12, 13, 21–24]. It has been applied in many tasks for 
medical imaging analysis, including recognition of dis-
ease from normal patterns, classification of malignant 
and benign lesions, prediction of tumor prognosis, and 
radiation dose distribution. In the context of lead wire 
detection, while certain conventional techniques may 
show promise due to the well-defined shape and high 
contrast of the wires, they may prove inadequate when 
confronted with variations in wire shape resulting from 
tilting. Furthermore, these methods may also be prone 
to confusion with other objects that bear a similar 

Table 2  The performance of the lead wire marker detection model

Dataset dist (mm) AP@5 mm AP@10 mm AR@5 mm AR@10 mm

Internal testing cohort 3.415 ± 4.529 0.860 0.966 0.883 0.991

External testing cohort 4.189 ± 8.390 0.848 0.928 0.830 0.909

Table 3  The correlation between the proposed organ feature 
and ipsilateral lung V20

Dataset Case number Pearson 
correlation

p value

Calculated by labeled lead wire marker

  Internal correlation testing 
cohort

42 0.560  < 0.001

  External testing cohort 22 0.613  < 0.001

Calculated by the detected lead wire marker

  Internal correlation testing 
cohort

42 0.542  < 0.001

  External testing cohort 22 0.554 0.008
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appearance. Hence, in this study, a DL model has been 
employed for lead wire detection.

The relative variability of the clinical target volume of 
breast cancer radiotherapy is small, and radiotherapy is 
mainly delivered by tangent beams. Therefore, the radia-
tion dose to the ipsilateral lung may be correlated with the 
patient’s chest geometry. In breast cancer, a dose predic-
tion model was developed based on DL and was demon-
strated to accurately predict patient-specific doses. Ahn 
et al. conducted a study on the prediction of dose volume 
histogram using 50 volumetric modulated arc therapy 
plans of left-sided breast cancer patients with a prescrip-
tion of 4320 cGy in 16 fractions. The mean absolute error 
and one standard deviation between the clinical and DL 
dose prediction models were − 1.16 ± 2.58% for the ipsi-
lateral lung [24]. Similarly, Bakx et al. compared the per-
formance of two dose prediction models by studying 105 
left-sided breast cancers. Each patient had a prescribed 
dose of 4005 cGy in 15 fractions. They confirmed a small 
difference (p < 0.05) between predicted plans and clinical 
plans [13]. Another study by Hedden et  al. constructed 
two-dimensional and three-dimensional DL models and 
demonstrated comparable dose distributions with clini-
cal plans. In this study, the patients were treated in 16 
fractions with a prescribed total dose of 42.56  Gy [23]. 

In consistent with previous studies, the purpose of our 
study was to construct a model that could reflect the nor-
mal lung dose. We developed an organ feature based on 
DL and found a correlation between lung V20 and image 
features with a Pearson correlation coefficient > 0.50. Our 
study suggests that patient-specific body geometry could 
reflect lung irradiation dose.

Importantly, the aforementioned three studies exclu-
sively focused on left-sided breast cancers, which intro-
duces potential sampling bias concerns. In contrast, our 
study encompassed patients irrespective of the lesion 
location, ensuring a more comprehensive evaluation. 
Furthermore, irradiation to the whole breast with a boost 
to tumorbed is the standard treatment for invasive breast 
cancer who received breast-conserving surgery. However, 
the previous studies only evaluated models without a 
boost dose. Different from these studies, patients tested 
in our model were prescribed a 50  Gy to whole breast 
and a boost of 10  Gy to tumorbed which were more fit 
for clinical practice. Besides, the mentioned studies con-
sisted of single-center data. There may be confounding 
factors. To our knowledge, our study was the first multi-
center study with real-world external validation, and the 
sample size was larger than previously reported. A total 
of 64 patients formed the testing cohort, including 22 

Fig. 3  Lung segmentation, lead wire marker detection results and radiation dose distribution. The blue mask was the automatic segmented 
ipsilateral lung region, the red points were the manually annotated lead wire marker, and the green points were the lead wire marker detected 
by the proposed DL model. The green area represented the planning target volume. The red line and blue line represented 50 Gy and 20 Gy isodose 
line, respectively. a, b and c Show the results of a 41-year-old female, with an organ feature value of 0.204 and lung V20 of 19.86. c, d and e Show 
the results of a 30-year-old female, with an organ feature value of 0.010 and lung V20 of 12.76
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patients in the external testing cohort. In addition, pre-
vious articles focused on developing different prediction 
models to help reduce the time required to produce clini-
cal plans. Our investigation attempted to identify a per-
sonal geometric feature that could predict lung V20 and 
further select more appropriate irradiation techniques 
for individual patients.

Our study had several limitations. First, this pilot study 
only evaluated the lung irradiation dose. Other organs at 
risk and more dose parameters could be further inves-
tigated. Second, only the correlation coefficient was 
analyzed in this study. We are working on the multipa-
rameter prediction model of the lung irradiation dose.

Conclusions
AI can be used to predict normal lung dose in adjuvant 
radiotherapy following breast-conserving surgery for 
invasive breast cancer. Early identification of high lung 
V20 could be a reminder of select more appropriate irra-
diation techniques in these patients, like deep inspiration 
breath holding, accelerated partial breast irradiation, etc.
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