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Abstract 

Background  Composition of the intestinal microbiota has been correlated to therapeutic efficacy of immune check‑
point inhibitors (ICI) in various cancer entities including melanoma. Prediction of the outcome of such therapy, how‑
ever, is still unavailable. This prospective, non-interventional study was conducted in order to achieve an integrated 
assessment of the connection between a specific intestinal microbiota profile and antitumor immune response 
to immune checkpoint inhibitor therapy (anti-PD-1 and/or anti-CTLA-4) in melanoma patients.

Methods  We assessed blood and stool samples of 29 cutaneous melanoma patients who received immune check‑
point inhibitor therapy. For functional and phenotypical immune analysis, 12-color flow cytometry and FluoroSpot 
assays were conducted. Gut microbiome was analyzed with shotgun metagenomics sequencing. To combine clinical, 
microbiome and immune variables, we applied the Random Forest algorithm.

Results  A total of 29 patients was analyzed in this study, among whom 51.7% (n = 15) reached a durable clini‑
cal benefit. The Immune receptor TIGIT is significantly upregulated in T cells (p = 0.0139) and CD56high NK cells 
(p = 0.0037) of responders. Several bacterial taxa were associated with response (e.g. Ruminococcus torques) or failure 
(e.g. Barnesiella intestinihominis) to immune therapy. A combination of two microbiome features (Barnesiella intestini-
hominis and the Enterobacteriaceae family) and one immune feature (TIGIT+ CD56high NK cells) was able to predict 
response to ICI already at baseline (AUC = 0.85; 95% CI: 0.841–0.853).

Conclusions  Our results reconfirm a link between intestinal microbiota and response to ICI therapy in melanoma 
patients and furthermore point to TIGIT as a promising target for future immunotherapies.
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Background
Immune checkpoint proteins including T-cell surface 
receptor programmed cell death protein 1 (PD-1), its 
ligand PD-L1 and cytotoxic T-lymphocyte antigen-4 
(CTLA-4) play a key role in maintaining the delicate bal-
ance between immune-tolerance and defense. As a mech-
anism of immune evasion, however, tumor cells are able to 
stimulate these checkpoints, resulting in downregulation 
of the T cell-mediated anti-tumor response [1]. During 
immune checkpoint inhibitor (ICI) therapy, monoclo-
nal antibodies are used individually or in combination to 
block these receptors, thus initiating a restimulation of the 
T-cell response [2]. Since first approval of an ICI for the 
treatment of melanoma by the FDA in 2011, numerous 
compounds have been introduced and initiated a revo-
lution in the field of immunotherapy [3–7]. Despite sig-
nificant improvement in survival rates under ICI therapy, 
only 40% of patients with advanced melanoma respond 
to Nivolumab treatment and 61% respond to the com-
bination of Nivolumab and Ipilimumab [4, 8]. A T-cell-
infiltrated tumor microenvironment at baseline seems to 
have a favorable effect on the therapeutic outcomE [9, 10]. 
In addition, a growing body of evidence in animals and 
humans suggests that composition of the intestinal micro-
biota has an impact on the therapeutic response [11–17]. 
While all analyses conclude that specific taxa were associ-
ated with response to treatment, the taxonomic overlap is 
limited. The largest cohort so far, uniting data and sam-
ples from 293 patients, identified members of the family 
Ruminococcaceae as the main microbiome-based driver 
of response to ICI [12]. None of these cohorts, however, 
combined microbiota signature analysis with immune 
analysis to predict treatment response in patients.

To close this gap, we conducted a study using clinical 
metadata in combination with functional and phenotypi-
cal immune analyses to determine antitumor effects, as 
well as shotgun metagenomics sequencing for gut micro-
biome analysis.

Methods
Study design
This prospective, non-interventional study was con-
ducted at the Department of Dermatology at the Univer-
sity Hospital of Cologne. From 07/2017 to 08/2019, all 
adult patients diagnosed with melanoma and scheduled 
to receive ICI therapy, were screened for study inclusion. 
The study was approved by the local ethics committee 
(Cologne-ID #17–269) and written informed consent was 
obtained from all patients.

Clinical data, fecal and blood samples were obtained at 
baseline (range: two days before until the day of first ICI 
infusion), as well as at 3, 6 and 9 months after initiation of 

ICI therapy. Only baseline samples were used in the pre-
sent analysis. Fecal samples were obtained using OMNI-
gene GUT OMR-200 (DNA Genotek, Ottawa, Canada) 
and stored at -80 °C. Blood draws were conducted along-
side clinical routine diagnostics. Serum was immediately 
frozen at -80 °C and peripheral blood mononuclear cells 
(PBMCs) were isolated by density gradient centrifugation 
(Ficoll Hypaque) and stored in liquid nitrogen until anal-
ysis. For the purposes of the present analysis, only data 
from the baseline visit was analyzed.

Documented clinical parameters are shown in Table 
S1 [18].

For endpoint evaluation, the term durable clinical ben-
efit (DCB) was used and defined as complete or partial 
response or stable disease for at least six months, based 
on RECIST criteria [18]. DCB was chosen as endpoint 
because compared to progression-free survival or overall 
survival it allows an earlier assessment of treatment effi-
cacy referring to the initial therapy. The objective was to 
find a correlation between microbiota, immune system 
and response to initial immunotherapy. If a patient does 
not respond to the initial therapy, a change in protocol is 
usually performed. Longer survival might then be attrib-
uted to a possible change in therapy and confound the 
results.

Microbiome analysis
Fecal samples were subjected to genomic DNA extrac-
tion using the FastDNA Spin Kit for Soil (MP Bio-
medicals, Solon, OH, USA), quantification of DNA was 
performed using the Qubit 2.0 Fluorometer with the 
Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, 
Waltham, MA, USA) and purity checked by spectropho-
tometry (NanoDrop, Thermo Fisher Scientific, Waltham, 
MA, USA).

For metagenomic sequencing, the frozen DNA sam-
ples were sent to the Helmholtz Centre for Infection 
Research in Braunschweig on dry ice. The DNA library 
for metagenomics sequencing was generated using NEB-
Next® Ultra™ II FS DNA Library Prep Kit (New England 
Biolabs, Ipswich, MA, USA) for Illumina with parameters 
as followed: 500 ng input DNA and 5  min at 37  °C for 
fragmentation; > 550-bp DNA fragments for size selec-
tion; primers from NEBNext Multiplex Oligos for Illu-
mina Kit (New England Biolabs, Ipswich, MA, USA) for 
barcoding. The libraries were sequenced on the Illumina 
NovaSeq (2 × 150  bp). Raw reads were pre-processed 
using KneadData (v0.7.4), trimmomatic (v0.39, SLID-
INGWINDOW:4:20 MINLEN:50), and BowTie2 (v2.4.2, 
with hg37dec_v0.1). Taxonomic species profiling of 
the cleaned reads was done using MetaPhlAn4 (v4.0.3, 
mpa_vJan21_CHOCOPhlAnSGB_202103) with default 
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parameters [19, 20]. Data was summarized into biom for-
mat and analyzed using phyloseq [21, 22].

Immunophenotyping and functional analyses
For the phenotypical quantification of the immune 
response, PBMCs were characterized by 12-color flow 
cytometry (CytoFLEX LX, Beckman Coulter, Brea, CA, 
USA). Using fluorescence-labeled antibodies, charac-
teristic surface and intracellular proteins of PBMCs 
were labeled and measured with the CytoFLEX LX Flow 
Cytometer. The proportions of different lymphocyte sub-
populations in the PBMCs and expression levels of the 
investigated markers on different T-cell populations were 
then analyzed using Kaluza Analysis Software (Beckman 
Coulter, Brea, CA, USA).

For functional analysis of lymphocytes, tumor antigen-
specific T-cell responses were determined by performing 
a FluoroSpot assay (Mabtech, Nacka, Sweden) to meas-
ure specific release of cytokine Interferon gamma (IFN-
γ) upon stimulation with Cancer Testis Antigens (CTAs). 
PBMCs were stimulated for 20  h at 37  °C with five dif-
ferent CTAs (NY-ESO-1, MAGEA1, MAGEA3, MLANA, 
SURVIVIN), as well as the biological control peptide CEF 
and a technical positive control (CD3/CD28 activation). 
Fluorescent spots as indicators for specific responses 
were counted on an AID FluoroSpot reader.

Statistics
Statistical analyses were conducted using R for Statisti-
cal Computing (version 3.6.1, R Foundation for Statisti-
cal Computing, Vienna, Austria) and GraphPad Prism 
V.9.0.2 (GraphPad, USA) [23]. Continuous variables were 
presented as mean (± standard deviation) or median 
(interquartile range), while categorical variables were 
presented as number and percentage. Mann-Whitney 
t-test was used to compare continuous variables. The 
beta diversity, in this case the weighted UniFrac distances 
between the samples, were visualized using Principal 
Coordinate Analysis (PCoA) and differentially abundant 
taxa were identified using Linear Discriminant Analysis 
(LDA) Effective Size (LEfSe, LDA score (log 10) > 3 for 
comparison) [22].

A multivariate logistic regression analysis and stepwise 
regression in both directions using the Akaike Informa-
tion Criterion (AIC) was performed to identify inde-
pendent predictors for response to ICI treatment. Odds 
ratios (ORs) and 95% Confidence Intervals (CI) were 
calculated on the basis of the respective coefficients for 
these predictors. The analysis was performed entering 
84 preselected variables (clinical parameters that have 
previously been shown to influence response, immune 
parameters with a variance inflation factor below 10, and 

microbiome parameters based on LEfSe, see S2 + S3) as 
input features.

In a sensitivity analysis, the 84 preselected variables 
(as mentioned above) were entered used as input into 
a Random Forest regression model, utilizing the caret 
package in R [24]. To mitigate the risk of overfitting 
and to eliminate possible collinearities and dependen-
cies in the model, a recursive feature elimination (RFE) 
algorithm with a leave-group out (Monte Carlo) cross 
validation (1000 iterations) was applied to select up to 20 
features according to the best accuracy and discard those 
with the lowest rank. The remaining (most informative) 
features, i.e. those with the lowest root mean squared 
error (RMSE), were included in the final Random For-
est model. To evaluate the performance of our Random 
Forest model, we employed a rigorous cross-validation 
strategy. The dataset was randomly split into training and 
test subsets 1000 times, ensuring a diverse set of train-
ing and test data combinations for robust assessment. 
In each iteration, the model was trained on the respec-
tive training subset incorporating the selected features 
and the area under the receiver operation characteristic 
curve (ROC-AUC) was computed, offering insights into 
the model’s discriminative capabilities on the test subset. 
Finally, the mean of all receiver operation characteristic 
curves (from the 1000 iterations) and its respective AUC 
was computed to provide an overall measure of the mod-
el’s performance All statistical tests were two-tailed, and 
a p-value of < 0.05 was considered statistically significant.

Results
Patients
A total of 93 patients was screened and 40 enrolled into 
the study. Due to suspected immunological differences 
between melanoma types, which may have confounded 
our analysis, we decided to focus on patients with cuta-
neous melanoma (n = 29; Fig. 1).

Detailed characteristics at baseline are shown in 
Table 1.

Follow up documentation was closed after the last 
staging (9 months after baseline) of the latest included 
patient. Mean age was 64.76 ± 14.24 years (range: 34–86) 
and about two thirds of the patients (n = 19, 65.5%) were 
male. The mean age in the group of patients with a dura-
ble clinical benefit (DCB), which was 65.5 years, is com-
parable to the mean age of patients without DCB, which 
was 63.9 years. The cohort consisted of 86.2% (n = 25) 
patients with metastatic melanoma stage IV (AJCC 
2017). Three different ICI regimens were applied with 
51.7% (n = 15) of the patients receiving anti-PD-1 ther-
apy, 44.8% (n = 13) a combination of anti-PD-1 and anti-
CTLA-4, and 3.5% (n = 1) anti-CTLA-4 therapy.
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DCB was reached in 51.7% (n = 15) of all patients. Out 
of the remaining patients, 10 (34.5%) did not show DCB 
and 4 (13.8%) died prior to reaching the six months fol-
low-up. Overall, 44.8% (n = 13) of the patients had an 
immune-related adverse event, e.g. colitis, that had to be 
treated with steroids.

The microbiome profile differs between responders 
and non‑responders
Based on metagenome sequencing, there was no sig-
nificant difference concerning alpha diversity between 
patients with and without DCB (Fig. 2A). In terms of beta 
diversity, principal coordinate analysis of the weighted 
UniFrac distances did not show a separate clustering of 
the two groups (Fig. 2B).

To identify bacteria that are differentially abundant 
and thus potentially suitable as biomarkers, LEfSe anal-
ysis was performed. There was an increased abundance 
of Ruminococcus torques (p = 0.017), Lacrimispora 
(p = 0.014), and Lacrimispora amygdalina (p = 0.022) 
in patients with DCB (Fig.  2C). In patients without 
DCB, abundances were increased for Odoribacte-
raceae (p = 0.049), Butyricimonas paravirosa (p = 0.031), 
Butyricimonas (p = 0.031), Barnesiellaceae (p = 0.003), 
Akkermansia muciniphila (p = 0.036), Barnesiella 
(p < 0.001), Barnesiella intestinihominis (p < 0.001), 

Akkermansiaceae (p = 0.014), Akkermansia (p = 0.014), 
and Enterobacteriaceae (p = 0.040).

We further explored the abundance of species of the 
family Enterobacteriaceae, as these Gram-negative bac-
teria have previously been associated with disease states 
[25, 26]. Only one out of 15 patients (6.7%) with DCB had 
an abundance > 1% of Enterobacteriaceae compared to 8 
out of 14 patients (57.1%) without DCB (Fig. 2D).

Phenotypic and functional immune analysis
Of the 29 patients who underwent microbiome analysis, 
one patient had to be excluded from immune analyses 
due to a missing baseline sample and another patient had 
to be excluded from the phenotypic analysis due to a pre-
vious leukemic disease.

There were no significant differences in the pro-
portions of several analyzed circulating lympho-
cytes between patients with or without a DCB at 
baseline. The main subsets are shown in Fig.  3A. 
Furthermore, no significant differences in any acti-
vation marker could be found, as shown exemplarily 
in Fig.  3B. To evaluate checkpoint marker expres-
sion on lymphocytes prior to ICI treatment, a broad 
range of 25 surface checkpoint molecules was ana-
lyzed. TIGIT (T-cell immunoreceptor with Ig and 
ITIM domains) expression on T cells and CD56high 
NK cells was significantly higher in patients with DCB 

Fig. 1  Total numbers of patients screened, enrolled and included in the final analysis
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compared to patients without DCB at baseline (T 
cells: DCB + = 19.22 ± 7.03%; DCB- = 13.01 ± 4.16%; 
p = 0.014; CD56high NK cells: DCB + = 14.74 ± 8.91%; 
DCB- = 6.119 ± 6.34%; p = 0.0037; Fig. 3C).

Regarding the tumor antigen-specific interferon-γ 
release (Fluorospot Assay), there were no significant 

differences between patients with and without DCB at 
baseline (4 patients (28.6%) from each group; Fig. 3D).

A combined analysis for prediction of the benefit of ICI 
therapy
In our multivariate regression analysis, the baseline vari-
ables “Barnesiella intestinihominis” (OR > 1000; 95% CI 
3e + 69 – Infinity; p = 0.007) and “TIGIT+ CD56high NK 
cells” (OR 0.74; 95% CI 0.583–0.918; p = 0.009) were sig-
nificantly associated with treatment failure (see Supple-
ments Table S2 + Figure S1).

Based on the available clinical, microbiome, and immu-
nological data, our Random Forest model with recursive 
feature elimination (RFE) for the prediction of response 
to ICI therapy achieved a mean area under the curve 
(AUC) of 0.85 (95% CI: 0.841–0.853; Fig. 4A) by combin-
ing three baseline variables (TIGIT expressing CD56high 
NK cells, Barnesiella intestinihominis, and the Entero-
bacteriaceae family; Fig. 4B).

Discussion
To our knowledge, our analysis is the first to combine 
clinical metadata, metagenomic microbiome analyses 
and immune profiling for the prediction of the benefit 
of ICI treatment in patients with cutaneous melanoma. 
Based on our integrated analysis, with the combination 
of two microbiome features and one immunological fea-
ture we were able to predict response to ICI treatment 
already before the first infusion with a mean area AUC 
of 0.85. All three variables can be determined by analyz-
ing a blood sample and a stool sample, and together they 
provide a predictive model that could be used to identify 
patients who might benefit from ICI therapy as part of 
the treatment decision process.

Our LEfSe analysis identified several bacterial taxa 
that were more abundant at baseline in patients with a 
DCB (e.g. Ruminococcus torques) and several other bac-
terial taxa elevated in patients with no DCB (e.g. Enter-
obacteriaceae). Yet, not all of these taxa seem to have a 
predictive value. While previous studies performed in 
melanoma patients identified microbiome signatures 
as predictors of treatment success or failure, there is 
no taxonomic consistency across cohorts [13–17]. This 
may be explained by the methodological heterogeneity 
of these studies. Fecal sampling and storage techniques 
differ and sampling timepoints were inconsistent across 
studies. Further down the pipeline there were differ-
ences in DNA extraction, sequencing technology and 
bioinformatics [27]. Another important factor that may 
contribute to the divergence are the varying disease 
stages of patients analyzed. Although some research-
ers suggest the existence of a microbiome signature 
inherent across different cohorts [28], these results of 

Table 1  Patient characteristics

Durable clinical benefit: CR (complete response), PR (partial response) or SD 
(stable disease) for at least 6 months, irAE Immune-related adverse event, 
LDH Lactate dehydrogenase; Death: Follow up documentation was closed after 
the last staging (9 months after baseline) of the latest included patient

Variable Cohort (n = 29)

Age (years) — mean ± s.d. (range) 64.76 ± 14.24 (34–86)

Sex (male) — n (%) 19 (65.5)

Underlying cancer — n (%)

  Cutaneous melanoma 24 (82.8)

  Melanoma of unknown primary  (most likely 
of cutaneous origin)

5 (17.2)

ECOG performance status — n (%)

  1 or 2 27 (93.1)

  3 or 4 2 (6.9)

Cancer staging (AJCC 2017) — n (%)

  IIIC 3 (10.4)

  IVM1a 3 (10.4)

  IVM1b 7 (24.1)

  IVM1c 11 (37.9)

  IVM1d 4 (13.8)

  Unknown 1 (3.5)

Checkpoint-Inhibitor — n (%)

  anti-CTLA-4 1 (3.5)

  anti-PD-1 15 (51.7)

  anti-PD-1 + anti-CTLA-4 13 (44.8)

Durable clinical benefit — n (%)

  Yes 15 (51.7)

  No 10 (34.5)

  Not reached 4 (13.8)

irAE treated with steroids — n (%)

  Yes 13 (44.8)

  No 16 (55.2)

irAE toxicity grade — n (%)

  0 9 (31.0)

  1 3 (10.4)

  2 4 (13.8)

  3 9 (31.0)

  4 4 (13.8)

Serum LDH level — n (%)

  Normal (< 250 U/l) 15 (51.7)

  High (> 250 U/l) 14 (48.3)

Death — n (%)

  Yes 13 (44.8)

  No 16 (55.2)
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a meta-analysis were not confirmed in a large cross-
cohort study clearly showing that the microbiome asso-
ciations are very much cohort-dependent, even when 
focused on only one cancer type [15]. In this sense, our 
findings are in line with the previous inconsistency of 
predictive microbiome signatures.

While it is recognized that advanced cancer stages 
can imply an altered composition of the gut microbi-
ome, especially as an adverse effect of more medica-
tion such as chemotherapy or antibiotics, the specific 
implications of different cancer stages on the efficacy of 
ICI is still subject of ongoing investigation [29, 30]. The 
response to ICI is attributed to various factors, includ-
ing increased tumor burden, immune exhaustion, and 
immunosuppressive tumor microenvironments [31]. As 
most of the patients in our cohort were already in stage 
IV cancer, and only two patients received antibiotics 

before start of ICI, our distribution was too inhomoge-
neous for further subgroup analysis.

Another factor that can have an impact on the micro-
biome is age. Age-related alterations in the gut microbi-
ome are related to factors like progressive physiological 
changes, lifestyle-related factors such as diet or medica-
tion, and decreased social interaction [32]. Nonetheless, 
our primary focus in this study was to investigate the 
potential impact of microbiome composition on treat-
ment outcomes. To account for the influence of “age” 
itself, we initially included it as a preselected input vari-
able in both our regression and Random Forest analyses 
(see Table S3). However, it’s noteworthy that in the final 
regression model (see Figure S1), the variable “age” was 
not included as a significant risk factor. This suggests 
that, within our dataset, age may not be the primary 
driver of the observed treatment outcomes. Importantly, 
the mean age in the group of patients who experienced a 

Fig. 2  Differences in fecal microbiota of patients with or without DCB.  A Alpha diversity indices (Observed species and Shannon diversity index): 
Shannon diversity index: DCB+: 3.344 ± 0.530 (95% CI 3.050–3.638); DCB-: 3.377 ± 0.445 (95% CI 3.121–3.634);  p = 0.86; Observed: DCB+: 94.13 ± 31.12 
(95% CI 76.90–111.40); DCB-: 90.50 ± 31.34 (95% CI 72.40–108.60);  p = 0.76.  B Principal Coordinate Analysis (PCoA) of bacterial community 
structures on the basis of weighted UniFrac distances of 29 baseline samples. PERMANOVA  F  = 0.58,  R2 = 0.02,  p = 0.819. Blue dots represent 
the samples of patients with DCB and red dots of patients without DCB.  C Linear discriminant analysis (LDA) effect size LEfSe analysis after shotgun 
metagenomic sequencing.  D Relative abundance in % of the family Enterobacteriaceae, each column represents a patient
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DCB was comparable to the mean age of patients without 
DCB.

Besides the discussed methodological confounders, 
it is also conceivable that the heterogeneity in associ-
ated microbiome signatures may reflect a functional 
overlap. Following this hypothesis, different microbi-
ome signatures would be able to trigger similar immu-
nological effects. To tackle this problem, we included 
immune analyses into our assessment. Based on our 
results, the inhibitory immune receptor TIGIT was sig-
nificantly upregulated in T cells and CD56high NK cells 
of patients with a DCB. In our Random Forest analysis, 
TIGIT expressing CD56high NK cells remained in the 
final prediction model as the most important feature. 

TIGIT expression is observed on peripheral memory and 
regulatory CD4+ T cells and NK cells, and its expression 
can be augmented following the activation of these cells, 
including naïve T cells. By promoting the generation of 
mature immunoregulatory dendritic cells, TIGIT sup-
presses T cell activation [33]. Similar to CTLA-4 or PD-1, 
TIGIT is a co-inhibitory molecule that prevents over-
activation of the immune system. Upregulation of TIGIT 
in patients with a DCB may be an indicator of a more 
activated immune cell phenotype prior to ICI therapy, 
which in turn tends to benefit more from the therapy. 
These findings support the idea of TIGIT as a promising 
target in cancer immunotherapy, especially by dual PD-1/
TIGIT blockade [34]. Concerning a microbiota-mediated 

Fig. 3  Phenotypical flow cytometry analysis and functional analysis at baseline.  A Proportions of T cells, natural killer cells (NK cells) and B cells 
in percentage of CD45+  lymphocytes and regulatory T cells (Tregs) in percentage of CD4+  T cells.  B CD25 and CD69 expression as markers 
of T-cell activation.  C Expression of the checkpoint molecules PD-1, CTLA-4 and TIGIT on different immune cells (TIGIT expression on T cells 
of patients with DCB = 19.22% ± 7.03; patients with no DCB = 13.01% ± 4.16;  p = 0.0139; TIGIT expression on CD56high  NK cells of patients 
with DCB = 14.74 ± 8.91%; patients with no DCB = 6.119 ± 6.34%;  p = 0.0037). Bar charts show mean percentage ± SD.  D Functional analysis 
of the immune response (Fluorospot Assay). Colorcode indicates spot number of IFNγ release by T cells. Ten or more spots is considered as tumor 
antigen-specific response
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immune regulation, a previous study could show that 
Fusobacterium nucleatum, a commensal bacterium in 
the tumor microenvironment associated with colorectal 
cancer, can directly bind TIGIT leading to suppression of 
antitumor NK-cell and T-cell response [35].

T and NK cells play pivotal roles in the tumor immune 
microenvironment in the context of ICI therapy. The 
expression of immune receptors on T and NK cells can 
vary significantly, leading to different effects on antitu-
mor activity [36]. This is reflected in an intra- and inter-
tumoral heterogeneity [37]. An association between 
specific immune cell populations and the patients’ prog-
nosis has also been shown in other malignancies like 
cervical cancer [38]. In a recent study, a T-cell and a 
NK-cell subpopulation were found to express high levels 
of cytotoxic effector molecules and low levels of inhibi-
tory markers including TIGIT [39]. Both signatures were 
associated with a favorable prognosis in a large cohort of 
cervical cancer patients. Unfortunately, in our study, no 
tumor samples were available for analysis of the tumor 
microenvironment.

Of 93 screened patients, only 40 enrolled into the 
study. Reasons for the high loss included that some 
patients perceived the collection of stool as too uncom-
fortable, as well as the advanced age of many patients 
for whom the collection of fecal samples would have 
been difficult. Due to its small sample size, the statisti-
cal power of our analyses and especially the predictive 
power of the Random Forest model were limited. The 
architecture of the Random Forest model builds on vari-
ous fundamental concepts, such as ensemble learning, 

bootstrap aggregation (bagging) and random feature 
selection. In Random Forests, ensemble learning is 
achieved through bagging, where individual trees are 
trained on separate bootstrap samples from the training 
dataset. This ensemble approach fosters diversity among 
trees and enhances prediction accuracy by mitigating 
model variance and overfitting tendencies. Nevertheless, 
with only 29 samples, there is still a risk of overfitting. 
Random feature selection enhances diversity by consid-
ering only subsets of features at each decision tree node. 
Instead of evaluating all available features for the best 
split, only a random subset is evaluated. This enhances 
the forest’s diversity and generalization capability and 
results in a more robust model that excels in classifica-
tion, can handle imbalanced data, and provides insights 
into feature importance. Due to the small sample size, 
our prediction may have a higher uncertainty, limiting 
the predictive value of our analysis. By using a cross-
validation and careful consideration of the data, we tried 
to counteract this limitation. Nevertheless, an additional 
validation cohort would be of high importance.

In addition, our lack of data on the patients’ dietary 
habits, smoking habits and comedications besides 
antibiotics limit our understanding of nutritional and 
environmental effects on microbial composition and 
therapy outcome. Especially the amount of dietary fiber 
intake and supplementation with probiotics or prebiot-
ics may have modified the microbiota and could be an 
undetected confounder [12].

The current study analyzed a relatively modest sam-
ple size. Future research should involve the inclusion of 

Fig. 4  Random Forest model to predict clinical outcome (no DCB) after ICI therapy. A Area under the curve (AUC) for our Random Forest model 
based on top 3 of 84 features selected by Random Forest Recursive Feature Elimination (RF-RFE). Dashed grey lines indicate the receiver operating 
characteristic (ROC) curves for the different random splits between training and test dataset, the thick black line represents the median over all ROC 
curves.  B Features ranked according to importance based on mean decrease in Gini index
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larger and more diverse cohorts of melanoma patients 
to further validate and generalize our findings. A deeper 
understanding of the dynamics between the gut microbi-
ome, immune response, and ICI therapy could be gained 
through longitudinal studies that track changes over time 
in response to treatment. Investigating the mechanisms 
underlying the observed associations, such as the role 
of specific microbial metabolites or immune pathways, 
could provide a more in-depth understanding of the 
interactions involved. A multifaceted approach, includ-
ing in vitro and in vivo models to experimentally validate 
the observed associations would provide a more compre-
hensive understanding of the microbiome-immune rela-
tionship. Furthermore, expanding our research to include 
other cancer types beyond melanoma could help uncover 
broader implications and commonalities in the relation-
ship between the gut microbiome, immune response, and 
ICI therapy. Finally, as TIGIT is a promising target for 
future immunotherapies, several clinical studies investi-
gating TIGIT inhibitors are underway.

In conclusion, our study reaffirms the significance of 
the gut microbiota in influencing the response to ICI 
therapy in melanoma patients. The association between 
specific bacterial taxa, such as Barnesiella intestini-
hominis, and treatment response underscores the role 
of microbial composition as a potential biomarker for 
predicting clinical outcomes. Furthermore, we have 
identified the immune receptor TIGIT as significantly 
upregulated in T cells and CD56high NK cells of respond-
ers to ICI therapy. This novel finding highlights TIGIT 
as a crucial immune checkpoint and potential target for 
therapeutic intervention. In the context of melanoma, 
the tumor microenvironment is often characterized 
by an immunosuppressive milieu. TIGIT expression 
on tumor-infiltrating T cells has been associated with 
T-cell exhaustion, a state of functional impairment that 
limits anti-tumor immune responses [40]. Furthermore, 
the competition between TIGIT and the co-stimulatory 
receptor CD226 (DNAM-1), which recognizes the same 
ligands, for ligand binding can tilt the balance towards 
immune suppression, inhibiting effector T-cell responses 
[41]. Further exploration of TIGIT modulation may yield 
promising strategies to enhance ICI responses.

The insights gained from this study have important 
clinical implications. They underscore the potential for 
personalized therapeutic approaches based on individual 
gut microbiota profiles and immune receptor expression. 
Future research should focus on expanding our under-
standing of the mechanisms underlying these associations 
and translating them into clinical practice. Importantly, 
future analyses should be applied to larger samples and 
integrate analysis of an independent validation cohort.
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