
Aftab et al. BMC Cancer         (2023) 23:1037  
https://doi.org/10.1186/s12885-023-11516-8

RESEARCH

Graph Neural Network for representation 
learning of lung cancer
Rukhma Aftab1, Yan Qiang1*†, Juanjuan Zhao1†, Zia Urrehman1† and Zijuan Zhao1† 

Abstract 

The emergence of image-based systems to improve diagnostic pathology precision, involving the intent to label 
sets or bags of instances, greatly hinges on Multiple Instance Learning for Whole Slide Images(WSIs). Contemporary 
works have shown excellent performance for a neural network in MIL settings. Here, we examine a graph-based 
model to facilitate end-to-end learning and sample suitable patches using a tile-based approach. We propose 
MIL-GNN to employ a graph-based Variational Auto-encoder with a Gaussian mixture model to discover relations 
between sample patches for the purposes to aggregate patch details into an individual vector representation. Using 
the classical MIL dataset MUSK and distinguishing two lung cancer sub-types, lung cancer called adenocarcinoma 
(LUAD) and lung squamous cell carcinoma (LUSC), we exhibit the efficacy of our technique. We achieved a 97.42% 
accuracy on the MUSK dataset and a 94.3% AUC on the classification of lung cancer sub-types utilizing features.

Keywords Multiple instance learning, Graph, Whole slide images, Graph neural networks

Introduction
The era of histopathology boasts voluminous elec-
tronic image records, a present-day reality. Within these 
records lies an overwhelming wealth of information, 
as exemplified by the notable study [1]. Yet, the path to 
accessing and harnessing this accrued knowledge for 
examination, research, and training purposes remains 
largely uncharted. The dearth of suitable methods to rep-
resent Whole Slide Images (WSIs) compounds this chal-
lenge, necessitating a deeper exploration of efficient WSI 
representation techniques. These endeavors become even 
more critical given the intricacies involved in depicting 
WSIs, including factors such as sharpness, features, hues, 
and pathological clarity.

The advent of deep neural networks has revolutionized 
digital pathology, sparking collaborative efforts between 
AI specialists and pathologists to innovate diagnostic 
approaches. As the digital pathology landscape gains 
wider acceptance, demanding increasingly effective WSI 
evaluation, new avenues have emerged. Deep learning 
has ascended to the forefront of visual computing, sur-
passing conventional visual interpretation techniques. 
Nevertheless, the sheer volume of pixels within each WSI 
presents an insurmountable hurdle for deep neural net-
works. Recent research has delved into the patch-level 
analysis of WSIs, necessitating manual annotation by 
experts. However, applying such techniques to large WSI 
datasets becomes impractical. Additionally, labels often 
pertain to the entire WSI rather than individual patches, 
emphasizing the importance of harnessing information 
from all patches during WSI representation.

In response, Multiple Instance Learning (MIL) emerges 
as a promising approach for supervised learning in the 
context of WSIs. MIL-based techniques initially extract 
neural network feature-embedded data from image tiles. 
MIL introduces the concept of “bag training,” employing 
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a collection of bag instances, each with a correlated label, 
thus offering a pathway to WSI representation. The fea-
ture embedding subsequently feeds into an aggrega-
tion network to generate slide-level information. MIL 
techniques, applied extensively in WSI analysis, can be 
categorized into instance-level and embedding-level 
paradigms. Instance-level approaches emphasize local 
information, while embedding-level methods focus on 
global aspects. Previously, SVM-based models like MI-
SVM [2] were common in MIL, but recent complex 
models like Deep MIML [3], mi-Net [4], TransMIL [5], 
and attention-based methods such as ABMIL [6] and 
CLAM [7] have gained prominence. Notably, recent 
research has spotlighted the application of Graph Neu-
ral Networks (GNN) in the MIL framework. Graphs 
prove effective in modeling histopathology data extracted 
from WSIs, capturing spatial relationships among enti-
ties as nodes or sub-graphs. This graph-based approach 
excels in capturing both marginal and substantial global 
information from patches, owing to its inherent poten-
tial. Several studies in the field of digital pathology have 
employed GNN-based approaches to address different 
aspects. GNNs are particularly suited for MIL problems 
due to their permutation invariant characteristics, where 
each instance is represented as a node in a graph. Vari-
ous innovative methods have been developed, such as 
HIPT [8], a ViT architecture designed for learning from 
WSI image topology, and H2Graph [9], which constructs 
heterogeneous networks for training dense layers. The 
ProtoMIL [10] method, inspired by by-example reason-
ing and based on graphical representations, represents 
another innovative approach to MIL.

This research pioneers a novel GMMConv-based 
Variational Graph Autoencoder model tailored for MIL 
applications to WSIs, compressing them into compact 
graphs. The approach meticulously employs maximum 
magnification settings for WSIs and incorporates patch-
level annotations to highlight individual WSI labels. By 
representing WSIs as dense graphs, the interpretability 
of the final representation is greatly enhanced. In this 
framework, each instance is modeled as a node within a 
network, facilitating the discovery of interconnections 
between them. The patches are collected and organized 
into bags using the sliding window tiling method. Subse-
quently, a graph structure is constructed from the node 
features of the stacked patches. The interaction between 
patches is learned through the Gaussian mixture model 
representation. This innovative methodology unravels 
the intricate interconnections among regions while effi-
ciently learning the representation of a given WSI.

To illustrate the efficacy of the model, we conducted 
classification experiments on two common sub-types 
of lung cancer, adenocarcinoma, and squamous cell 

carcinoma. Distinguishing between LUAD and LUSC, 
expert monitoring is essential. In this article, we lever-
aged MIL-GNN to perform sub-type classification using 
WSIs from The Cancer Genome Atlas (TCGA), a freely 
accessible dataset. Our unique approach employed adja-
cency matrices to capture interactions between various 
patches, presenting a novel paradigm for WSI learning 
with GNN. Ultimately, our proposed method yielded 
impressive results, achieving an F1 Score of 82.24%, pre-
cision, and a 0.943 Area under the curve evaluation.

In summary, our article’s key contributions are as 
follows: 

1. A pioneering graph-based MIL-GNN technique for 
learning WSI representations.

2. Introduction of an intra-node adjacency layer that 
fosters end-to-end connectivity among learning 
nodes.

3. The use of MIL-GNN to identify and predict the 
most significant patches within WSIs, enriching our 
understanding of these complex images.

Related work
Histopathology photos from a whole slide can be as large 
as 100,000 pixels in size. Annotating such large photos by 
hand is a time-consuming and labor-intensive process. 
Recent advancements in machine learning, particularly 
deep learning [11, 12], have significantly contributed to 
the field of analyzing WSI. These methods have facili-
tated notable advancements in various areas, such as dis-
ease categorization [13], tissue segmentation, mutation 
prediction, and spatial profiling of immune infiltration [4, 
14–17]. The relevant literature on WSIs representation 
learning, we discuss in detail below:

Multiple instance learning (MIL): There are two main 
approaches to representing WSIs. The first is sub-setting, 
where a small subset is extracted from a large pathology 
image. Despite the requirement for professional expertise 
and accurate subset extraction, most literature employs 
this method due to its speed and accuracy. The second 
technique is tiling, which divides images into smaller, 
manageable tiles and processes them against one another 
[18]. The tiling approach can be particularly beneficial 
for MIL (Multiple Instance Learning) approaches that 
require more automation. In supervised learning, where 
each training instance has a label, MIL algorithms assign 
sets of labeled instances instead of individual ones [2, 
19]. MIL techniques can also be applied to learning rep-
resentations of histopathology images. For WSI analysis, 
MIL techniques are frequently employed. MIL can be 
categorized into paradigms at the instance and embed-
ding levels. Instance-level approaches primarily focus 
on local information, while embedding-level approaches 
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concentrate on global information. Before the advent of 
deep learning, SVM-based models such as MI-SVM [2] 
were commonly used to address MIL problems. How-
ever, several complex models are now employed to man-
age MIL. Deep MIML [3] involves training something 
behind the scenes, which is subsequently pooled to pro-
duce a bag representation. mi-Net [4] combines projec-
tions from individual instances to generate bag-level 
predictions. TransMIL [5] efficiently handles balanced or 
unbalanced data while capturing morphological and spa-
tial information. Specifically, attention-based methods 
like ABMIL [6] and CLAM [7] can recognize the impact 
of various instances during global aggregation. Due to 
the inherent ambiguities and challenges associated with 
self-labeling, MIL techniques have the distinct advantage 
of leveraging carefully crafted formations and reducing 
manual annotation efforts.

Graph based approaches: Recent attempts to per-
form WSI-level analysis have yielded promising results 
in terms of assessing the microenvironment of the 
entire tissue.Graph-based methods, namely graph con-
volutional networks, have drawn significant attention in 
recent years. This is mostly attributed to their capability 
to effectively capture the entirety of WSIs and analyze 
patterns within them, enabling accurate predictions of 
different outcomes of interest. Recent methods have sug-
gested pooling algorithms for learning hierarchical rep-
resentations for graph embeddings. AttPool [20] is an 
example of a paper that uses an attention pooling layer 
to identify discriminative nodes and construct a coarser 
graph from the resulting attention values. Model learn-
ing was simplified by AttPool’s use of the hierarchical 
structure, and it outperformed state-of-the-art methods 
on multiple benchmark datasets for graph categorization. 
Graph Neural Networks (GNNs) have lately emerged 
as a prominent topic of investigation in several publica-
tions, demonstrating their substantial impact. A number 
of studies have utilized graph-based methods to analyze 
WSIs in order to investigate different aspects related to 
survival analysis [21–24], lymph node metastasis predic-
tion [25], mutational prediction [26], cell categorization 
[27], and retrieval of significant sections [28]. In the field 
of digital pathology imaging, Ilse et  al. (2018) [6] have 
successfully developed the permutation invariant opera-
tor. Graph Neural Networks have been utilized for MIL 
problems due to their permutation invariant characteris-
tics. Using each instance as a node in a graph, it was dem-
onstrated that GNN could be applied to MIL. Tu et  al. 
(2019) [29] demonstrated the applicability of GNN for 
MIL by representing each instance as a node in a graph. 
In order to categorize WSIs expressed in terms of their 
constituent pixels, the methods based on GNN have been 
devised [30, 31]. HIPT [8] created a revolutionary ViT 

architecture to learn from the intrinsic WSI image topol-
ogy, whereas H2Graph [9] built a heterogeneous net-
work with higher scales of WSI to train a dense layer. The 
ProtoMIL method, as defined by Rymarczyk et al., (2021) 
[10], is an innovative approach to MIL that is based on 
graphical representations and is inspired by the by-exam-
ple style of reasoning.

Driven by these recent advancements, we use a learning 
set or MIL strategy to tackle the problem, disregarding 
the interdependencies within the sets. Our methodol-
ogy differs from prior research in its utilization of graph 
mixture model convolution to depict the connections 
between bags. In this study, we employ a combination of 
neural architecture and graph network to comprehen-
sively analyze the bag structure. Subsequently, we pro-
ceed to train the acquired layout in a sequential manner, 
starting from the initial stage and progressing towards 
completion.

Materials and methods
This section presents our proposed framework for 
acquiring representations of WSI through learning. First 
of all, we briefly discuss the proposed method based on 
Variational Graph Auto-encoder (VGAE). The proposed 
method is memory efficient while training and learn-
ing representation that is Non-Euclidean. The proposed 
approach trains all the way through on a bag of instances 
to obtain a representation for each patch. The basic con-
cept involves utilizing a graph that is fully connected, 
denoted by nodes V and an adjacency matrix A. A graph 
can represent any model as a variety of relationships. The 
two standard nodes, denoted as Vi and Vj , are connected 
by weighted edges represented as ai,j . Figure 1 illustrates 
the overall proposed method. From a WSI, the patches 
are samples passing through a feature extraction by using 
a tiling method. All the selected regions’ features are 
extracted using a convolutional neural network that has 
already been trained, and those features are then used to 
build a completely linked graph. The WSI that has been 
provided is employed as a dense graph. In this graph, 
each node that is connected is trained to interact with all 
other connected nodes. After the graph has been pooled, 
it is sent through a Graph Variational Auto-encoder to 
produce the WSI’s final representation. The efficient uti-
lization of memory in processing WSI is a fundamental 
aspect of the process. Final WSI representation has led to 
classifying applications.

The ongoing research centers on utilizing GNNs to 
learning graph representations in the context of MIL. The 
study introduces a new method for addressing the MIL 
problem. Two phases comprise the suggested approach 
for expressing a WSI a) Sampling critical patches, arrang-
ing them in a fully-connected graph; and b) itemizing the 
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Fig. 1 The Overall process of proposed method. 1st row describes building patch using Tiling method. Middle row showing building the graph. 
And last row showing Deep Graph Neural Network Training procedure
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results to classify the fully-connected graph, and permut-
ing it into a vector form. The entire technique could be 
created in an individual training loop. The significance 
associated with our technique is the generation of the 
adjacency matrix, which is a structure that describes the 
relationships between nodes. The technique can summa-
rize as follows. 

1. The present study employs a tiling-based approach 
to extract noteworthy patches from a WSI. A pre-
trained CNN is employed to extract features from 
individual sampled patches.

2. The provided WSI is thereafter represented as a fully 
linked graph. The adjacency matrix normally con-
nects every node to every other node. During the 
Adjacency Layer training block, the adjacency matrix 
is trained.

3. Subsequently, the graph underwent processing via a 
GCN, succeeded by a graph pooling layer, resulting 
in the ultimate vector representation for the given 
WSI.

Deep Graph Convolution Layers We started estab-
lishing the VGAE component of the WSI. We tried out 
two different GCNs, the spectral approach ChebNet and 
the spatial method GraphMMConv. Each of the GCN’s 
hidden layers simulates the interaction between the 
nodes and converts the feature into a new feature space. 
The next step is a pooling layer, which is responsible for 
converting the characteristics of each node into a vector 
representation. Because of this, a WSI may now be rep-
resented by a compressed vector, which has the further 
benefit of being used for a variety of other purposes, like 
image retrieval, classification, and so on.

MIL training approach Our suggested method is 
applicable across the range in the MIL environment. The 
steps taken to address MIL concerns are as follows: Each 
instance is modeled as a vertex, and its characteristics are 
treated as features. The bag of instances is trained within 
a global context to calculate features for the adjacency 
matrix. Each instance as vertex and aij in adjacency fea-
tures A that represents the edge weight between vi and 
vj construct a dense graph. The integration of deep graph 
convolution network facilitates the training of the graph’s 
representation. This representation is subsequently pro-
cessed through a graph pooling layer to get a feature vec-
tor that represents the bag of instances. The vector of 
features derived from the graph can be utilized for clas-
sification purposes.

Feature extraction The study employed a sliding 
window technique, as described by [32], to generate 
small patches from the entire slide. These patches were 
then classified using a residual neural network. The 

predictions from the patches were pooled, and a heuristic 
was utilized to determine the predominant and nominal 
histological patterns for the slide in the whole. Each pre-
dicted patch was evaluated separately from its neighbors 
and from its position in the whole slide.

Graph building We suggest a new approach to learn-
ing WSI representations of GNN. Each WSI is trans-
formed into a dense graph which has two components 
node v and Adjacency matrix A. Each node is repre-
sentative of a feature vector and correlates with the fea-
tures extracted from a patch.Conversely, the relationship 
among nodes v is denoted by the Adjacency matrix A. 
Adjacency matrix A is learned using patch features in a 
convolution layer. The training methodology employed in 
our study involves the iterative learning of the adjacency 
matrix in a sequential manner, utilizing the l2 distance 
as a threshold for pre-calculated features. We proposed 
to use context information that connection between two 
same nodes or patches are uncommon for various WSI. 
Consequently, the value of an element in the adjacency 
matrix is contingent upon the links between two patches 
as well as the contextual characteristics of said patches. 
We assume S be a WSI and s1, s2, . . . , sn . The patches went 
through to feature extraction through a layer, resulting in 
the derivation of feature representation xi . Then using 
these features xi to obtain the context through Zaheer 
et al [33] theorem. The process of obtaining the context 
vector involves the utilization of the pooling operator φ 
to combine feature vectors from all patches.

The context vector c is subsequently subjected to con-
catenation and MLP layers, resulting in the concatenated 
feature vector x′i . This process facilitates the conversion 
of the new feature vector x∗i  , which conveys patch infor-
mation in conjunction with context. To make a form as 
feature matrix X∗ , features x∗i  are stacked together. Pass-
ing the features through the correlation layer yields the 
adjacency matrix A, where each element aij indicates the 
level of correlation between patches si and sj . The dense 
graph representation of WSI employs the notation aij to 
denote the weights of edges connecting distinct nodes.

Deep graph convolution network We experimented 
with two types of GCN: ChabNet, which uses a graph 
neural network, and GMMConv, which uses a Gauss-
ian mixture model convolution operator, to implement 
the graph representation of the WSI. Within GCN mod-
els, every hidden layer establishes connections between 
nodes and converts the features into a distinct latent 
space. Ultimately, a layer of pooling is used to combine 
node characteristics into a solitary vector representation.

GVAE We employ a graph convolution network 
(GCN) [34] encoder and a straightforward inner product 

(1)c = φ(x1, x2, . . . , xn)
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decoder. We apply a simple inference model parameter-
ized by two GCN layer

where µ = GCNµ(X ,A) is the matrix of means vectors 
µi . on the other hand, logσ = GCNσ (X ,A) . The two layer 
GCN is represent as GCN (X ,A) = ÃReLU(ÃXW0)W1 
with weight matrices Wi GCN mean and average layer 
share first layer parameters. ReLU utilizes the max opera-
tor, and the symmetrical normalized adjacency matrix. 
Models with inner product between latent variables are 
generative.

where Aij are the elements of A and σ(.) is the logistic sig-
moid function.

Loss function We consider the prior distribution on 
the random variable z to learn the encoder and decoder 
parameter of VAE i.e., φ and θ that models distribution of 
x. So the lower bound can be calculated as

where KL represents the Kullback-Leibler diver-
gence between q(.) and p(.), a priori Gaussian 
p(Z) = prodip(zi) . For sparse A, it will be useful to over-
write weight terms with Aij = 1 or otherwise zero. For 
training purposes, we use full-batch gradient descent and 
the reparameterization method. The identity matrix will 
be utilized in Graph Convolution Networks (GCN) in 
lieu of the input feature matrix X.

Experiment
We analyzed the effectiveness of the method using two 
real datasets MIL public dataset MUSK and TCGA lung 
cancer slide Dataset. We conducted multiple trials to 
train and evaluate our model. The TCGA data coupled 
with the same hyperparameters were utilized as a sepa-
rate dataset for model testing. On the MUSK1, the pro-
posed method achieved a state-of-the-art accuracy of 
93%. Our model was also used to differentiate between 
two sub-types of lung cancer: Lung Adenocarcinoma 
(LUAD) and Lung Squamous Cell Carcinoma (LUSC).

(2)q(Z|(X ,A)) =

N

i=1

q(zi|X ,A)

(3)q(zi|X ,A) = N (zi|µ, diag(σ
2
i ))

(4)p(A|Z) =

N∏

i=1

N∏

j=1

p(Aij|zizj)

(5)p(Aij = 1|zi, zj) = σ(zTi zj)

(6)
L = Eqφ(Z|X ,A)[logp(A|Z)] − KL[q(Z|(X ,A)||p(z))]

Experiment settings We initially pre-train a classi-
fication network using 10-fold cross-validation, which 
involves splitting 10 different training sets into 60% train-
ing sets, 20% validation sets, and 20% test sets. We next 
evaluate the network using the area under the receiver 
operating curve (AUC/AUROC) and weighted F1-Score. 
Using the ResNet pretrained network and a distinct 
ImageNet-pretrained model for each fold, we were able 
to extract features from WSIs of the neural network. The 
construction of a graph involved the computation of spa-
tial adjacency among the patches, followed by the storage 
of node-level embedding of the attribute matrix subse-
quent to the extraction of image features. To incorporate 
graph convolution networks, we used Pytorch Geometric 
Library [35] trained using Nvidia RTX3090 GPUs. Each 
WSI was cropped to produce a set of 512× 512 non-
overlapping patches at20× magnification, with patches 
from the background whose non-tissue areas were 
larger than 50 discarded. The CNN backbone used for 
the feature extractor is Resnet18. We use a mini-batch 
size of 512, the Adam optimizer, and a cosine anneal-
ing approach to our learning rate schedule. The trained 
feature extractor was kept and used to generate graphs. 
The model layer’s parameters were L = 3 , MLP size = 
123, D = 64 , and k = 8 ; we used a graph convolution 
layer (GCN). Eight samples at a time were used to train 
the model over the course of 150 iterations. Starting at a 
rate of 103, the learning rate gradually decreased through 
steps 30 and 100, final learning at a rate of 105. For a 
node-level classification on the training slides, we used 
stochastic gradient descent of Cross-Entropy loss and 
evaluated our GNN’s ability to generalize on the testing 
data of the WSIs graph using F1-Score for each cross-val-
idation fold. We kept the anticipated embeddings, pre-
dictions on the validation and test sets, and the training 
epoch with the greatest validation F1-score for each fold 
of cross-validation.

Evaluation To evaluate the efficacy of our approach 
and cutting-edge techniques, the Area Under the 
Receiver Operating Characteristic Curve (ROC-AUC), 
accuracy, precision, recall, and F1-score are used. 
Specifically,

(7)Accuracy =
TP + TN

TP + FP + FN + TN

(8)Precision =
TP

TP + FP

(9)Recall =
TP

TP + FN
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The initials TP, FP, TN, and FN stand for true positive, 
false positive, true negative, and false negative, respec-
tively. When comparing the performance of various 
methods, ROC-AUC is the most comprehensive of these.

Results
MUSK dataset The MUSK dataset comprises a total 
of 92 instance bags, with 47 of them being positive and 
45 of them being negative. Instances of the bag refer to 
the precise shape or characteristics of a molecule. In the 
event that novel molecules possess a musky quality, we 
shall discern such dissimilarities in the context of bags. 
A 10-fold cross-validation was conducted using prede-
termined arbitrary seeds. In Tables 1 and 3, we presented 
a comparative analysis of our proposed method against 
various state-of-the-art techniques. The graph was 
designed using miGraph’s kernel [36], and it represents 
the items contained within a bag. The MI-Net [4] and 
Attention MIL [6] models are implemented using Deep 
Neural Network architecture and utilize either pooling or 
attention mechanisms to obtain the bag representation.

LUAD & LUSC Non-small cell lung cancer (NSCLC) 
is a prevalent form of lung cancer, with Lung Adenocar-
cinoma (LUAD) and Lung Squamous Cell Carcinoma 
(LUSC) being two significant sub-types. Collectively, 
these two sub-types constitute approximately one-third 
of all lung malignancies. Building automated systems 
requires a number of steps, one of which is the automatic 
categorization of the two primary sub-types of NSCLC. 
We were successful in obtaining 1026 diagnostic WSIs 
from the TCGA archive that is stained with hematoxylin 
and eosin (H &E), which include LUAD and LUSC. We 
chose relevant patches from across all of the WSIs with 
the use of a tile-based patch selection system. Applying 
ImageNet [37] got image components from these patches 
and each bag is a set of features characterized as LUAD 
or LUSC. Our method determines the bags as two lung 
cancer subclass. The significant AUC rate gained for 
10-fold distribution was 0.932 and the average AUC score 
across all fold was 0.91.

(10)F1− score =
TP

TP + FN

The cross-validation on various subjects is performed, 
the training performed using WSIs on a distinct class of 
subjects than the testing. We present the data in tables 
referred to as Tables  2 and 3. Using a transfer learn-
ing approach, we achieved state-of-the-art precision. 
We squeezed patch components from a prevailing pre-
trained network. They will improve the feature extractor 
during the training. Figure 2 shows the training loss over 
epochs for each of the folds.

Black-box characteristics of deep neural networks 
are among the barriers to the functional deployment of 
advanced neural network models in computational diag-
nostics. Because our proposed technique uses VGAE, 
we can observe the weight that our network’s prediction 
algorithm assigns on each patch. This depiction can pro-
vide the pathologist with greater insight into the model’s 
internal decision-making process. Figure  3 visualize 
important high-score patches. The global attention pool-
ing layer is taught to award patches an attention score. 
Higher attention levels imply that the model gives these 
patches greater consideration. As instances presented 
for insightful analysis are queued, the CAD system might 
identify regions of interest and select cases based on ana-
lytic requirements. We discover that parts with a higher 
score for attention contain more nuclei. Because of the 
fact that morphological characteristics of nuclei are 
essential for diagnostic decisions [40], the network learns 
this property.

Comparison with state-of-the-art methods We pre-
sent the results in Table  3, which includes comparisons 
with ABMIL (2018), Gated-ABMIL (2018), MI-Graph 
(2019), CLAM-MIL, Deep-Attention MIL (2020), GT-
MIL (2021), Trans-MIL (2022), graph message passing 
(GCN), and our MIL-GNN framework. Across all evalu-
ation metrics, our approach consistently outperforms the 
others on both the MUSK1 and TCGA datasets. Notably, 
GT-MIL (2021) stands out as the most effective approach, 
highlighting the significant impact of the Graph-Trans-
former architecture in WSI analysis. It’s worth noting 
that GT-MIL, unlike our techniques, employed Min-Cut 
pooling and formed a Graph-Transformer network in the 
task setting.

Table 1 Evaluation of MUSK dataset

Model Accuracy

mi-Graph 0.889

MI-Net 0.887

Attention-MIL 0.892

Attention-MIL with gating 0.900

MIL-GNN 0.932

Table 2 Evaluation of MUSK dataset

MIL-GNN has improved 3% ROC-AUC than Yue el at. model on cross- validation 
data

Model ROC-AUC 

Coudray et al. [16] 0.67

Khosravi et al. [38] 0.65

Yu et al. [39] 0.68

MIL-GNN 0.71
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Figure 4 depicts the feature vector of the WSI of the 
t-SNE plot. It visualized distinct differences among can-
cer sub-type and showed the strength of our proposed 
method.

Our framework exhibits notable performance enhance-
ments over GT-MIL, showcasing improvements of 1.50% 
in AUC, 2.54% in accuracy (ACC), and 1.33% in F1-score 
when applied to both the MUSK dataset and the TGCA 

Table 3 Comparison with other methods on MUSK and TCGA dataset

MIL-GNN has improved 3% ROC-AUC than Yue el at. model on cross- validation data

Method MUSK TCGA 

AUC ACC F1 AUC ACC F1

ABMIL 91.51 86.47 86.33 89.51 82.47 69.75

Gated-ABMIL 93.01 85.03 84.15 89.01 83.03 66.38

MI-Graph 89.7 88.9 78.6 89.7 83.9 70.66

CLAM-MIL 77.10 73.45 73.55 77.10 73.45 72.86

CLAM-SB 92.17 88.66 87.53 92.17 82.66 72.89

GT-MIL 95.92 89.87 89.93 92.92 85.87 77.01

MI-Net 89.03 88.7 86.4 89.03 84.7 75.21

DS-MIL 87.30 81.63 81.05 87.30 80.63 74.25

Trans-MIL 94.24 86.59 86.48 91.24 83.59 76.52

GCN 91.03 89.12 86.14 91.03 84.7 78.4

MIL-GNN 97.42 92.41 91.26 94.3 86.4 82.24

Fig. 2 KL divergence loss over epoch
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lung cancer dataset. This reaffirms the validity of the 
models within our framework. However, it’s particu-
larly noteworthy that our framework has significantly 
improved the classification of cancer subtypes. This 
achievement is of greater significance, possibly attrib-
uted to the robust and adaptable representations learned 
within the MIL-based graph variational auto-encoder 
learning paradigm.

Ablation study We evaluated the effectiveness of our 
proposed approach on various configurations of the 
TCGA dataset. For our Deep Graph Convolution Net-
work, we examined the following layers and configu-
rations: A) MIL-GNN, B) VGAE + GCE, C) VGAE + 
without GCE, D) with Graph, and E) without Graph. The 
experiments demonstrated a significant performance 
advantage of GMMConv over ChebNet. Additionally, 
we analyzed different encoder layer settings. The results, 
along with parameter settings, are presented in Table 4. 
We compared the results obtained when applying the 
method with and without the creation of a graph.

From ROC-AUC accuracy rate, MIL-GNN demon-
strate significant improvement with 90.6% than VGAE-
GNN. The assessment shows the improvement over the 
graph feeding. ROC-AUC rates improve With Graph 68.6 
where without Graph 60.1. Also, it presents fewer false 
negatives. Furthermore, this demonstrates that the model 
can be improved. By completing structural information, 
performance can be improved.

Fig. 3 WSI patches with LUSC and LUAD, respectively. Patches are placed such that the top three on the left side are the most significant 
and the bottom row is less critical, and the opposite is true for the right side

Fig. 4 The t-SNE plot for LUAD and LUSC characterized in WSIs

Table 4 Ablation study results

Model Input Accuracy Precision Recall F1-Score ROC-AUC 

MIL-GNN 0.9274 0.6601 0.8631 0.786 90.6

VGAE +GCE 0.6965 0.575 0.7931 0.666 71

VGAE + with-
out GCE

0.587 0.4902 0.8621 0.6250 67.3

Graph 0.6761 0.595 0.8621 0.5945 68.6

Without Graph 0.4225 0.4902 0.7631 0.5974 60.1
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Discussion
We’ve developed a graph-based MIL-GNN approach that 
integrates graph structures to construct a systematic clas-
sifier for distinguishing WSIs between LUAD and LUSC. 
Our method excels when compared to recent architec-
tures utilizing diverse state-of-the-art compositions, 
as measured by various model performance metrics. 
Our graph neural network technique adeptly identifies 
regions within WSIs that exhibit strong correlations with 
the predicted outcomes. These findings represent sig-
nificant strides in the field of interpretable deep learning, 
concurrently advancing the realms of machine learning 
and digital pathology.

Despite the substantial progress, the domain of digital 
pathology remains a work in progress, primarily due to 
the sheer volume of high-resolution images. While these 
models demonstrate a capacity for accurate predictions, 
they often fall short in capturing temporal connectiv-
ity insights effectively. As a result, the attribution of sig-
nificant image-level features for deploying such methods 
may yield mixed results. Our GNN approach effectively 
addresses this challenge by aggregating WSI-level data 
into a comprehensive graph structure, marking a nota-
ble advancement in the field. The development of a graph 
that emphasizes WSI regions associated with class labels 
stands out as one of the distinctive contributions of our 
research.

Nevertheless, our study does have certain limitations. 
We made an assumption regarding GNNs’ ability to 
capture patch-level data and their spatial layout. Addi-
tionally, we acknowledge the potential for bias in spe-
cific cross-validation folds. Since we stratified patches 
based on whether they exhibited elevated or decreased 
prevalence, WSIs may exhibit a range of characteris-
tics, rendering their presence unpredictable. The GNN’s 
performance suffered due to the presence of numerous 
unknown parameters. To mitigate this, we employed 
deep learning to generate patch-level feature vectors 
before embarking on the design and construction phase, 
a task that proved to be computationally intensive.

Conclusion
We present MIL-GNN, a deep learning method based 
on GMMConv and Variational Graph Auto-encoder, 
consisting of detection and classification stages. Initially, 
we convert each whole slide into patch features, treat-
ing each patch as a bag to construct a graph by learning 
the adjacency matrix. Next, we employ a GNN-based 
embedding design to train the graph model of the VGAE 
(Variational Graph Auto-encoder) Deep Graph Neural 
Network. Finally, the resulting representation is fed into 
an MLP-based classifier to estimate the bag level. The 

outcomes highlight the superior performance of the pro-
posed technique. We can use an adjacency matrix to vis-
ualize relevant patches, making the suggested approach 
straightforward and interpretable. Future work will 
explore the effects of deep GNN models with multiple 
layers. Additionally, we will investigate automatic train-
ing and the identification of pertinent histopathological 
architectural characteristics to obtain semantic features, 
which present intriguing prospects.
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