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Abstract 

Background  The machine learning models with dose factors and the deep learning models with dose distribution 
matrix have been used to building lung toxics models for radiotherapy and achieve promising results. However, few 
studies have integrated clinical features into deep learning models. This study aimed to explore the role of three-
dimension dose distribution and clinical features in predicting radiation pneumonitis (RP) in esophageal cancer 
patients after radiotherapy and designed a new hybrid deep learning network to predict the incidence of RP.

Methods  A total of 105 esophageal cancer patients previously treated with radiotherapy were enrolled in this study. 
The three-dimension (3D) dose distributions within the lung were extracted from the treatment planning system, 
converted into 3D matrixes and used as inputs to predict RP with ResNet. In total, 15 clinical factors were normalized 
and converted into one-dimension (1D) matrixes. A new prediction model (HybridNet) was then built based on a 
hybrid deep learning network, which combined 3D ResNet18 and 1D convolution layers. Machine learning-based 
prediction models, which use the traditional dosiomic factors with and without the clinical factors as inputs, were 
also constructed and their predictive performance compared with that of HybridNet using tenfold cross validation. 
Accuracy and area under the receiver operator characteristic curve (AUC) were used to evaluate the model effect. 
DeLong test was used to compare the prediction results of the models.

Results  The deep learning-based model achieved superior prediction results compared with machine learning-
based models. ResNet performed best in the group that only considered dose factors (accuracy, 0.78 ± 0.05; AUC, 
0.82 ± 0.25), whereas HybridNet performed best in the group that considered both dose factors and clinical factors 
(accuracy, 0.85 ± 0.13; AUC, 0.91 ± 0.09). HybridNet had higher accuracy than that of Resnet (p = 0.009).

Conclusion  Based on prediction results, the proposed HybridNet model could predict RP in esophageal cancer 
patients after radiotherapy with significantly higher accuracy, suggesting its potential as a useful tool for clinical 
decision-making. This study demonstrated that the information in dose distribution is worth further exploration, 
and combining multiple types of features contributes to predict radiotherapy response.
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Background
Radiotherapy is the mainstay treatment for esopha-
geal carcinoma, and the radiation pneumonia (RP) 
is one of the most serious complications of thoracic 
radiotherapy [1, 2]. RP affects the normal progress of 
radiotherapy and causes a decline in patients’ quality 
of life. Previous studies suggest that radiation dose is 
a key risk factor for the development of radiotherapy-
induced lung injury, including mean lung dose and 
dose-volume histogram parameters such as lung V5, 
V10, V20, and V30 [3–8]. Advances in computer sci-
ence have enabled researchers to describe the radia-
tion effects more explicitly, using three-dimensional 
dose distribution features [9–11]. This has led to the 
development of dosiomics, a method derived from 
radiomics, which uses mathematical transformations 
to extract the spatial characteristics of dose distribu-
tion to predict radiation response [12]. Liang et  al. 
used the dosiomic method to extract dosiomic fea-
tures from the lung dose distribution in non-small 
cell lung cancer patients undergoing radiotherapy, 
and demonstrated that using dosiomics characteris-
tics can improve the accuracy of the prediction model 
for RP in this population [9]. In their follow-up study, 
they extended the model to a dual-omics model that 
combined dosiomic characteristics and ventilation 
image features and implemented it using deep learn-
ing technique to achieve a better predictive perfor-
mance [13].

Despite the promising results from using dosiomic 
parameters and deep learning models explore the 
value of dose distribution in predicting the risk of RP, 
few studies have integrated clinical features into these 
models. Several studies have suggested that in addi-
tion to the absorbed dose, other factors, such as basic 
diseases, biological markers, gene polymorphism, lung 
function and mode of treatment can also influence the 
incidence of RP. At present, it is generally considered 
that the occurrence of RP is a complex process that is 
influenced by both clinical factors and dosimetry fac-
tors [14–19]. However, clinical factors have not been 
combined with dosiomic features in deep learning RP 
prediction models. In addition, most dosiomic and 
deep learning studies have focused on lung cancer, 
with relatively few studies examining esophageal can-
cer [13].

In this study, we designed a hybrid deep learning 
model, which combined dose distribution and clinical 
characteristics to predict RP. The hybrid model out-
performed dosiomics-based and machine learning-
based models in predictive accuracy for RP in patients 
with locally advanced esophageal cancer receiving rad-
ical radiotherapy and chemotherapy.

Patients and methods
Patients
Patients with esophageal cancer who underwent radical 
radiotherapy in Zhejiang Cancer Hospital from Janu-
ary 2020 to August 2021 were included in this study. The 
inclusion criteria were as followed: Newly histologically 
or cytologically confirmed esophageal squamous cell car-
cinoma; at the least two cycles of immunotherapy com-
bined with chemotherapy before radiotherapy; without 
surgery; a total radiotherapy dose of more than 50  Gy; 
completion of chest radiotherapy. The exclusion crite-
ria included active coexisting cancer; receiving surgery 
before or after chemoradiotherapy or a total radiother-
apy dose of less than 50  Gy. In total, 105 patients were 
included in this study. All patients received 6-MV X-ray 
external radiotherapy, with a prescription plan target vol-
ume (PTV) dose of 50–61.6  Gy. Among them, 98 cases 
were treated with linacs and 7 cases with tomography. 
Of the patients treated with linacs, 95 were planned in 
the Raystaion Ver9.0 planning system (RaySearch Labo-
ratories AB, Sweden) and 3 in the Eclipse Ver15.0 plan-
ning system (Varian, USA). Tomotherapy planning was 
completed using HiArt TomoTherapy Planning system 
(Accuray Inc., USA). CT images of patients were obtained 
using Brilliance Big Bore CT (Philips Medical Systems, 
Cleveland, USA) and a slice thickness of 5 mm. All plans 
were normalized at 95% of the prescribed dose of PTV. 
The lung tissue was first delineated automatically using 
the threshold segmentation method and then corrected 
by the physicians. Patients’ cough, sputum and respira-
tion were observed after radiotherapy, and chest CT scan 
was performed if necessary. RP was assessed using the 
National Cancer Institute’s Common Terminology Cri-
teria for Adverse Events (CTCAE) Version 5.0 [20]. The 
endpoint was RP (grade ≥ 2) occurring within 6 months 
after initiating radiotherapy. All toxicities occurring at 1, 
3, and 6 months were included.

Data preprocessing
In this study, clinical factors and radiotherapy dose distri-
butions were used to predict RP. All data was anonymized 
before analysis. There were 15 clinical features, including 
PTV volume, chemotherapy regimen, immunotherapy 
drugs, age, gender, smoking status, T stage, N stage, 
tumor location, tumor length, immunotherapy period, 
concurrent chemotherapy, consolidative immunotheray, 
consolidative chemotherapy, and the interval between 
immunotherapy and radiotherapy. Patient demographics 
and details of the features are shown in Table 1. The dose 
distributions inside the lung were derived from DICOM 
data in Gy, resampled to a pixel size of 2.52.52.5 mm3, 
and then converted to 3-dimension (3D) matrixes. The 
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elements in the area outside the lung contour were signed 
0. One of the 3D dose matrixes is shown in Fig. 1(a).

RP prediction model
The purpose of this study was to design and evaluate a 
hybrid deep learning model that could directly integrate 
lung dose matrix and clinical features as inputs and 

generate the probability of RP as the output. To evaluate 
the predictive ability of the proposed model, we com-
pared the machine learning models that extracted dosi-
omic features first with the deep learning model that 
only considered the dose matrix without clinical features. 
Therefore, we built two kinds of models to predict RP: 
a machine learning-based model and 3D deep learning-
based model that used dosiomic features and 3D lung 
dose distribution matrix with and without clinical fea-
tures as input data, respectively. The design of this exper-
iment is shown in Fig. 2.

ML based classifier
Dosiomic features extract
In total, 128 dosiomic features were extracted from 
the lung dose distribution. A dosiomic feature extrac-
tion method similar to the radiomic features extraction 
method was completed using python-based pyradiomics 
Ver3.0 library function [21], which complies with recom-
mendations for standardizing feature extraction by the 
Image Biomarker Standardisation Initiative [22]. Shape 
features were computed from the region with a dose 
larger than 5  Gy, 20  Gy and 30  Gy inside the lung and 
each region had 14 features. In total, there were 18 first-
order features, 22 Gy co-occurrence matrix (GLCM) fea-
tures, 16  Gy run matrix (GLRLM) features, 16  Gy area 
size matrix (GLSZM) features and 14  Gy correlation 
matrix (GLDM) features. The bin width in feature extrac-
tion was set to 1. Since the numerical unit of the dose 
distribution matrix was Gy, a bin width of 1 meant that 
the matrix was discretized with 1 Gy. Feature extraction 
calculation was performed using previously described 
formulas [21]. All the dosiomic features were listed in 
Additional file 1.

Feature selection and reduction
Features were selected using univariate logistic regres-
sion analysis and used to investigate features significantly 
associated with the RP. A p value < 0.05 was considered 
significant. All redundancy features were excluded. Nom-
inal categorical variables shown in Table  1 were trans-
formed into dummy variables. Before analysis, all the 
features were standardized to have a mean of 0value and 
a standard deviation of 1 with the stander scale. To avoid 
model over-fitting due to too many clinical and dosiomic 
features, principle component analysis (PCA) was used 
to further reduce the number of features after univari-
ate logistic regression analysis. The PCA reconstruction 
threshold of 0.9 was used, which meant that the sum 
of the eigenvalues of the reduced dimension variables 
accounts for 90% of the total variance in the original data.

Table 1  Summary of patient data

Continuous variables Median (Range)

PTV Volume (cc) 410.38 (1021.67–98.15)

Age (years) 69 (44–79)

tumor length (cm) 6.0 (1.0–14.0)

interval between immunotherapy 
and radiotherapy (days)

36 (1–98)

Ordinal Categorical Variables

  Cycles of ICI 3 (1–4)

  Cycles of chemotherapy 0 (0–5)

  Cycles of consolidative ICI 0 (0–3)

  T stage 1

2

3

4

  N stage 1

2

3

4

Nominal categorical variables Occurrence

chemotherapy regimen albumin-bound paclitaxel 90

paclitaxel 15

immunotherapy drugs camrelizumab 65

pembrolizumab 13

durvalumab 7

toripalimab 1

Sintilimab 11

Nivolumab 2

Tislelizumab 6

gender Male 99

female 6

smoking status Yes 80

No 25

tumor location Cervical 4

Upper thoracic 13

Middle thoracic 49

Lower thoracic 37

Whole esophagus 2

concurrent chemotherapy Yes 45

No 60

Outcome Occurrence

RP Yes 23

No 82
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Prediction models
Five most commonly used ML-based binary classifiers 
were trained for RP prediction. These included the sup-
port vector machine (SVM), k-nearest neighbors (KNN), 
decision tree (DT), random forest (RF) and eXtreme 
Gradient Boosting (XGboost). The hyper-parameters of 
each classifier were repeatedly adjusted by grid-search 
method to obtain the best prediction value. For SVM 
classifier, the kernel format was linear, and the C was 0.8. 
For KNN classifier, the number of neighbors used was 30. 
For XGboost classifier, the max depth was 10, the learn-
ing rate was 0.1, and the number of estimators was 200. 
Except as mentioned above, all hyper-parameters used 
the default values of Scikit-learn package (V0.24.2) in 
python language [23].

Deep learning based classifier
ResNet
The RseNet18 architecture, which has been success-
fully applied in image classification, was used to predict 
RP. The elemental structure of ResNet18 was the Conv-
BN-ReLU. The convolution and batch normalization 
were performed in the elemental structure first followed 
by rectified linear unit (ReLU) activation. There were 
two kinds of blocks in the network. The first block was 

composed of four sequential Conv-BN-ReLUs with the 
skip connection, whereas the second block comprised 
five Conv-BN-ReLU structures with 4 sequential arrange-
ments and one skip connection. Overall, the RseNet18 
network contained 1 Conv-BN-ReLU, 1 block 1, 3 block 
2 and 1 fully connection layer [24]. In this study, the 3D 
lung dose matrixes were used as inputs and the RP results 
were the output.

HybridNet
In this study, a hybrid net was designed based on 
Resnet18 to combine clinical factors with dose matrixes. 
The last fully connection layer in Resnet18 was alternated 
by adding two fully connection layers with dropout rate 
0.5. The dropout was used to mitigate overfitting, which 
was likely since the number of cases was far less than the 
features extracted. This is a common issue in deep learn-
ing. In the HybridNet, a fully connection layer parallel 
with the ResNet18 was designed to process with the clin-
ical factors. A concatenate layer was used to combine the 
dose features and the clinical factors. The predict results 
were outputted through a dense-softmax layer at the 
end of the net. The ResNet18 and HybridNet architec-
ture is shown in Fig. 3. Both ResNet and HybridNet used 
the same optimized parameters. The RP results were 

Fig. 1  An example of lung 3D dose matrix (a) and its deformation after using the image augmentation techniques. Subfigure b, c, and d represent 
shift, rotate and flip, respectively
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converted to one-hot coding and the cross entropy loss 
function was used to guide the Adam optimizer. The ini-
tial learning rate was 0.1 and adjusted by a factor of 0.01 
every five epochs if the loss function remained constant. 
The limit of learning rate was 0.510–5. The batch size was 
2, and the maximum number of epochs was 500. If the 
loss difference in two adjunct epochs was less than 10–4 
and lasted for 10 epochs, the training would stop early. 
The deep learning network was built using the Keras 
library (V.2.7.0) in python language [25].

Model training and validation
The tenfold cross-validation was used to evaluate the 
prediction performance of the model. The dataset was 
randomly divided into 10 equal parts and stratified 
sampling was used to ensure an equal proportion of 
negative and positive cases in each part. Among them, 
9 were used as training and validation data and 1 as 
test data for the models. The hyper-parameters of each 
classifier were tuned and validated on the validation 

subset. To avoid over fitting, during the training phase 
of the ResNet and the HybridNet, the random rota-
tion range and random width and height shift were 
set to ± 20°and ± 5  cm, and random left–right flipping 
was adopted for data augmentation. The example of 
the image augmentation performed on a 3D lung dose 
matrix were shown in Fig. 1(b, c, and d). The prediction 
performance of the model was quantitatively evaluated 
using two metrics: the average value of the accuracy 
and the area under the working characteristic curve 
(AUC) of 10 models. The accuracy was defined as the 
frequency with which prediction result matched the 
follow-up result, and was calculated by:

where TP, TN, FP and FN meant the number of true 
positive, true negative, false positive, and false negative, 
respectively. The AUC was calculated by:

accuracy =
TP + TN

TP + TN + FP + FN

Fig. 2  Experiment design. Two types of models: machine learning (ML)-based and deep learning (DL)-based models were tested
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Fig. 3  The RseNet18 and HybridNet architecture
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where M and N was the number of positive and negative, 
respectively. I

(

Ppositive,Pnegtive
)

 was calculated by:

where Ppositive and Pnegtive was the predicted probabil-
ity of positive and negative, respectively. The ML classi-
fier building and the cross validation were implemented 
using the Scikit-learn package (V0.24.2) in python lan-
guage [23].

Statistical analysis
To evaluate the differences between the models con-
structed using different features, the data were randomly 
divided into training set and test set at 1:1 ratio. The 
Delong test was then performed to evaluate the signifi-
cant differences between the models using an in-house 
program in python language [26]. A p value < 0.05 was 
considered significant.

AUC =
I(Ppositive,Pnegtive)

M × N

I
�

Ppositive,Pnegtive
�

=







1,Ppositive > Pnegtive
0.5,Ppositive = Pnegtive
0,Ppositive < Pnegtive

Results
Among the 105 patients enrolled in this study, 23 (21.9%) 
developed RP of grade 2 or above after radiotherapy, 
including 16, 6, and 1 cases with grade 2, 3, and 5 RP, 
respectively.

The results of univariate logistic regression analysis are 
shown in Table 2. Out of a total of 143 features used, 83 
were significantly correlated with the incidence of RP. In 
the 15 clinical features, the cycles of immune checkpoint 
inhibitor (ICI) were positively correlated with RP inci-
dence. In the 128 dosiomic features, 82 features were sig-
nificantly different between the RP group and the non RP 
group. The detail of analysis results was listed in Addi-
tional file 1. After applying PCA to the features, the fea-
ture dimensions reduced to 6.

Table  3 shows the accuracy and AUC of each model. 
The results of DeLong test between the models con-
structed with and without clinical features are shown in 
the last column. For the DT, XGboost and deep learning 
methods, the model incorporated clinical features sig-
nificantly better than the model only using dosiomic or 
dose distribution features. ROC curves of the models are 
shown in Fig. 4.

Discussion
As one of the most common complications of esophageal 
cancer radiotherapy, RP affects normal progress of radio-
therapy and reduces the quality of life of patients. In the 
current study, a new prediction model HybridNet was 
proposed to predict the incidence rate of RP in esopha-
geal cancer patients receiving radiotherapy. HybridNet 
used a deep convolution network to explore the dose 
distribution data of lungs and combined clinical features 
with dose information. The use of deep learning network 
helped improve RP prediction performance by mining 
as much information as possible from the dose distribu-
tion. We also designed experiments to study the value of 
integrating clinical factors into the RP prediction model. 
The results showed that combining clinical factors with 
dose information could effectively improve the predic-
tion accuracy as long as appropriate models are selected, 

Table 2  The results of univariate logistic regression analysis

total features correlated 
features

Clinical features 15 1

Dosiomic features 500cGyROI shape 
features

14 6

2000cGyROI shape 
features

14 6

3000cGyROI shape 
features

14 8

First order features 18 16

GLCM features 22 19

GLRLM features 16 12

GLSZM features 16 3

GLDM features 14 12

Total 143 83

Table 3  The accuracy and AUC of each model

accuracy AUC​ accuracy AUC​ p

SVM1 0.68 ± 0.12 0.63 ± 0.20 SVM2 0.61 ± 0.12 0.68 ± 0.16 0.061

KNN1 0.78 ± 0.04 0.71 ± 0.18 KNN2 0.78 ± 0.04 0.68 ± 0.17 1.000

DT1 0.71 ± 0.14 0.61 ± 0.20 DT2 0.72 ± 0.12 0.62 ± 0.18 0.035

RF1 0.79 ± 0.09 0.60 ± 0.23 RF2 0.78 ± 0.07 0.68 ± 0.21 0.706

XGboost1 0.73 ± 0.12 0.51 ± 0.20 XGboost2 0.78 ± 0.09 0.61 ± 0.21 0.041

ResNet 0.78 ± 0.05 0.82 ± 0.25 HybridNet 0.85 ± 0.13 0.91 ± 0.09 0.009
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especially in deep learning-based models. The prediction 
model established in this study could accurately predict 
RP and identify esophageal carcinoma patients with a 
high risk of RP, and could serve as an effective tool in the 
planning evaluation stage to determine whether further 
improvements are needed to the current radiotherapy 
treatment plan.

Machine learning and deep learning are both cutting-
edge mathematical methods in the medical field, and 
have achieved great success in fields such as automatic 
segmentation [27–30], radiotherapy dose prediction 
[31–34], automatic treatment planning [35–37], disease 
severity assessment [38], and prognosis evaluation [11, 
39, 40]. Radiomics, the source of dosiomics, are also fron-
tiers for analyzing medical images. A series of detailed 
and in-depth studies have been carried out on radiomics, 
such as the importance of repeatability and robustness 
of features [40, 41], and the progress from conventional 
radiomic features to tensor radiomic features [39, 42]. 
Dosiomics, on the other hand, has not yet been studied 
in such depth.

In this study, whether in the experimental group with 
or without clinical features, the deep learning-based clas-
sifier showed higher accuracy than ML-based classifier. 
In the ML model, we used the dosiomic method, which 
is one of the best feature extraction methods for mining 

information from radiotherapy dose distribution [9, 10, 
12]. The dosiomic method could extract hundreds of fea-
tures, including texture, shape and other information, far 
exceeding the number of traditional dose-volume histo-
gram features. However, the dosiomic features calcula-
tion method is derived from radiomics, which is used to 
extract data from medical images for diagnosis, and the 
calculation method is not specifically optimized for pre-
dicting biological tissue reaction to radiation. In contrast, 
in the deep learning model, the feature extraction is not 
based on fixed mathematical formulas, but on the feed-
back adjustment of convolution filters according to the 
prediction results obtained during the training process. 
In addition, the model specifically mines information on 
biological effects in dose distribution. The deep learning 
network also outperforms traditional methods in pre-
dicting radiation-induced xerostomia [43] and provides 
a dual-omics prediction model with a better predictive 
value for RP [13].

Most previous deep learning-based prediction models 
only used dose distribution matrixes to predict biologi-
cal effects, but these may not be optimal for predicting 
toxicity. To the best of our knowledge, this is the first 
study to incorporate clinical variables into deep learn-
ing network to predict the RP of esophageal cancer 
radiotherapy. As can be seen from Table 3, the effect of 

Fig. 4  ROC curves of predictive models
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adding clinical characteristics on prediction performance 
varied between models. According to the results of the 
Delong test, after adding clinical features, the results 
of DT models improved, but to a less extent compared 
with XGboost and deep learning models. Methods using 
either dosiomics features or deep learning-extracted fea-
tures aim to mine as much information as possible from 
dose distribution. In contrast, the description of clinical 
variables is so simple that important information may be 
ignored when the dose features is complex. Among the 
models tested in this study, XGboost and deep learning 
models were shown to better retain clinical features, pro-
viding valuable information for prediction.

The risk of over-fitting in deep learning models is com-
mon, especially when the amount of training set data is 
small. To overcome this limitation, the proposed Hyb-
ridNet used data augmentation, regularization and drop-
out. In the training progress, the loss function declined 
for both the test set and validation set. The tenfold cross 
validation results showed that the accuracy and AUC 
were 0.87 ± 0.21 and 0.94 ± 0.15 for the validation set and 
0.85 ± 0.13 and 0.91 ± 0.09 for the test set, respectively. No 
significant difference in performance was found between 
validation set and test set, suggesting that the methods 
effectively prevented the model from over-fitting.

The HybridNet architecture was based on the 
ResNet18. The ResNet uses residual blocks with skip con-
nections to mitigate the problems caused by vanishing 
or exploding gradient in deep networks. Since ResNet18 
is a classical and efficient classification network [24], it 
was chosen for predicting RP in this study. Optimiza-
tion of the network structure in future work may further 
improve prediction performance.

Although the proposed HybridNet showed high pre-
dictive performance in RP, further research is still neces-
sary to further improve its performance. One limitation 
of this study is that the effect of dose matrix parameters, 
such as dose grid resolution, dose calculation algorithm 
and the pixel spacing of dose cube, was not studied. As 
these factors have been shown to affect the reproduc-
ibility and stability of dosiomic features [44], it is likely 
that they could also affect the stability of deep learn-
ing models. Therefore, the effect of different input data 
parameters on the performance of HybridNet model 
needs further investigation. A second limitation is that 
other factors such as the ratio of T helper cells 17 and T 
regulatory cells, which strongly predict RP [45], were not 
considered in the HybridNet model. Therefore, our fur-
ther work will attempt to include other relevant variables 
in the HybridNet. A third limitation is that the effect of 
respiratory exercise and setup error on dose distribution 
was not taken into account, and the substructures of the 
lung, such as bronchi, were not considered separately. A 

more accurate dose distribution calculation could further 
improve the predictive accuracy of the HybridNet model.

Conclusion
This study designed a new prediction model HybridNet, 
which was based on deep learning network and com-
bined clinical features with dose information for accurate 
RP prediction after radiotherapy. The HybridNet outper-
formed machine learning-based and dosiomics-based 
models and ResNet model using only dose matrixes 
as input. It achieved improved prediction of RP inci-
dence, suggesting its potential as a useful tool for clinical 
decision-making.
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