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Introduction
PC represents one of the most malignant gastrointestinal 
tumors, characterized by its stealthiness, aggressiveness, 
and high lethality, with a meager 5-year survival rate of 
only 11% [1]. In the United States, PC accounts for over 
62,210 annual diagnoses and more than 49,830 deaths 
[1]. By 2040, PC is projected to surpass lung cancer as the 
second leading cause of cancer-related deaths in the US 
[2].

Current studies have revealed that the occurrence and 
progression of PC are associated with genetic mutations, 
dietary habits, and environmental factors [3, 4]. Among 
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Abstract
Background  Gut microbiota (GM) comprises a vast and diverse community of microorganisms, and recent studies 
have highlighted the crucial regulatory roles of various GM and their secreted metabolites in pancreatic cancer (PC). 
However, the causal relationship between GM and PC has yet to be confirmed.

Methods  In the present study, we used two-sample Mendelian randomization (MR) analysis to investigate the causal 
effect between GM and PC, with genome-wide association study (GWAS) from MiBioGen consortium as an exposure 
factor and PC GWAS data from FinnGen as an outcome factor. Inverse variance weighted (IVW) was used as the 
primary method for this study.

Results  At the genus level, we observed that Senegalimassilia (OR: 0.635, 95% CI: 0.403–0.998, P = 0.049) exhibited 
a protective effect against PC, while Odoribacter (OR:1.899, 95%CI:1.157–3.116, P = 0.011), Ruminiclostridium 
9(OR:1.976,95%CI:1.128–3.461, P = 0.017), Ruminococcaceae (UCG011)(OR:1.433, 95%CI:1.072–1.916, P = 0.015), 
and Streptococcus(OR:1.712, 95%CI:1.071–1.736, P = 0.025) were identified as causative factors for PC. Additionally, 
sensitivity analysis, Cochran’s Q test, the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO), 
and MR-Egger regression indicated no heterogeneity, horizontal pleiotropy, or reverse causality between GM and PC.

Conclusions  Our analysis establishes a causal effect between specific GM and PC, which may provide new insights 
into the potential pathogenic mechanisms of GM in PC and the assignment of effective therapeutic strategies.
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them, through the advancements in metagenomic and 
16 S ribosomal RNA gene sequencing, researchers have 
discovered a correlation between GM and pancreatic 
diseases, including PC [5]. GM dysbiosis not only affects 
intestinal diseases directly [6, 7], but also extends its 
influence to extraintestinal organs, such as the pancreas 
and liver [8]. Studies have observed multiple changes in 
the microbiota of the oral cavity, gastrointestinal tract, 
and pancreas in PC patients compared to healthy individ-
uals, highlighting the role of GM in PC [9]. This altera-
tion in GM exerts its influence on PC through multiple 
mechanisms. Specifically, GM can interact with various 
risk factors for PC, such as obesity and diabetes, trig-
gering an inflammatory response. This activation of the 
inflammatory response can facilitate the entry of GM and 
its secretions into the pancreas through different routes, 
including hematogenous spread, lymphatic metastasis, 
and pancreatic retrograde flow [10]. Furthermore, GM 
influences the development and progression of PC by 
modulating inflammatory responses, immune cell infil-
tration, and other mechanisms [11–13]. However, despite 
this, their causal effect has yet to be discovered.

MR Study is a statistical method widely used to analyze 
the causal relationship between exposure and outcome 
factors, which follows Mendel’s second law and relies on 
the independent random assignment of genetic variants 
during meiosis to realize a similar randomization effect 
as in Randomized Controlled Trials. Thus, MR can effec-
tively overcome the confounders that occur in traditional 
studies and avoid reverse causality [14, 15]. To our knowl-
edge, current MR-based studies have explored the causal 
relationships between GM and autoimmune diseases 

[16], colorectal cancer [17], and psychiatric disorders 
[18], but no MR-based studies have been performed to 
investigate the relationship between GM and PC.

In this study, we employed a two-sample MR approach 
to evaluate the causal effect between GM and PC, provid-
ing insights into the etiology and mechanisms of PC.

Materials and methods
Overall study design
This study utilized pooled-level genetic data to conduct a 
two-sample MR analysis, aiming to investigate the causal 
effect between GM and PC. For this purpose, genetic 
variants that demonstrated significant associations with 
GM exposure were considered as instrumental variables 
(IVs), satisfying three crucial assumptions: the correla-
tion assumption, independence assumption, and exclu-
sion-limitation assumption (Fig. 1).

This study is based on publicly available abstract-level 
data from extensive genome-wide association study 
(GWAS) and consortia. Therefore, no additional ethical 
approval or consent to participate was required for this 
analysis.

Data sources
In this study, the data were derived from extensive GWAS 
and publicly available GWAS data from consortia.

The GWAS summary statistics for GM were obtained 
from a MiBioGen consortium meta-analysis [19–23], 
This meta-analysis included a total of 18,340 individuals 
from 24 cohorts, with a majority of individuals having 
European ancestry (n = 13,266). The microbial compo-
sition was analyzed by targeting variable regions V4, 

Fig. 1  An overview of the study design. SNP: single nucleotide polymorphisms; IVs: instrumental variables
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V3-V4, and V1-V2 of the 16  S rRNA gene, and classifi-
cation was performed using direct taxonomic sub boxes. 
At the genus level, 131 genera with an average abundance 
higher than 1% were identified, including 12 unknown 
genera. Therefore, a total of 119 genus-level taxo-
nomic units were included in the analysis and analyzed 
separately.

The GWAS summary statistics for PC were obtained 
from the FinnGen Consortium R9 release and included 
377,277 patients (210,870 females and 166,407 males) 
with 20,175,454 variables. This study used the “Malignant 
neoplasm of pancreas” phenotype and included 1416 
cases and 287,137 controls after adjusting for age, sex, ten 
significant components, and genotyping cohort [24–26].

Instrumental variables
The following selection criteria were used to select IVs: 
(1) At the beginning, the genome-wide significance 
threshold for single nucleotide polymorphisms (SNPs) 
associated with GM was set to P < 5 × 10− 8. Since the 
number of eligible IVs (P < 5 × 10− 8) was minimal, a rela-
tively more comprehensive threshold ( P < 1.0 × 10− 5 ) 
was finally chosen [27], (2): IV1000 Genomes project 
European samples data were used as reference panel 
to calculate the linkage disequilibrium (LD) between 
SNPs, and the LD threshold was set to r2 < 0.001 with 
an aggregation window of 10,000  kb (clumping window 
size = 10,000 kb) [28], (3): remove SNPs with minor allele 
frequency (MAF) < 0.01, for MAF values no marked in 
the database, by querying the literature [27] as well as rel-
evant databases(http://www.phenoscanner.medschl.cam.
ac.uk/)0.4: If the specific requested SNP does not exist in 
the resulting GWAS, the SNP(proxy) located in the LD 
with the requested SNP(target) will be searched (R2 > 0.8). 
LD proxies were defined using 1000 genomes of the 
European sample data. To avoid strand orientation or 
distortion of allele coding, we removed palindromic SNPs 
[18]. 5: In order to exclude potential associations between 
IVs and risk factors for PC, we identified the risk factors 
for PC as: smoking, diabetes, alcohol consumption, and 
chronic pancreatitis, according to the NCCN guidelines 
[29]. And the IVs were analysed with these risk factors 
using the PhenoScanner database and excluded SNPs 
that were potentially associated with PC risk factors.

F-statistic
The IVs included in the MR analysis should exhibit a 
significant association with the exposure. To assess the 
strength of the IVs, the F-statistic is commonly used. The 
F-statistic can be calculated using the formula: F = R2(n 
- k − 1) / k (1 -R2), where R2 is the proportion of the 
explained variance of the exposure by the genetic instru-
ment, n is the sample size, and k denotes the number of 
IVs included. If the calculated F<10, it indicates a weak 

link between the IVs and the exposure, and such IVs were 
excluded from the analysis.

MR
Our MR analysis was conducted following the guidelines 
outlined in the STROBE-MR statement [30](Table S1). 
The MR process flowchart is shown in Fig. 2.

To evaluate the causal estimates of GM on the risk of 
PC, we employed several MR methods, including inverse 
variance weighting (IVW) [31] the weighted median 
(WM) method [32], the MR-Egger test [33], Weighted 
mode (WMO) method, and robust adjusted profile score 
(RAPS) [34] method. The IVW method uses a meta-
analysis method to combine Wald estimates of each 
SNP to obtain GM’s overall estimate of PC. If no hori-
zontal pleiotropy is present, an unbiased result can be 
obtained by IVW linear regression [34, 35]. Therefore, in 
this study, IVW was employed as the primary method, 
while another four methods were used as complementary 
approaches.

Heterogeneity was assessed using Cochrane’s Q test, 
and IVs with P < 0.05 were considered heterogeneous. 
Additionally, the MR-Egger regression test was employed 
to examine the presence of horizontal pleiotropy in MR 
analysis. If P > 0.05, horizontal pleiotropy was considered 
not to be present. We would further analyze the pleiot-
ropy using MR-PRESSO and remove possible outliers to 
ensure the accuracy of the results for GM taxa causally 
related to PC (based on IVW results), Furthermore, sen-
sitivity analysis was conducted by iteratively removing 
each SNP to implement the leave-one-out method, aim-
ing to verify the reliability and stability of the estimated 
causal effects [28].

Statistical analysis
R software was used to conduct all statistical analy-
ses (version 4.2.2). We performed MR of the causal link 
between GM and PC using the “TwoSample MR” pack-
age. 119 different MR Analyzes were conducted indepen-
dently of each other, so we did not perform Bonferroni 
correction for multiple testing. P < 0.05 was considered 
statistically significant as evidence of a potential causal 
effect.

Results
Selection of instrumental variables
Based on the principles of instrumental variable selec-
tion, a total of 119 genus-level GMs containing 1198 
SNPs (P < 1 × 105) were finally identified as IVs in the MR 
analysis, and the details of all SNPs are detailed in Table 
S2.

http://www.phenoscanner.medschl.cam.ac.uk/)
http://www.phenoscanner.medschl.cam.ac.uk/)
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Fig. 2  The flow chart of MR analysis. SNP: single nucleotide polymorphisms; MR: Mendelian Randomization

 



Page 5 of 10Jiang et al. BMC Cancer         (2023) 23:1091 

MR analysis
IVW was chosen as the primary method for MR analy-
sis because of its higher statistical efficacy. We identi-
fied six genus-level GMs (42 SNPs in total) that were 
causally associated with PC. Alloprevotella (OR: 0.752, 
95% CI: 0.570–0.993, P = 0.045) was excluded because it 
was a weak instrumental variable (F = 9.8). We eventu-
ally identified five genus-level of GMs with the causal 
relationship with PC. Specifically, Senegalimassilia 
(OR: 0.635, 95% CI: 0.403–0.998, P = 0.049) was protec-
tive factors for PC. In contrast, Odoribacter (OR:1.899, 
95%CI:1.157–3.116, P = 0.011), Ruminiclostridium 
9(OR:1.976,95%CI:1.128–3.461, P = 0.017), Rumino-
coccaceae (UCG011)(OR:1.433, 95%CI:1.072–1.916, 
P = 0.015),and Streptococcus(OR:1.712, 95%CI:1.071–
1.736, P = 0.025)were predisposing factors for PC(Fig. 3).

Sensitivity analysis
In these five causal effects, the F-statistic for IV was 
between 12.77 and 122.64 (Table S3), eliminating the bias 
for weak IV. Cochran’s Q test for IVW showed no sig-
nificant heterogeneity for these IVs (Table S4), and MR-
Egger regression intercept analysis found no horizontal 
pleiotropy (Table S5). Based on the Scatter plots (Fig. 4) 
and the leave-one-out plot (Fig. 5), we detected potential 
outliers for all five IVs, but further MR-PRESSO analysis 
did not reveal any significant outliers (Table  S6). How-
ever, it is noteworthy that, in certain instances, the slope 
from the MR-Egger method was inverse to that observed 
in the IVW method. Although this did not reach statis-
tical significance, it could hint at the presence of some 
form of pleiotropy. Despite our MR-Egger regression 
intercept analysis not revealing evidence of horizon-
tal pleiotropy, this inverse relationship between the two 
methods should be considered, suggesting that potential 
pleiotropic effects might subtly influence our results.

Discussions
In this study, we performed a MR analysis using the 
GWAS database of GM and PC to investigate the causal 
effect between them. Our findings revealed that at the 
genus level, Senegalimassilia was identified as protective 
factors, while Odoribacter, Ruminiclostridium 9, Rumi-
nococcaceae (UCG011), and Streptococcus were associ-
ated with increased risk for PC.

The human’s gastrointestinal tract contains more than 
1014 microorganisms and more than 5,000,000 genes, 
which can affect the normal physiology of the body by 
influencing metabolism as well as regulating the immune 
system, and many studies have discovered that dysbio-
sis of the GM is closely associated with diseases such as 
cancer, cardiovascular diseases, and psychiatric disorders 
[36]. While the pancreas was traditionally believed to be 
in a sterile environment due to its lack of direct contact 

with the intestine. However, recent studies have detected 
that pancreatic cancers can affect not only the type and 
abundance of GM but also the presence of GM can be 
detected in the pancreas of PC [37]. The exact mecha-
nism of pancreatic flora formation is not precise. How-
ever, current studies have identified direct translocation 
through the pancreatic duct, metastasis through mesen-
teric lymph nodes, and hematogenous infection as poten-
tial routes of spread [38]. In PC, GM and its metabolites 
may cause chronic inflammation, while an unhealthy 
lifestyle can exacerbate this condition and thus induce 
tumorigenesis. In addition, abnormal GM can affect local 
intestinal immunity, T-cell development, and immune 
system maturation [10], all of which are contributing fac-
tors to the development and progression of PC.

The prognosis of PC is exceedingly poor, characterized 
by late-stage diagnosis, limited therapeutic efficacy, and 
high susceptibility to recurrence and metastasis (as cited 
in the literature). Addressing these challenges and find-
ing ways to improve therapeutic efficacy, overcome treat-
ment tolerance, identify high-risk groups, and discover 
appropriate biomarkers for PC has become paramount 
research directions for PC researchers. In this con-
text, GM has emerged as a novel and promising avenue 
in PC research. Beyond its potential as a biomarker for 
PC, recent studies have highlighted various GM-based 
therapeutic approaches, such as probiotic therapy and 
fecal microbiota transplantation, as promising future 
directions [39]. Our study analyzed the GM associated 
with PC using an MR method based on publicly avail-
able GWAS data. Our findings revealed Senegalimassilia 
as a protective factor against PC, suggesting a promising 
direction for GM-based therapies. On the other hand, 
we identified Odoribacter, Ruminiclostridium 9, Rumi-
nococcaceae (UC Ruminococcaceae (UCG011)), and 
Streptococcus as risk factors for PC, providing valuable 
guidance for the development of GM-based predictive 
models for PC.

About Senegalimassilia, it has been found to exhibit a 
higher abundance in cirrhotic patients with exacerbated 
steatosis and cirrhotic patients without extracellular fluid 
[40]. In addition, MR analyses suggest that Senegalimas-
silia may be a protective factor against hypertension [41]. 
These results indicate that Senegalimassilia may play a 
key role in regulating metabolic and inflammatory pro-
cesses, which may also explain its role as a protective 
factor against PC. In contrast, Odoribacter is known for 
producing essential short-chain fatty acids and modu-
lating intestinal barrier function and inflammatory pro-
cesses, making it a promising therapeutic candidate for 
inflammatory bowel disease [42]. Yet its abundance was 
elevated in hepatocellular carcinoma [43], highlighting 
the divergent roles that a single GM may play in differ-
ent diseases. Similar discoveries apply to Streptococcus, 
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Fig. 3  MR results of GM on PC. MR: Mendelian Randomization; GM: Gut microbiota; PC: Pancreatic cancer
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which exhibits increased abundance in various diseases, 
including esophageal cancer [44], colon cancer [45], 
and chronic pancreatitis [46], while other studies sug-
gest a potential link between Streptococcus and lon-
gevity [47], implying diverse roles for Streptococcus in 
different diseases. Concerning Ruminiclostridium 9, it 
has demonstrated its regulatory effects on lipid metabo-
lism, inflammation reduction, enhancement of intestinal 
barrier function, weight gain reduction, and improved 

insulin sensitivity in mice, effectively countering obesity 
development [48]. However, its specific role in pancreatic 
cancer remains unstudied, similar to Ruminococcaceae 
(UCG011), and both warrant further research in the con-
text of pancreatic cancer.

Despite the valuable insights gained from this study, 
we acknowledge certain limitations. Firstly, the Mibio-
gen database, the largest multi-ethnic genome-wide 
meta-analysis of GM, includes samples from diverse 

Fig. 4  Scatter plots for MR analyses of the causal effect of GM on PC. A: Senegalimassilia;B: Odoribacter; C: Ruminiclostridium 9; D: Ruminococcaceae 
(UCG011);E: Streptococcus.SNP: single nucleotide polymorphisms; MR: Mendelian Randomization; PC: Pancreatic cancer
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populations, not exclusively composed of individuals of 
European origin. This heterogeneity may have impacted 
the reliability and generalizability of our conclusions. 
Secondly, the inherent limitations of the Mibiogen data-
base compelled us to utilize pooled statistics from all 
subjects, restricting our capacity to conduct more spe-
cific subgroup analyses. Consequently, some potentially 
findings might have been obscured. Furthermore, the 
database constraints necessitated analyzing GM at the 
genus level rather than the strain level, possibly limiting 
the granularity of our results. Thirdly, due to the con-
straints of sequencing technology, the number of patients 
included in our study for each specific GM species was 
relatively small. This limited sample size and the scarcity 
of instrumental variables meeting the traditional GWAS 
significance thresholds (P < 5 × 10− 8) led us to use a signif-
icance threshold of (P < 1 × 10− 5) to obtain more compre-
hensive results. However, this adjustment may introduce 
some bias in the conclusions. Lastly, it is essential to 
acknowledge that the conclusions drawn from this study 
have not been externally validated in clinical settings, 
which represents a limitation that should be recognized.

Conclusion
In conclusion, our two-sample Mendelian randomization 
(MR) study suggests a potential presence of a causal effect 
between GM and PC. Specifically, our findings revealed 
that at the genus level, Senegalimassilia was identified as 
protective factors, while Odoribacter, Ruminiclostridium 
9, Ruminococcaceae (UCG011), and Streptococcus were 
associated with increased risk for PC. However, further 
original studies are needed to more comprehensively elu-
cidate the underlying mechanisms that govern the rela-
tionship between GM and PC.
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