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Abstract
Background Noninvasive and precise methods to estimate treatment response and identify hepatocellular 
carcinoma (HCC) patients who could benefit from transarterial chemoembolization (TACE) are urgently required. The 
present study aimed to investigate the ability of intratumoral and peritumoral radiomics based on contrast-enhanced 
magnetic resonance imaging (CE-MRI) to preoperatively predict tumor response to TACE in HCC patients.

Methods A total of 138 patients with HCC who received TACE were retrospectively included and randomly divided 
into training and validation cohorts at a ratio of 7:3. Total 1206 radiomics features were extracted from arterial, venous, 
and delayed phases images. The inter- and intraclass correlation coefficients, the spearman’s rank correlation test, 
and the gradient boosting decision tree algorithm were used for radiomics feature selection. Radiomics models on 
intratumoral region (TR) and peritumoral region (PTR) (3 mm, 5 mm, and 10 mm) were established using logistic 
regression. Three integrated radiomics models, including intratumoral and peritumoral region (T-PTR) (3 mm), T-PTR 
(5 mm), and T-PTR (10 mm) models, were constructed using TR and PTR radiomics scores. A clinical-radiological model 
and a combined model incorporating the optimal radiomics score and selected clinical-radiological predictors were 
constructed, and the combined model was presented as a nomogram. The discrimination, calibration, and clinical 
utilities were evaluated by receiver operating characteristic curve, calibration curve, and decision curve analysis, 
respectively.

Results The T-PTR radiomics models performed better than the TR and PTR models, and the T-PTR (3 mm) radiomics 
model demonstrated preferable performance with the AUCs of 0.884 (95%CI, 0.821–0.936) and 0.911 (95%CI, 0.825–
0.975) in both training and validation cohorts. The T-PTR (3 mm) radiomics score, alkaline phosphatase, tumor size, 
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Introduction
Hepatocellular carcinoma (HCC) is the most common 
liver malignancy and the third leading cause of death 
among various cancers [1]. Liver transplantation, resec-
tion, and ablation are the curative therapies for patients 
with early HCC [2]. Unfortunately, the majority of HCC 
patients are not suitable for curative treatment at the 
time of diagnosis because of poor liver function, multi-
focal disease, vascular involvement, and extrahepatic 
spread [3]. Transarterial chemoembolization (TACE) is 
widely used as a bridge to liver transplantation, or as the 
standard treatment for patients with intermediate HCC 
[4]. Nevertheless, the therapeutic efficacy of TACE varies 
greatly due to the high heterogeneity of HCC [5]. Several 
studies have evidenced that the overall response rates 
following TACE range from 15 to 85% and the cumula-
tive rates of local tumor progression at 1, 3, and 5 years 
are 33%, 52%, and 73%, respectively [6, 7]. Therefore, it 
is crucial to preoperatively estimate tumor response to 
TACE treatment which may aid in guiding subsequent 
therapeutic strategies.

Magnetic resonance imaging (MRI)-based evaluations 
that are noninvasive and repeatable can be used to preop-
eratively assess treatment response. Several scholars have 
reported that larger lesion diameter, irregular margin, 
arterial peritumoral enhancement, satellite nodule, and 
apparent diffusion coefficient (ADC) value are associ-
ated with therapeutic efficacy of TACE treatment [8–11]. 
Although these imaging characteristics are encouraging, 
they are not sufficient for the individual evaluation of 
tumor response to TACE, and the ability to predict TACE 
efficacy in HCC is limited when a high degree of tumor 
heterogeneity.

Radiomics, an emerging and non-invasive approach, 
can extract high-throughput quantitative data from 
multi-modality imaging and characterize tumor hetero-
geneity, which may potentially guide individual medi-
cine [12, 13]. Numerous studies have demonstrated that 
radiomics-based models effectively identify the diagnosis 
and pathological characteristics or predict therapeutic 
efficacy and prognosis of cancer patients for clinical deci-
sion-making [14–17]. Recently, there has been increasing 
interest in evaluating radiomics patterns of the region 
surrounding the visible tumor [15, 17–19]. Recurrence or 

metastasis of HCC is mainly intrahepatic, indicating that 
the peritumoral liver tissue may be a favorable soil for 
the spreading hepatoma cells [20]. Several scholars have 
reported that HCC patients with microvascular invasion 
(MVI), epithelial cell adhesion molecule (EpCAM), pro-
grammed death ligand 1 (PD-L1) expression, and higher 
CD68 + cell density in peritumoral tissues have a signifi-
cantly higher risk of recurrence or metastasis and cancer-
related death [21–24]; thus, peritumoral tissues might 
have valuable predictive information of HCC prognosis. 
Several recent studies have reported that CT or MRI-
based radiomics on intratumoral and peritumoral regions 
can effectively predict MVI, vessels encapsulating tumor 
clusters (VETC), anti-PD-1 treatment efficacy, and prog-
nosis of resection or TACE in patients with HCC, which 
may achieve an enhanced prediction of the individualized 
risk estimation [15, 17–19, 25–27]. However, the value of 
intratumoral and peritumoral radiomics based on MRI 
in predicting treatment response of HCC after TACE 
remains unknown.

Therefore, the present study aimed to determine 
whether radiomics assessment of HCC peritumoral 
regions based on contrast-enhanced MR (CE-MR) 
images could provide valuable information about 
TACE response and enhance the ability of intratumoral 
radiomics for the prediction of treatment efficacy of 
TACE in patients with HCC.

Materials and methods
Patients
This retrospective study was approved by the Insti-
tutional Review Board of the First Affiliated Hospital 
of Dalian Medical University and the requirement for 
informed consent was waived due to the retrospective 
nature of the study.

From April 2008 to February 2022, 343 consecutive 
patients with HCC who underwent CE-MRI examina-
tion before conventional TACE at our institution were 
recruited. The diagnosis of HCC was confirmed by histo-
pathology or non-invasive criteria defined by the Ameri-
can Association for the Study of Liver Disease (AASLD) 
based on specific imaging features [28]. The inclusion 
criteria were: (1) received TACE as the first-line therapy; 
(2) underwent CE-MRI examination within two weeks 

and satellite nodule were fused to construct a combined nomogram. The combined nomogram [AUC: 0.910 (95%CI, 
0.854–0.958) and 0.918 (95%CI, 0.831–0.986)] outperformed the clinical-radiological model [AUC: 0.789 (95%CI, 0.709–
0.863) and 0.782 (95%CI, 0.660–0.902)] in the both cohorts and achieved good calibration capability and clinical utility.

Conclusions CE-MRI-based intratumoral and peritumoral radiomics approach can provide an effective tool for the 
precise and individualized estimation of treatment response for HCC patients treated with TACE.

Keywords Hepatocellular carcinoma, Radiomics, Magnetic resonance imaging, Transarterial chemoembolization, 
Treatment response
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before therapy. The exclusion criteria were: (1) previous 
oncological treatment, including liver resection, radiofre-
quency ablation (RFA), or chemotherapy (n = 32); (2) dif-
fuse or infiltrative HCCs or the largest lesion size < 1 cm 
(n = 16); (3) extrahepatic metastasis or portal vein occlu-
sion (n = 10); (4) loss to follow-up after TACE or lack of 
a follow-up CE-MRI scan (n = 126); (5) the interval time 
between the first follow-up MRI scan and initial TACE 
was more than 3 months (n = 14); (6) incomplete clinical 
data (n = 5); (7) poor image quality (n = 2). Fig.  1 shows 
the flowchart of patient recruitment, and 138 patients 
were enrolled in this study and randomly divided into a 
training cohort (n = 96) and a validation cohort (n = 42) at 
a ratio of 7:3. Of the 138 HCC patients described above, 
64 patients were included between April 2008 and June 
2015, and the other 74 patients were enrolled between 
July 2015 and February 2022.

Pretherapeutic clinical characteristics including age, 
gender, history of hepatitis B or C, alpha-fetoprotein 
(AFP), alanine aminotransferase (ALT), aspartate ami-
notransferase (AST), γ-glutamyltranspeptadase (GGT), 
alkaline phosphatase (ALP), total bilirubin (TBIL), albu-
min (ALB), platelet count (PLT), prothrombin time (PT), 
Child-Pugh class, Eastern Cooperative Oncology Group 
(ECOG) performance status, and Barcelona Clinic Liver 
Cancer (BCLC) stage for each patient were retrospec-
tively collected within 1 week before TACE.

MRI protocol
All MRI examinations were performed with 1.5T or 
3.0T MR scanner (Signa, HDXT, GE Healthcare) with a 
phased-array 8-channel sensitivity encoding abdomi-
nal coil. CE-MRI examination was performed using the 
liver acquisition with volume acceleration (LAVA) pro-
tocol with fat-suppressed T1-weighted 3D fast-spoiled 

Fig. 1 Flowchart of patient recruitment
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gradient-recalled echo sequence. The contrast enhanced 
images consisted of arterial phase (AP), portal venous 
phase (PVP), and delayed phase (DP) images, which were 
obtained at 40 s, 70 s, and 90 s, respectively, after the start 
of contrast injection of Gd-diethylenetriamine pentaace-
tic acid (Gd-DTPA) (Bayer Schering Pharma AG, Ger-
many) at a patient weight-dependent dose of 0.1 mmol/
kg with an injection rate of 2.5 mL/s through a median 
cubital vein. Other MRI sequences were also performed, 
including in- and opposed-phase fast-spoiled gradient-
recalled echo T1-weighted imaging (T1WI) and fat-sup-
pressed fast spin-echo T2-weighted imaging (T2WI). The 
detailed scanning parameters are shown in Supplemen-
tary Data S1.

Image analysis
Two radiologists (reader 1, Y.Z. and reader 2, N.W., with 
8-year and 7-year experience in abdominal MRI) inde-
pendently analyzed pretherapeutic MR images, and 
they were aware of the diagnosis of HCC but blinded to 
clinical information and imaging report. The radiologists 
evaluated the following imaging traits for each patient: 
(1) tumor size; (2) tumor number; (3) tumor margin; (4) 
intratumoral necrosis; (5) intratumoral hemorrhage; 
(6) intratumoral fat; (7) tumor encapsulation; (8) arte-
rial peritumoral enhancement; (9) satellite nodule; (10) 
internal arteries; (11) radiological cirrhosis. Tumor diam-
eter was recorded as mean value, and any discrepancy 
in imaging feature assessment was resolved by means of 
reevaluation by another senior radiologist (J.H.L., with 
20-year experience in abdominal MRI). Detailed defini-
tions of these imaging features and representative MR 
images are listed in Supplementary Data S2.

TACE Procedure and Treatment Response Assessment
All conventional TACE procedures were carried out by 
interventional radiologists with no less than 10 years of 
clinical experience. The detailed description of TACE 
procedure is shown in Supplementary Data S3. All HCC 
patients were regularly monitored for therapeutic effect 
via contrast CT or CE-MRI within 1–3 months after the 
initial TACE, and then every 3–4 months thereafter. The 
modified Response Evaluation Criteria in Solid Tumors 
(mRECIST 1.1) criterion was utilized to assess the tumor 
response in patients with HCC based on pre- and post-
therapeutic arterial MR images. Tumor response was 
classified into four categories according to the mRE-
CIST system as follows: complete response (CR), par-
tial response (PR), stable disease (SD), and progression 
disease (PD) [29]. In the present study, all patients were 
divided into the objective response (OR) group (CR and 
PR patients) and the non-response (NR) group (SD and 
PD patients). Visualization of tumor response assessment 
is showed in Supplementary Data S4.

Tumor segmentation and Radiomics feature extraction
Pretherapeutic CE-MR images were exported from the 
picture archiving and communication system (PACS) 
and then used for tumor segmentation and radiomics 
feature extraction. The AK software (Artificial Intel-
ligence Kit, Version 3.2.5, GE Healthcare) was used to 
process the images before segmenting the tumor. AP, 
PVP, and DP images were resampled to a uniform voxel 
size of 1 × 1 × 1  mm via linear interpolation algorithm 
to standardize the voxel spacing [17]. Intensity normal-
ization of images was performed to correct the scan-
ner effect. Tumor segmentation was performed by 
manually delineating the region of interest (ROI) along 
the tumor contour on each axial slice of AP, PVP, and 
DP images using an open-source software (ITK-SNAP, 
version 3.6.0, http://www.itksnap.org/). The ROI was 
required to include capsule surrounding the tumor and 
to exclude tumor surrounding vessels, and then every 
ROI was automatically merged into volume of interest 
(VOI). Notably, in terms of multifocal HCCs, the larg-
est nodule with abundant vascularity was selected as 
the delineated lesion and used for subsequent radiomics 
analysis [18, 30]. To capture radiomics features from the 
tumor periphery, the VOIs of peritumoral region (PTR) 
were generated by automatically expanding 3 mm, 5 mm, 
and 10  mm from the lesion border using AK software. 
If the ROI was beyond the parenchyma of the liver after 
the expansion, the portion beyond the parenchyma was 
removed manually.

Radiomics features were extracted using AK software 
for intratumoral region (TR), PTR (3 mm), PTR (5 mm), 
and PTR (10  mm). A total of 1206 radiomics features 
were extracted for each VOI based on AP, PVP, and DP 
images. The extracted radiomics features included: 42 
histograms, 15 form factors, 10 Haralick features, 144 
grey level co-occurrence matrix (GLCM) with an off-
set of 1/4/7, 180 grey level run length matrix (GLRLM) 
with an offset of 1/4/7, and 11 grey-level zone size matrix 
(GLZSM). Details of radiomics features are listed in Sup-
plementary Data S5. Z-score normalization of radiomics 
features was performed to reduce the bias caused by dif-
ferent dimensions. The workflow of the radiomics analy-
sis is depicted in Fig. 2.

Inter- and intraclass correlation coefficients (ICCs) 
were used to assess the reproducibility of each radiomics 
feature extracted from 30 randomly chosen patients. To 
assess the interobserver reproducibility, the ROI delin-
eation was performed by two abdominal radiologists 
(readers 1 and 2, Y.Z. and N.W.) independently who 
were blinded to all patients’ information. To evaluate the 
intraobserver reproducibility, reader 1 repeated the ROI 
delineation and feature extraction at a 1-month interval. 
Finally, reader 1 completed the remaining image segmen-
tation and feature extraction.

http://www.itksnap.org/
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Feature selection and Radiomics Model Construction
To remove potentially redundant features and decrease 
data dimensions, we followed a three-step procedure to 
identify the most predictive radiomics features. First, 
the radiomics features with ICC values of both interob-
server and intraobserver greater than 0.80 indicated sat-
isfactory reproducibility and high robustness and were 
selected for further analysis. Second, the redundant fea-
tures with correlation coefficients higher than 0.90 were 
eliminated following by the Spearman’s rank correlation 
test. Finally, the gradient boosting decision tree (GBDT) 
algorithm was applied to determine the top-ranked and 
most valuable features for predicting the tumor response. 
GBDT was proposed as a tree-based algorithm based on 
a greedy strategy (called gradient boosting) that evalu-
ated the importance of a texture feature through the 
time it used as branching point for the tree [14]. After 
those steps, TR, PTR (3  mm), PTR (5  mm), and PTR 
(10  mm) radiomics models were separately established 
using logistic regression algorithm with 5-fold cross-
validation. The radiomics score (Rad-score) was calcu-
lated for each patient using a linear combination of the 
selected features that were weighted by their respective 
coefficients. Finally, three integrated radiomics models, 
including intratumoral and peritumoral region (T-PTR) 
(3 mm), T-PTR (5 mm), and T-PTR (10 mm) radiomics 

models, were generated by logistic regression using TR 
rad-score and corresponding PTR rad-score. The optimal 
radiomics model with the highest area under the curve 
(AUC) was selected for further analysis.

Clinical-radiological model construction
Univariate analysis was used to identify the significant 
variables among clinical-radiological characteristics asso-
ciated with treatment response of HCC (P < 0.05). Mul-
tivariate logistic regression analysis was performed to 
identify the independent risk factors for predicting tumor 
response. Odds ratio and 95% confidence interval (CI) 
were calculated for each risk factor. The clinical-radio-
logical model was constructed using the chosen indepen-
dent risk factors.

Combined Model Building and Nomogram 
Construction
A combined model integrating clinical-radiological risk 
factors and the optimal rad-score was constructed using 
the proposed logistic regression method. To provide an 
individual predictive graphical presentation, the com-
bined model was presented as a nomogram. The nomo-
gram could help calculate the predicted probability of NR 
for each individual patient. In addition, the most recent 
patients between March 2022 and April 2023 were used 

Fig. 2 The workflow of radiomics analysis in the present study. (a) Contrast-enhanced MR imaging was acquired. Tumors were manually delineated 
around the entire tumor outline on each axial slice of arterial phase (AP), portal venous phase (PVP), and delayed phase (DP) images, and peritumoral 
expansion (3 mm, 5 mm, and 10 mm) were automatically generated. (b) Total 1206 radiomics features on enhanced images were extracted. (c) Three 
steps of feature dimensionality reduction were applied for all extracted features. Seven radiomics models based on intratumoral region (TR), peritumoral 
region (PTR), and TR combined PTR radiomics scores were constructed using logistic regression analysis. A clinical-radiological model and a combined 
model incorporating the optimal radiomics score and clinical-radiological independent risk factors were constructed. (d) The combined nomogram 
was presented to provide a more understandable treatment response measurement for individualized evaluation, followed by receiver operating curve 
analysis, calibration curve, and decision curve analysis
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as an independent testing cohort to validate the perfor-
mance of predictive models constructed by the training 
cohort (described in Supplementary Data S6).

Statistical analysis
The Student’s t-test or Mann-Whitney U-test were used 
to compare the continuous variables between the OR 
and NR groups as appropriate. The chi-squared test or 
Fisher’s exact test were used to assess the categorical 
variables as appropriate. Interobserver agreement evalu-
ation of the radiological features was qualified by Cohen 
kappa coefficient. Kappa values of 0.81–1.00 indicated 
excellent agreement, 0.61–0.80 signified substantial 
agreement, and 0.41–0.60 denoted moderate agreement. 
Receiver operating characteristic curve (ROC) analy-
sis was performed to evaluate the performance of each 
predictive model. The AUC, accuracy, sensitivity, and 
specificity were calculated. We compared the predic-
tive performance between different models using the 
Delong’s test. We also performed stratified analysis on 
the subgroups of inclusion time of predictive models. We 
used ROC analysis and AUC to evaluate the performance 
of each model on the subpopulations. Calibration curves 
and Hosmer-Lemeshow test were used to evaluate the 
degree of deviation between the predictions and actual 
outcomes. Decision curve analysis (DCA) was performed 
to validate the clinical utility of the nomogram. All statis-
tical analyses for the present study were performed with 
R software (version 3.6.1, http://www.R-project.org). 
P < 0.05 was considered statistically significant.

Results
Patient characteristics
In total, 138 patients (mean age, 60.24 ± 8.91 years; range, 
40–83 years; 115 male) were enrolled in this study. 
Among the 138 patients with HCC, 6 patients were 
determined by histopathology and 132 patients were 
identified by specific imaging features according to the 
AASLD guidelines. On the basis of the mRECIST crite-
rion, the patients for CR, PR, SD, and PD were 13 (9.4%), 
60 (43.5%), 51 (37.0%), and 14 (10.1%), respectively. All 
patients underwent post-therapeutic MRI examination 
following by the initial TACE treatment, with a median 
interval time of 44 days (range, 28–90 days) between the 
first TACE and the follow-up MRI examination. The clin-
ical-radiological data in the OR and NR groups are sum-
marized in Table  1. No significant difference was found 
in the clinical-radiological characteristics, except for 
tumor encapsulation between the training and validation 
cohorts.

Radiomics Model Development and evaluation
After inter- and intraobserver reproducibility analysis, 
the dimensions of feature spaces were 853 for VOITR, 

424 for VOIPTR (3 mm), 452 for VOIPTR (5 mm), and 716 for 
VOIPTR (10  mm), respectively. Spearman’s rank correla-
tion test allowed the selection of 100, 35, 43, and 90 fea-
tures, respectively. GBDT revealed that the radiomics 
feature numbers ultimately consisted of 25, 14, 17, and 
21 from the VOITR, VOIPTR (3  mm), VOIPTR (5  mm), and 
VOIPTR (10 mm), respectively, and were used for radiomics 
model building (TR, PTR (3 mm), PTR (5 mm), and PTR 
(10 mm) models). Finally, three T-PTR radiomics models 
based on TR and PTR rad-scores were constructed. The 
calculation formulae for the rad-score are shown in Sup-
plementary Data S7.

The radiomics models demonstrated favorable dis-
crimination in the both cohorts (AUC: training cohort, 
0.810–0.892; validation cohort, 0.793–0.911). In the 
training cohort, the PTR (10  mm) radiomics model 
showed comparable performance compared with the 
TR model [AUC: 0.852 (95%CI, 0.785–0.911) vs. 0.836 
(95%CI, 0.763–0.903)]. In the validation cohort, the TR, 
PTR (3  mm), PTR (5  mm) radiomics models showed 
equivalent performance with the AUCs of 0.820 (95% 
CI, 0.705–0.917), 0.823 (95% CI, 0.701–0.927), and 0.823 
(95% CI, 0.711–0.924), respectively. Compared with TR 
and PTR radiomics models, the T-PTR radiomics mod-
els (T-PTR (3 mm), T-PTR (5 mm), and T-PTR (10 mm) 
models) performed better in predicting tumor response 
(∆AUC: training cohort, 0.031–0.082; validation cohort, 
0.072–0.118). The (T-PTR) (3  mm) radiomics model 
demonstrated preferable performance with the AUCs of 
0.884 (95%CI, 0.821–0.936) and 0.911 (95%CI, 0.825–
0.975) in both training and validation cohorts. Morever, 
the (T-PTR) (3 mm) radiomics model also possessed high 
accuracy, sensitivity, and specificity of 0.812, 0.822, and 
0.804, respectively, in the training cohort, and of 0.810, 
0.800, and 0.818, respectively, in the validation cohort. 
Thus, we selected the T-PTR (3 mm) model as the best-
performing radiomics model for further analysis. ROC 
curves and discrimination performance of the seven 
radiomics models in the two cohorts are shown in Sup-
plementary Data S8 and Table 2.

Clinical-radiological Model Development and evaluation
Interobserver agreements on the radiological features 
were substantial to excellent (kappa-value range: 0.772–
1.000). Univariate and multivariate analyses of clinical-
radiological characteristics for predicting treatment 
response in the training cohort are shown in Table 3. The 
univariate analysis indicated that AST, GGT, ALP, PLT, 
ECOG, BCLC stage, tumor size, intratumoral necro-
sis, intratumoral hemorrhage, satellite nodule, internal 
arteries, and radiological cirrhosis were significant clin-
ical-radiological factors for discriminating the OR and 
NR groups in the training cohort (all P < 0.05). The mul-
tivariate logistic regression analysis demonstrated that 

http://www.R-project.org
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Characteristics Training cohort (n = 96) Validation cohort (n = 42) P 
valueOR group 

(n = 51)
NR group 
(n = 45)

P value OR group 
(n = 22)

NR group 
(n = 20)

P value

Age (years, mean ± SD) 60.29 ± 8.41 60.42 ± 10.25 0.947 60.18 ± 9.02 59.75 ± 7.31 0.866 0.820

Gender (n, [%]) 0.410 0.890 1.000

 Male 44(86.3) 36(80.0) 18(81.8) 17(85.0)

 Female 7(13.7) 9(20.0) 4(18.2) 3(15.0)

History of hepatitis B or C (n, [%]) 0.541 0.361 0.410

 Positive 38(74.5) 31(68.9) 19(86.4) 14(70.0)

 Negative 13(25.5) 14(31.1) 3(13.6) 6(30.0)

AFP (IU/ml) (n, [%]) 0.050 0.231 0.523

 ≤ 400 40(78.4) 27(60.0) 16(72.7) 11(55.0)

 > 400 11(21.6) 18(40.0) 6(27.3) 9(45.0)

ALT (U/L) (n, [%]) 0.521 0.827 0.904

 ≤ 50 36(70.6) 29(64.4) 15(68.2) 13(65.0)

 > 50 15(29.4) 16(35.6) 7(31.8) 7(35.0)

AST (U/L) (n, [%]) 0.024 0.187 0.302

 ≤ 40 31(60.8) 17(37.8) 11(50.0) 6(30.0)

 > 40 20(39.2) 28(62.2) 11(50.0) 14(70.0)

GGT (U/L) (n, [%]) 0.004 0.016 0.639

 ≤ 60 26(51.0) 10(22.2) 11(50.0) 3(15.0)

 > 60 25(49.0) 35(77.8) 11(50.0) 17(85.0)

ALP (U/L) (n, [%]) < 0.001 0.005 0.313

 ≤ 125 46(90.2) 26(57.8) 19(86.4) 9(45.0)

 > 125 5(9.8) 19(42.2) 3(13.6) 11(55.0)

TBIL (umol/L) (n, [%]) 0.650 0.746 0.177

 ≤ 19 34(66.7) 28(62.2) 11(50.0) 11(55.0)

 > 19 17(33.3) 17(37.8) 11(50.0) 9(45.0)

ALB (g/L) (n, [%]) 0.897 0.789 0.922

 < 40 29(56.9) 25(55.6) 13(59.1) 11(55.0)

 ≥ 40 22(43.1) 20(44.4) 9(40.9) 9(45.0)

PLT (×109/L) (n, [%]) 0.031 0.516 0.783

 < 125 27(52.9) 14(31.1) 11(50.0) 8(40.0)

 ≥ 125 24(47.1) 31(68.9) 11(50.0) 12(60.0)

PT (s) (n, [%]) 0.339 0.569 0.192

 ≤ 13 34(66.7) 34(75.6) 14(63.6) 11(55.0)

 > 13 17(33.3) 11(24.4) 8(36.4) 9(45.0)

Child-Pugh class (n, [%]) 0.585 0.379 0.078

 A 44(86.3) 37(82.2) 17(77.3) 13(65.0)

 B 7(13.7) 8(17.8) 5(22.7) 7(35.0)

ECOG performance status (n, [%]) 0.060 0.095 0.084

 0 49(96.1) 37(82.2) 20(90.9) 13(65.0)

 1 2(3.9) 8(17.8) 2(9.1) 7(35.0)

BCLC stage (n, [%]) 0.003 0.076 0.480

 A 35(68.6) 18(40.0) 13(59.1) 8(40.0)

 B 13(25.5) 12(26.7) 7(31.8) 3(15.0)

 C 3(5.9) 15(33.3) 2(9.1) 9(45.0)

Tumor size (n, [%]) < 0.001 0.001 0.936

 ≤ 5 cm 36(70.6) 15(33.3) 17(77.3) 5(25.0)

 > 5 cm 15(29.4) 30(66.7) 5(22.7) 15(75.0)

Tumor number (n, [%]) 0.664 0.275 1.000

 Unifocal 35(68.6) 29(64.4) 13(59.1) 15(75.0)

 Multifocal 16(31.4) 16(35.6) 9(40.9) 5(25.0)

Tumor margin (n, [%]) 0.541 0.031 0.245

Table 1 Patient clinical-radiological characteristics
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Table 2 Discrimination performance of predictive models in the training and validation cohorts
Model AUC (95% CI) Accuracy Sensitivity Specificity P value

Clinical-radiological model TC 0.789 (0.709–0.863) 0.729 0.556 0.882 0.935

VC 0.782 (0.660–0.902) 0.714 0.600 0.818

TR model TC 0.836 (0.763–0.903) 0.771 0.778 0.765 0.840

VC 0.820 (0.705–0.917) 0.714 0.750 0.682

PTR (3 mm) model TC 0.817 (0.740–0.881) 0.750 0.889 0.627 0.940

VC 0.823 (0.701–0.927) 0.714 0.800 0.636

PTR (5 mm) model TC 0.810 (0.739–0.880) 0.771 0.800 0.745 0.877

VC 0.823 (0.711–0.924) 0.714 0.900 0.545

PTR (10 mm) model TC 0.852 (0.785–0.911) 0.760 0.822 0.706 0.468

VC 0.793 (0.673–0.903) 0.762 0.900 0.636

T-PTR (3 mm) model TC 0.884 (0.821–0.936) 0.812 0.822 0.804 0.633

VC 0.911 (0.825–0.975) 0.810 0.800 0.818

T-PTR (5 mm) model TC 0.883 (0.822–0.934) 0.823 0.733 0.902 0.661

VC 0.909 (0.817–0.982) 0.810 0.650 0.955

T-PTR (10 mm) model TC 0.892 (0.834–0.942) 0.844 0.800 0.882 0.945

VC 0.895 (0.815–0.964) 0.786 0.750 0.818

Combined nomogram TC 0.910 (0.854–0.958) 0.844 0.822 0.863 0.891

VC 0.918 (0.831–0.986) 0.857 0.800 0.909
TR, intratumoral region; PTR, peritumoral region; T-PTR, intratumoral and peritumoral region; TC, training cohort; VC, validation cohort; AUC, area under the curve; 
CI, confidence interval

Characteristics Training cohort (n = 96) Validation cohort (n = 42) P 
valueOR group 

(n = 51)
NR group 
(n = 45)

P value OR group 
(n = 22)

NR group 
(n = 20)

P value

 Smooth 38(74.5) 31(68.9) 17(77.3) 9(45.0)

 Non-smooth 13(25.5) 14(31.1) 5(22.7) 11(55.0)

Intratumoral necrosis (n, [%]) 0.005 0.129 0.833

 Present 16(31.4) 27(60.0) 7(31.8) 11(55.0)

 Absent 35(68.6) 18(40.0) 15(68.2) 9(45.0)

Intratumoral hemorrhage (n, [%]) 0.030 0.060 0.611

 Present 13(25.5) 21(46.7) 4(18.2) 9(45.0)

 Absent 38(74.5) 24(53.3) 18(81.8) 11(55.0)

Intratumoral fat (n, [%]) 0.112 0.872 0.826

 Present 7(13.7) 12(26.7) 5(22.7) 4(20.0)

 Absent 44(86.3) 33(73.3) 17(77.3) 16(80.0)

Tumor encapsulation (n, [%]) 0.286 0.032 0.026

 Present 39(76.5) 30(66.7) 15(68.2) 7(35.0)

 Absent 12(23.5) 15(33.3) 7(31.8) 13(65.0)

Arterial peritumoral enhancement (n, [%]) 0.050 0.118 0.846

 Present 11(21.6) 18(40.0) 4(18.2) 8(40.0)

 Absent 40(78.4) 27(60.0) 18(81.8) 12(60.0)

Satellite nodule (n, [%]) 0.001 0.670 0.831

 Present 1(2.0) 11(24.4) 2(9.1) 2(10.0)

 Absent 50(98.0) 34(75.6) 20(90.9) 18(90.0)

Internal arteries (n, [%]) 0.046 0.031 0.464

 Present 18(35.3) 25(55.6) 5(22.7) 11(55.0)

 Absent 33(64.7) 20(44.4) 17(77.3) 9(45.0)

Radiological cirrhosis (n, [%]) 0.030 0.372 0.719

 Present 36(70.6) 22(48.9) 14(63.6) 10(50.0)

 Absent 15(29.4) 23(51.1) 8(36.4) 10(50.0)
OR, objective response; NR, non-response; SD, standard deviation; AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, 
γ-glutamyltranspeptadas; ALP, alkaline phosphatase; TBIL, total bilirubin; ALB, albumin; PLT, platelet count; PT, prothrombin time; ECOG, Eastern Cooperative 
Oncology Group; BCLC, Barcelona Clinic Liver Cancer

Table 1 (continued) 
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ALP (odd ratio = 5.744; 95% CI: 1.780–18.532; P = 0.003), 
tumor size (odd ratio = 3.005; 95% CI: 1.154–7.826; 
P = 0.024), and satellite nodule (odd ratio = 9.865; 95% 
CI: 1.101–88.370; P = 0.041) were the independent risk 
factors for predicting NR in HCC patients. The clinical-
radiological model was built by incorporating these three 
variables. The clinical-radiological model yielded the 
AUCs of 0.789 (95% CI, 0.709–0.863) and 0.782 (95% CI, 
0.660–0.902) in the two cohorts, respectively (shown in 
Table 2).

Combined model and Nomogram Development and 
evaluation
The T-PTR (3 mm) rad-score, ALP, tumor size, and sat-
ellite nodule were considered as input variables for 
logistic regression to build the combined model. We 
chose a nomogram as the graphical representation of 
the best-performing combined model (shown in Fig. 3). 
The combined nomogram yielded an AUC, an accu-
racy, a sensitivity, and a specificity of 0.910 (95% CI, 
0.854–0.958), 0.844, 0.822, and 0.863, respectively, for 
discriminating between the OR and NR groups in the 
training cohort and of 0.918 (95% CI, 0.831–0.986), 0.857, 
0.800, and 0.909, respectively, in the validation cohort. 

The discriminating performance of the combined nomo-
gram in the training cohort was significantly superior to 
that of the clinical-radiological model (AUC, 0.910 vs. 
0.789, P = 0.028), whereas there was no significant differ-
ence between the models in the validation cohort (AUC, 
0.918 vs. 0.782, P = 0.127). No significant differences were 
found between the T-PTR (3 mm) radiomics model and 
combined nomogram (training cohort, P = 0.577; valida-
tion cohort, P = 0.918) and between the T-PTR (3  mm) 
radiomics model and clinical-radiological model (train-
ing cohort, P = 0.094; validation cohort, P = 0.139). Table 2 
summarizes the predictive performance of the con-
structed models. ROC curves for clinical-radiological 
model, T-PTR (3  mm) radiomics model, and combined 
nomogram in the both cohorts are shown in Fig. 4A and 
B. Delong’s test of different predictive models in the both 
cohorts is shown in Supplementary Data S9. Stratified 
analysis showed that each predictive model performed 
well in the two subgroups of inclusion time and the 
overall cohort (shown in Supplementary Data S10). The 
results of predictive models in the independent testing 
cohort are listed in Supplementary Data S6.

Calibration curves of the combined nomogram for the 
probability of treatment response demonstrated good 
agreements between prediction and observation in the 
training and validation cohorts (Fig. 5A and B). The Hos-
mer-Lemeshow test yielded non-significant results in the 
both cohorts (P = 0.386 and 0.343), which suggested a sat-
isfying fit of the nomogram. The DCA indicated that the 
combined nomogram obtained more net benefits than 
the clinical-radiological model, T-PTR (3 mm) radiomics 
model, and “treat-all” or “treat-none” strategies for most 
of the threshold probabilities in the training and valida-
tion cohorts (Fig. 6A and B).

Discussion
In the study, we constructed various radiomics models of 
intratumoral, peritumoral, and intratumoral combined 
peritumoral derived from CE-MR images for preopera-
tively predicting treatment response of TACE in patients 
with HCC. Our study confirmed that intratumoral com-
bined peritumoral radiomics models performed better 
than the intratumoral model. Furthermore, a combined 
nomogram incorporating clinical-radiological risk fac-
tors and the optimal T-PTR (3  mm) rad-score was 
developed and validated, and demonstrated satisfactory 
performance, calibration, and clinical utility. The pro-
posed radiomics approach successfully predicted TACE 
treatment efficacy and may facilitate individualized treat-
ment decision-making for patients with HCC.

In the present study, most of HCC patients receiving 
TACE had BCLC A or B stage, which was consistent with 
previous studies [18, 31]. The BCLC system recommends 
TACE as the standard therapy for intermediate HCC. 

Table 3 Univariate and multivariate analyses of clinical-
radiological characteristics for predicting treatment response
Variables Univariate analysis Multivariate 

analysis
Odd ratio (95% CI) P value Odd 

ratio 
(95% 
CI)

P 
value

AST 2.553 (1.120–5.820) 0.026 — —

GGT 3.640 (1.492–8.880) 0.005 — —

ALP 6.723 
(2.246–20.122)

< 0.001 5.744 
(1.780–
18.532)

0.003

PLT 2.491 (1.079–5.753) 0.033 — —

ECOG 5.297 
(1.062–26.428)

0.042 — —

BCLC stage 2.716 (1.515–4.872) < 0.001 — —

Tumor size 4.800 
(2.023–11.392)

< 0.001 3.005 
(1.154–
7.826)

0.024

Intratumoral necrosis 3.281 (1.417–7.600) 0.006 — —

Intratumoral 
hemorrhage

2.558 (1.082–6.044) 0.032 — —

Satellite nodule 16.176 
(1.996–131.069)

0.009 9.865 
(1.101–
88.370)

0.041

Internal arteries 2.292 (1.007–5.213) 0.048 — —

Radiological cirrhosis 0.399 (0.172–0.923) 0.032 — —
The clinical-radiological characteristics with P value less than 0.05 in the 
univariate analysis are listed in the table. AST, aspartate aminotransferase; 
GGT, γ-glutamyltranspeptadase; ALP, alkaline phosphatase; PLT, platelet count; 
ECOG, Eastern Cooperative Oncology Group; BCLC, Barcelona Clinic Liver 
Cancer; CI, confidence interval
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TACE could be a candidate treatment option for early-
stage patients who are unsuitable for resection or ablation 
due to old age, hepatic dysfunction, severe comorbidi-
ties, and tumor location [4]. This treatment stage-migra-
tion strategy is well established and recommended by 

international guidelines [28, 32]. Therefore, TACE clearly 
has a critical role in the treatment of HCC at early stage, 
and HCC patients included in our study reflect the real 
conditions in clinical setting.

Fig. 4 ROC curves for intratumoral and peritumoral region (T-PTR) (3 mm) radiomics model, clinical-radiological model, and combined nomogram in the 
training cohort (A) and the validation cohort (B)

 

Fig. 3 The combined nomogram incorporated alkaline phosphatase (ALP), tumor size, satellite nodule, and radiomics score (rad-score)
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Patients with HCC receiving TACE have various treat-
ment efficacy and clinical outcomes [6, 7]. Objective 
response after first TACE course has been proved to be 
an independent and robust prognostic predictor for clini-
cal outcomes, which may aid in guiding individual thera-
peutic strategies in HCC patients [33]. Several recent 
studies [34–37] have constructed radiomics models 
based on preoperative single MRI sequence or multipara-
metric MRI (MP-MRI) to predict tumor response of HCC 
patients receiving TACE, and the AUCs ranged from 
0.692 to 0.866 in the validation cohort; however, their 

studies only focused on intratumoral radiomics features. 
Pathologically, peritumoral parenchyma is representa-
tive of cancerous heterogeneity, and the crucial informa-
tion can be indicated by changes in the area surrounding 
tumors, such as biological aggressiveness, microinvasion, 
and micrometastasis [15, 18, 38]; thus, accurate evalua-
tion of the neighboring tissue around tumors may also be 
useful in predicting treatment response and prognosis of 
TACE in patients with HCC.

Previous studies have reported that radiomics analy-
sis of intratumoral combined 3 mm, 5 mm, and 10 mm 

Fig. 6 Decision curve analysis for the intratumoral and peritumoral region (T-PTR) (3 mm) radiomics model, clinical-radiological model, and combined 
nomogram in the training cohort (A) and the validation cohort (B). The y-axis represents the net benefit, and the x-axis represents the threshold probabil-
ity. The (T-PTR) (3 mm) radiomics model, clinical-radiological model, and combined nomogram obtained more net benefits than either the treat-all-pa-
tients scheme or the treat-none-patients scheme for most of the threshold probabilities for predicting treatment response to TACE in patients with HCC.

 

Fig. 5 Calibration curves of the combined nomogram in the training cohort (A) and the validation cohort (B). The x-axis represents the predicted prob-
ability, and the y-axis represents the actual result. The diagonal solid line indicates the ideal prediction by a perfect model. The dashed line indicates the 
predictive performance of the model. If the dashed line is closer to the diagonal solid line, it means a better prediction
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peritumoral regions can provide valuable information for 
prognosis prediction in HCC [18, 19, 30, 39, 40]. In addi-
tion, according to the practice guidelines for the patho-
logical diagnosis of primary liver cancer (2015 update) 
[41], the liver tissues within 10  mm surrounding the 
tumor are defined as the adjacent areas around the can-
cer, where the probability of MVI is high. Therefore, our 
study selected the most stable and predictive radiomics 
features from intratumoral, 3  mm, 5  mm, and 10  mm 
peritumoral regions for radiomics model construc-
tion, which can quantitatively assess the heterogeneity 
and invasiveness of intratumoral and peritumoral tis-
sues in a non-invasive way. In the present study, the PTR 
(3 mm), PTR (5 mm), and PTR (10 mm) radiomics mod-
els showed comparable performance compared with the 
TR model, which indicated that peritumoral tissues were 
possess of a clinical value in assessing treatment efficacy. 
Yang et al. [42] reached a similar result that peritumoral 
radiomics model obtained equivalent performance com-
pared with the intratumoral model in predicting MVI in 
HCC patients with the AUCs of 0.714 and 0.728, respec-
tively. The radiomics features contributed to peritumoral 
model construction in the study were most derived from 
AP images. This finding was in agreement with previous 
studies, in which the presence of peritumoral enhance-
ment in AP images indicated more aggressive biological 
behavior [18, 31].

We further combined intratumoral and peritumoral 
rad-scores to establish T-PTR (3  mm), T-PTR (5  mm), 
and T-PTR (10  mm) radiomics models for predicting 
TACE response. In our study, T-PTR radiomics models 
demonstrated better predictive performance compared 
with the TR radiomics model, which indicated that peri-
tumoral radiomics might potentially enhance the ability 
of intratumoral radiomics for TACE response predic-
tion. This might be interpreted that arterial peritumoral 
enhancement and irregular margin presented in the peri-
tumoral area are independent predictors of prognosis in 
HCC patients [18, 19]. Chen et al. [30] found that intra-
tumoral and peritumoral (5  mm, 10  mm, and 20  mm) 
radiomics models based on contrast-enhanced CT 
images performed better than the intratumoral radiomics 
model in predicting the first TACE response with the 
AUCs of 0.790, 0.810, 0.750, and 0.720, respectively, 
which was consistent with our study. Additionally, our 
study demonstrated that the T-PTR (3  mm) radiomics 
model achieved the best-performing performance among 
the seven radiomics models. A similar study reported by 
Liu et al. [40] found that intratumoral and peritumoral 
(3  mm) radiomics model showed better performance 
compared with radiomics models on intratumoral, peri-
tumoral (3  mm), peritumoral (5  mm), and intratumoral 
and peritumoral (5  mm) for predicting 1-year survival 
of HCC after hepatectomy. Only one of the published 

studies, conducted MRI-based radiomics on intratu-
moral and peritumoral regions for TACE prognosis pre-
diction [18]. In their study, radiomics models based on 
the entire tumor volumetric of AP (APETV), PVPETV, and 
the border extensions of 1 mm, 3 mm, and 5 mm on the 
PVP (PVPB1, PVPB3, and PVPB5) were constructed to pre-
dict recurrence-free survival (RFS) of HCC patients after 
TACE. The best C-index results of PVPETV and PVPB3 
radiomics models were 0.727 and 0.714 in the valida-
tion dataset, respectively. However, the above research 
only performed radiomics analysis of whole areas includ-
ing intratumoral and peritumoral regions, and did not 
explore the individual contribution of the area around 
the tumor to predictive model construction; thus, it was 
unable to determine the significance of the separate peri-
tumoral region in predicting recurrence or prognosis. 
Compared with the previous study [18], our study may 
have the following advantages: first, radiomics features 
derived from three-phase enhanced MR images might 
more fully reflect tumor heterogeneity and vasculariza-
tion patterns, which is helpful for efficacy estimation; 
second, the individual peritumoral (3  mm, 5  mm, and 
10  mm) radiomics models were constructed, and the 
valuable peritumoral distance was determined; third, 
intratumoral combined peritumoral radiomics analysis 
may contain more prognostic information, and poten-
tially provide a more accurate and effective approach of 
individualized efficacy prediction for HCC patients.

In this study, during the construction of the clinical-
radiological model, ALP, tumor size, and satellite nodule 
were independent predictors associated with treatment 
response of HCC after TACE. Previous researches on 
TACE clarified that a higher ALP value was an indepen-
dent risk factor for unfavourable overall survival (OS) 
[43, 44]. Our study showed that abnormal ALP value was 
a significant predictor for poor response of HCC. Addi-
tionally, ALP has already been included in the Chinese 
University Prognostic Index, a HCC staging system that 
assigns a score of 3 when ALP is > 200 IU/L, indicating 
the potential role of ALP in predicting the prognosis of 
HCC patients [45]. Tumor size has been broadly recog-
nized as a major predictive factor of treatment response 
for TACE [9, 33]. Larger tumors usually have more sat-
ellite lesions or daughter nodules making it difficult for 
TACE to achieve CR [46]. In our study, maximal tumor 
size > 5  cm was a significant predictive factor for NR, 
a result similar to the study by Jeong et al. [47]. Several 
studies reported that satellite nodule surrounding the 
main tumor was closely related to tumor grade, MVI, 
and early recurrence (ER) after resection, and TACE 
treatment efficacy and prognosis [10, 17, 37, 48]. Our 
study demonstrated that the presence of satellite nodule 
was inclined to show NR to TACE treatment. This may 
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be interpreted that the development of satellite nodule 
favors vascular invasion and also tumor recurrence [48].

We ultimately developed a combined nomogram inte-
grating the T-PTR (3 mm) rad-score with clinical-radio-
logical risk indicators for treatment response prediction. 
The combined nomogram achieved good calibration and 
the strongest predictive performance based on AUCs in 
the training (nomogram vs. radiomics model vs. clin-
ical-radiological model, 0.910 vs. 0.884 vs. 0.789) and 
validation (nomogram vs. radiomics model vs. clinical-
radiological model, 0.918 vs. 0.911 vs. 0.782) cohorts. The 
novel combined nomogram was evaluated by a decision 
curve to clarify the clinical usefulness, which may offer 
insight into clinical outcomes on the basis of threshold 
probability, from which the net benefit could be derived 
[36]. Our results clearly demonstrated that the combined 
nomogram could obtain more net benefit than either the 
treat-all-patients or the treat-none-patients strategies 
across a wide range of threshold probabilities. Therefore, 
our novel nomogram may provide a reliable and efficient 
tool that enables visualized and personalized decision-
making for the treatment management of patients with 
HCC.

This study has several limitations. Firstly, this was a 
retrospective study at a single center, which may intro-
duce selection bias. The sample size was relatively small, 
especially for the independent testing cohort. A larger 
cohort population from multi-center is further needed 
to externally validate the robustness and reproducibility 
of the predictive models and reinforce the conclusions of 
our study. Secondly, the ROIs were manually delineated 
by radiologists, and thus is time-consuming and prone to 
error and user variability. It’s essential to develop an auto-
matic and reliable liver tumor segmentation tool. Thirdly, 
it should be noted that MP-MRI data are not included 
in this study. In the future, we will attempt to develop a 
radiomics approach based on MP-MRI for response eval-
uation after TACE. Fourthly, for patients with multifocal 
HCCs, our study chose the largest lesion for radiomics 
analysis. A further direction will be considered to per-
form the per-lesion level study, as well as to explore how 
to comprehensively analyze radiomics features of mul-
tifocal lesions for treatment efficacy prediction. Finally, 
our study provided a promising tool for the precise pre-
diction of treatment response after the initial TACE. In 
the future, we will try to explore MRI-based intratumoral 
and peritumoral radiomics features associated with RFS 
of HCC patients treated with TACE.

Conclusions
In conclusion, intratumoral and peritumoral radiomics 
based on preoperative CE-MR images can enhance the 
ability of radiomics model in predicting tumor response 
to TACE. The combined nomogram which incorporated 

the rad-score and clinical-radiological risk factors pro-
vides an effective tool for the precise and individual-
ized estimation of treatment response for HCC patients 
treated with TACE. The accurate identification of HCC 
patients who would receive benefit from upfront TACE 
might potentially help decision-making for subsequent 
treatment strategies.
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