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Abstract
Background We previously identified 16,772 colorectal cancer-associated hypermethylated DNA regions that were 
also detectable in precancerous colorectal lesions (preCRCs) and unrelated to normal mucosal aging. We have now 
conducted a study to validate 990 of these differentially methylated DNA regions (DMRs) in a new series of preCRCs.

Methods We used targeted bisulfite sequencing to validate these 990 potential biomarkers in 59 preCRC tissue 
samples (41 conventional adenomas, 18 sessile serrated lesions), each with a patient-matched normal mucosal 
sample. Based on differential DNA methylation tests, a panel of candidate DMRs was chosen on a subset of our cohort 
and then validated on the remaining part of our cohort and two publicly available datasets with respect to their 
stratifying potential between preCRCs and normal mucosa.

Results Strong statistical significance for the difference in methylation levels was observed across the full set of 990 
investigated DMRs. From these, a selected candidate panel of 30 DMRs correctly identified 58/59 tumors (area under 
the receiver operating curve: 0.998).

Conclusions These validated DNA hypermethylation markers can be exploited to develop more accurate 
noninvasive colorectal tumor screening assays.
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Background
The past 40 years have witnessed considerable reduc-
tions in both the mortality and incidence of colorec-
tal cancer (CRC). These trends are largely attributable 
to the increasing use of population-based colonoscopy 
screening, which allows the identification and removal of 
early-stage CRCs as well as neoplastic lesions regarded 
as precancerous (preCRCs), such as conventional adeno-
mas (cADNs) and sessile serrated lesions (SSLs) [1]. The 
presence of preCRCs precedes CRC onset by ~ 10 years, 
thereby providing a substantial time window for preven-
tive interventions [2].

Due to its high diagnostic efficacy, colonoscopy is now 
the primary tool for CRC screening, but it has several 
well-known shortcomings. Studies based on same-day 
tandem colonoscopy findings indicate that endoscopists 
overlook around 26% of adenomas [3], and missed pre-
cancerous lesions have been estimated to give rise to half 
of the CRCs detected within two years of a negative colo-
noscopy [4]. Furthermore, colonoscopy is relatively inva-
sive and in rare cases associated with intestinal bleeding 
or perforation [2]. Finally, many patients consider the 
procedure and the bowel prep that precedes it uncom-
fortable, time-consuming, and/or generally “unpleasant.” 
Consequently, CRC screening strategies increasingly 
include a preliminary non-invasive testing step aimed at 
improving adherence to screening programs and obtain-
ing additional information that can complement endo-
scopic findings.

Interest is growing in the development of DNA meth-
ylation-based markers for CRC screening. Compared 
with genetic mutations, methylation abnormalities are 
far more frequent in colorectal tumor genomes of all 
stages [5]. Although DNA methylation markers of CRC 
have been studied extensively, converting the findings 
into clinically useful tests has proven to be challenging [6, 
7]. The non-systematic selection of the candidate loci in 
these studies and the limited number of candidates sub-
jected to testing are key factors in these difficulties [8].

Our group recently demonstrated that the abnor-
mal methylation phenotype of specific DNA regions 
described in CRCs [5] is already evident during their pre-
cancerous stages [9]. We identified ~ 20,000 CRC-associ-
ated hypermethylated DNA regions that also contained 
stretches of methylated CpG island-related cytosines in 
preCRCs—elements that were almost invariably unmeth-
ylated in tissue donor-matched samples of normal colon 
mucosa (NM) [9]. These findings suggest that a diag-
nostic test capable of identifying the presence of these 
differentially methylated regions (DMRs) (i.e., hyper-
methylated in tumors vs. NM) could improve the detec-
tion of both CRCs and their precancerous counterparts.

Some regions that were hypermethylated in preCRCs, 
however, also displayed mildly increased methylation in 

NM samples from older (vs. younger) tumor-free women. 
We therefore conducted a follow-up study to explore the 
overlap between the ~ 20,000 tumor-associated DMRs 
and genomic regions that appeared to undergo meth-
ylation as an effect of aging (aging-associated DMRs) 
[10]. The vast majority of the tumor-associated DMRs 
(n = 16,772) showed no methylation changes in the aging 
NM and were thus considered likely to be “tumorigenesis-
specific” [10]. In the study described below, we selected a 
subset of these putatively high-potential age-independent 
markers of colorectal tumorigenesis for validation in a 
new series of prospectively collected colorectal tissues.

Methods
Tissue samples
DMR validation was performed on a series of colorectal 
tissue samples collected during colonoscopy. 59 preCRCs 
(41 cADNs, 18 SSLs), each with a patient-matched NM 
sample collected > 2  cm from the tumor were included 
in the study (Supplementary Table 1). Immediately after 
collection, each sample was immersed in AllProtect Tis-
sue Reagent (Qiagen, Hilden, Germany), held overnight 
at 4 °C, and stored at -80 °C. DNA was extracted with the 
Qiagen AllPrep DNA/RNA mini kit (Hilden, Germany).

Selection of DMRs to be validated in this study
Supplementary Table  2 shows the 1096 genomic loci 
included in our validation set. These included 990 poten-
tial biomarkers of colorectal tumorigenesis drawn from 
the list of 16,772 DMRs we had previously classified [9, 
10] as “tumorigenesis-specific,” i.e., those displaying evi-
dent hypermethylation (vs. NM) in cADNs, SSLs, or both 
preCRC types but no methylation changes in NM that 
could be attributed to aging [10].

All 990 of the potential biomarker DMRs we selected 
had been identified in both cADNs and SSLs. As we 
previously defined [9], a DMR is a genomic region con-
taining at least three consecutive differentially methyl-
ated cytosines with directionally identical methylation 
changes, separated from one another by ≤ 50 bp. The vast 
majority (935/990) also fulfilled all the following formal 
inclusion criteria: overlap with a CpG island; a length of 
> = 80  bp; a difference between preCRC and NM meth-
ylation levels of > = 0.5 (methylation level range: from 0 
to 1); and a q-value < 0.05. The remaining 55 candidates 
were subjectively chosen on the basis of visual inspection 
of our raw data in the Integrative Genome View (IGV). 
While these loci were also markedly hypermethylated in 
both preCRC types, they failed to satisfy one or more of 
the formal inclusion criteria mentioned above.

For control purposes, the validation set also contained: 
39 DMRs that had displayed substantial tumorigenesis-
specific hypermethylation in only one type of preCRC (17 
in cADNs, 22 in SSLs) [9, 10]; forty-seven genomic loci 
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that had displayed high-level methylation in preCRCs as 
well as in donor-paired NM samples (referred to hereaf-
ter as “negative controls”); and 20 other DMRs we had 
classified as “aging-specific” (based on their absence in 
cADNs and SSLs and the presence in NM samples from 
tumor-free women aged 40–70 but not in NM samples 
from tumor-free women aged < 40) (Supplementary 
Table 2).

Probe design
Target enrichment of the selected genomic regions was 
achieved by solution-based hybrid capture performed 
with a synthetic library ultimately consisting of 96,456 
RNA probes (myBaits®, Arbor Biosciences, Ann Arbor, 
MI, USA). Capture oligonucleotides (length: 80 nucleo-
tides, tiling density: 2x) were designed to target approxi-
mately 0.5 Mb of the genome and contained 44,177 CpG 
sites derived from the Hg19 genome build. For each 
DMR, we designed nine probes for the detection the 
following methylation patterns: (1) genomic reference 
(genomic sequence before bisulfite conversion); (2) all 
CpG sites methylated in both cis and trans sequences; 
(3) no methylation in either cis or trans sequences, (4) a 
random half of the CpG sites methylated in both cis and 
trans sequences, and (5) the other half of the CpG sites 
methylated for both cis and trans sequences. (See Sup-
plementary Table 2 for the genomic coordinates of these 
probes).

Library preparation and target enrichment
Genomic DNA was extracted from colorectal tissues 
using the AllPrep DNA/RNA kit (Qiagen, Hilden, Ger-
many). DNA concentrations were quantified with a 
Qubit fluorometer (Invitrogen, Carlsbad, CA, USA), and 
quality was assessed with a NanoDrop spectrophotom-
eter (Thermo Fisher Scientific, Wilmington, NC, USA). 
Genomic DNA (100ng) was bisulfite-converted with the 
EZ-DNA Methylation-Gold kit (Zymo, Irvine, CA, USA) 
prior to preparation of the library with the Accel-NGS 
Methyl-Seq DNA Library Kit (Swift Biosciences, Ann 
Arbor, MI, USA). Equimolar amounts of eight indexed 
libraries were pooled for hybridization with customized 
RNA baits, which was performed twice at 63  °C for 16 
to 24 h. AMPure Xp beads (Beckman Coulter Inc, Brea, 
CA, USA) were used to isolate biotinylated DNA, and the 
bead-bound enriched libraries were amplified with KAPA 
HiFi HotStart Ready Mix (KAPA Biosystems, Wilming-
ton, MA, USA) and adaptor-specific primers. The con-
centrations of the enriched libraries were measured with 
a Qubit fluorometer. Library size was determined with 
a Tapestation (Agilent, Santa Clara, CA, USA) for sub-
sequent library titration and next generation sequenc-
ing. Each pooled library was sequenced on an Illumina 
NovaSeq 6000 instrument (San Diego, CA, USA) using 

one lane to generate an average of 25 million (2 × 150 bp) 
reads per sample.

Data analysis
The patient sample database was split by batch (i.e., date 
of measurement) to obtain a training set consisting of 70 
samples (35 patients, 7 batches) and a test set comprising 
48 samples (24 patients, 3 batches). Per-CpG differential 
methylation (DM) tests were conducted in a per-patient 
paired design using the limma R package. Per-region 
p-values were obtained by aggregating all per-CpG p-val-
ues using the Simes Method [11]. A candidate biomarker 
panel was then created that included the 30 DMRs 
with the lowest p-values in the training set. This panel 
(referred to hereafter as the top 30 candidate biomarker 
panel) was then further validated in the test set.

Preprocessing
Paired-end sequencing reads were trimmed using Trim 
Galore (0.6.5) software [12] and subsequently aligned 
using Bismark (0.23.0) [13] with Bowtie2 (2.3.5.1) [14] to 
the GRCh37/hg19 human reference genome. Deduplica-
tion was performed with the Bismark deduplication func-
tionality, and cytosine methylation calls were obtained 
with the Bismark Methylation Extractor. Deduplicated 
per-CpG reports were imported and handled using the R 
bsseq library [15] and the hg19 BS-genome reference. Of 
the 44,177 CpGs that were probed, 43,786 were covered 
(by at least seven reads) in all the samples and therefore 
considered for subsequent analysis.

Training/Test split
For the selection of a top 30 DMRs, we split the patient 
population (n = 59) by batch (i.e., the date of measure-
ment) in a stratified manner, considering the ratio of SSL 
and cADN samples per-batch using the function strati-
fied from the splitstackshape package [16].

Selection of DMRs for the top 30 candidate biomarker 
panel
The training dataset was subjected to differential meth-
ylation (DM) testing to select the regions characterized 
by consistent methylation differences between preCRC-
sand NM. The DM-strategy chosen was based on func-
tionalities of the limma R package [17–19], which allow 
for robustified estimates of the degrees of freedom (df ) 
and variance priors in the presence of outliers. Moder-
ated t-statistics based on log2CPM-transformed read 
counts were obtained per-CpG using the modelMatrix-
Meth function from the edgeR package [20] for com-
puting the design matrix, accounting for the two-level 
factor read count structure of DNA methylation data, 
thereby loosely following the rationale of the per-CpG 
test implemented in the DMRcate package [21]. All tests 
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were conducted in a per-patient paired design. Per-CpG 
p-values were aggregated for each region using the Simes 
method [11]. P-values were corrected for multiple testing 
using the Benjamini and Hochberg method [22] in the 
stats R package [23]. For the panel, the 30 regions with 
the lowest corrected p-values were selected.

Validation
To test the stratifying potential of the top 30 candidate 
biomarker DMRs, we calculated the mean methylation 
level of the regions across the panel for each sample. In 
addition to the test set described above, we used two 
published datasets, each comprising a sufficiently high 
number of colorectal tissue samples and NM samples. 
The first (referred to hereafter as the GSE131013 dataset) 
[24] was generated in a 450K microarray-based study and 
includes methylation data on 90 donor-matched pairs of 
preCRC and NM tissue from patients and 48 samples of 
NM from healthy donors. The second (referred to here-
after as the GSE48684 dataset) [25] was generated with 
the Illumina methylation 450K microarray and com-
prises methylation data on 42 cADNs, 64 CRCs, and 41 
unmatched NM tissues.

For the GSE131013 and GSE48684 datasets from 
the literature, we considered the Beta-values of all 
CpGs overlapping the region coordinates of this study 
(as downloaded May 2022) for the subsequent tasks. 
Receiver operating characteristics (ROC) curves were 
obtained, and the area under the curve (AUC) for each 
dataset was calculated using the auc function from the 
pROC package [26]. Tissue samples were binarily labeled 
“NM” or “non-NM” (the latter comprising all preCRC 
and CRC tissues).

The 100 randomly selected sets of 30 DMRs each 
shown in the ROC plot were taken from the 990 candi-
date biomarker DMRs, and the mean methylation level 
was used to calculate the ROC curves.

The F1-score was applied using the cutpointr [27] R 
package to find a cutoff for the average per-region meth-
ylation level of the candidate marker panel that differen-
tiates between preCRC and NM tissues in the training 
samples. Methylation levels equal to or exceeding the 
optimal cutoff were considered to originate from pre-
CRC lesions. Originally, a procedure giving a 2-, 5-, or 
10- times higher weight to false negatives than to false 
positives was considered on the training dataset. How-
ever, given the limited size of that dataset, this would 
have resulted in cutoffs taking infinite values and there-
fore in all samples being regarded as positives. Hence, the 
F1-score was used on the training dataset to identify a 
cutoff. In fact, the optimal cutoff identified in this man-
ner was concordant with that identified using Youden’s J 
statistic or Cohen’s Kappa.

Multidimensional scaling (MDS) plots
All MDS plots were generated using asin-transformed 
per-region methylation levels. Subsets of the regions (i.e., 
the top 100 variable regions for each pair of samples) 
were used to determine the MDS dimensions with the 
plotMDS function [17].

Heatmaps
The heatmaps showing methylation differences reflect 
the difference between the methylation level per region 
(i.e., the fraction of methylated over all reads) as obtained 
by the getMeth(…,what = perRegion”) function of the 
bsseq library.

Results
The approach used to validate the 990 DMRs in our new 
series of preCRC tumor tissues was similar to that used in 
our earlier studies [9, 10]. Because the Roche SeqCap Epi 
CpGiant kit used in those studies had been discontinued, 
we used a custom-designed set of probes. This restricted 
our methylation analysis to approximately 1000 genomic 
regions (as compared with the ~ 16,000 analyzed with the 
Roche kit (see Methods) and reduced the amount of DNA 
needed per sample from 1000ng to 100ng—a substantial 
advantage for future studies, especially those conducted 
on low-volume tissue samples. We comparatively ana-
lyzed two preCRC lesions and their matched NM sam-
ples with the custom myBaits protocol and the previously 
used SeqCap Epi CpGiant protocol. The strong corre-
lation (r = 0.97) observed between methylation values 
obtained with the two methods (Fig. 1) indicate that the 
protocols are equally robust.

The DNA methylomes of cADNs and SSLs were clearly 
distinguished from those of their matched NM samples 
(Fig.  2A and B). As expected, the DMRs classified in 
our earlier studies as cADN-specific or SSL-specific dis-
played similar tumor-specificities in this validation study, 
and the methylation statuses of the negative-control and 
aging-specific DMRs were consistent across all samples 
(Fig. 2B). All 990 candidate biomarker DMRs performed 
well in the training dataset (24 cADNs and 11 SSLs), with 
very low false discovery rates (FDRs) (2.77E-20 to 5.24E-
06) and substantial methylation changes (per-DMR mean 
log fold changes of CpGs 5.43 to 1.13, vs. NM) (Supple-
mentary Table 2).

We then validated the top 30 candidate biomarker 
DMRs using our own test dataset and two published 
GSE131013 [24] and GSE48684 [25] datasets (Methods): 
As shown in Fig. 3A and B, all the tumors in our train-
ing and test sets clearly displayed some degree of hyper-
methylation at all 30 of these loci. In these two datasets, 
the Top 30 Candidate marker panel with a mean meth-
ylation level cut-off of 0.0918 (methylation level range: 
0 to 1) correctly identified 58 (98.3%) of the 59 preCRCs 
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as tumors (vs. NM), with one preCRC misclassified as 
NM in the test dataset. As shown in Fig. 3C, the top 30 
candidate marker panel distinguished almost all the 
tumors from NM samples with high accuracy (AUCs: 
0.998, 0.981, 0.977 in our test dataset, GSE131013, and 
GSE48684 respectively). Panels composed of 30 cADN- 
& SSL-specific DMRs randomly selected from the 990 
shown in Supplementary Table 2 (gray curves in Fig. 3C) 
also performed very well across our test dataset (AUC: 
0.994) and satisfactorily across the external datasets 
(AUC: 0.971 and 0.962 in GSE131013 and GSE48684, 
respectively). Across the three datasets, the average per-
formance of these randomly selected panels was superior 
to those of methylation markers used in the currently 
available CRC screening tests (e.g., VIM, NDRG4/BMP3, 
and SEPT9; see Discussion).

Discussion
With this validation study conducted on a new prospec-
tively collected series of colorectal tissues, we have dem-
onstrated that numerous hypermethylated DMRs are 
robust indicators of the precancerous stages of colorec-
tal tumorigenesis. Because these same DNA regions are 
also highly hypermethylated in CRC [9, 10], they have 
the potential for development as screening biomarkers 
for colorectal tumors of all stages. Several studies have 
already reported DNA methylation alterations in CRC, 
proposing their use as a diagnostic marker [5]. Few stud-
ies have been performed in precancerous lesions, gen-
erally in cADNs and few or no SSLs [24, 25, 28]. In our 
previous studies [9, 10] and in the present study, we have 
analyzed DMRs developing in both cADNs and SSLs (i.e., 
the vast majority of precancerous colorectal lesions). 

Therefore, these epigenetic markers can effectively detect 
colorectal tumors developing along either the adenoma-
tous or the serrated pathway of tumorigenesis, and they 
tend to be found across most lesions unlike mutations 
(e.g., those involving KRAS or BRAF, which are identi-
fied in only ~ 40% and ~ 10% of colorectal neoplasms, 
respectively).

Pre-colonoscopic screening assays based on the meth-
ylation analysis of fecal DNA might thus complement 
(or even replace) the immunochemical stool tests widely 
used in today’s clinics for the identification of individu-
als who might need colonoscopy. Indeed, some currently 
available fecal DNA assays include one or two methyla-
tion markers, such as hypermethylation of VIM (Colo-
Sure assay) or NDRG4 and BMP3 (Cologuard assay) [29], 
and the blood DNA-based assay Epi proColon tests for 
hypermethylation of SEPT9 [30]. At present, none of 
these assays are widely used in clinical practice, mainly 
because they have not been proven to be superior to 
currently-used immunochemical tests in detecting CRC. 
As for their accuracy in detecting preCRCs, it is far from 
optimal (11.2–42.4% sensitivity; 86.6–91.5% specificity) 
[29, 30]. Our top 30 candidate DMRs performed better, 
in our test set and in external datasets, than the DMRs 
included in these commercial assays, suggesting that a 
larger set of reliable DNA methylation markers (e.g., 30 
cADN- and SSL-specific, aging-independent DMRs) 
might allow more sensitive and more specific detection 
of precancerous lesions. Therefore, the set of DMRs we 
have investigated seems highly suitable for developing 
novel, noninvasive screening tests for the early detec-
tion of all colorectal tumors. Prospective studies in 

Fig. 1 Comparison of the methylation data obtained with the protocol used in this study and in our previous study [9]. Correlation plot (Pearson cor-
relation r) of the per-region averaged methylation levels for the four samples (color-coded by tissue of origin) profiled with both protocols. Each dot 
represents a genomic locus validated in this study
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stool-DNA samples should be carried out to verify the 
clinical potential of our markers.

Our findings also indicate that a screening assay based 
exclusively on DNA hypermethylation markers is likely 
to miss a few preCRCs (~ 2% in our validation study, see 
Results) owing to their very low levels of DNA hyper-
methylation. A more promising strategy for enhanc-
ing assay sensitivity might therefore involve adding 

methylation-based markers to panels containing immu-
nochemical and genetic markers, an approach similar to 
the one used in the Cologuard assay.

Conclusions
We have validated an extensive set of DMRs as mark-
ers capable of accurately predicting the presence of a 
colorectal tumor regardless of the patient’s age. The list 

Fig. 2 Unsupervised analysis of the methylation levels in the 118 tissue samples investigated. (A) Multidimensional scaling (MDS) plot of the samples 
(cADNs n = 41, SSLs n = 18 and matched NM (n = 59) based on DNA methylation levels in the 100 most variable DMRs. Per-DMR (averaged) methylation 
levels were subjected to asin/arcsin transformation. (B) Heatmap visualization of mean methylation levels averaged across all CpG sites of each of the 
1096 genomic regions analyzed in each tissue sample (numerically coded and prefixed with “A” for cADN or “S” for SSL). In both lesion types, methylation 
levels at the 990 candidate biomarker DMRs were generally higher than those in their matched NM samples. In contrast, the preCRC and NM methylation 
profiles for the negative-control and aging-specific DMRs were similar. Column Mean: Mean methylation level per sample (averaged across CpG sites of 
the 990 candidate biomarker DMRs). White blocks: genomic regions not covered by any reads in the A24 cADN tissue sample
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Fig. 3 Validation of the top 30 candidate markers from Supplementary Table 2. (A) Heatmap showing the difference between per-DMR averaged meth-
ylation levels in normal mucosa (NM) and tumor tissues in our training set (70 samples from 35 patients), our test set (48 samples from 24 patients), and 
the GSE131013 tissue set (180 samples from 90 patients) (see Methods). The top row (“Panel”) shows the average methylation difference per patient across 
the 30 DMR marker candidates. (Red squares in this row: donors with hypomethylated tumors reflected by a negative average difference between their 
tumor and NM methylation levels.) Pairwise comparison of methylation levels in the GSE48684 samples could not be performed because per patient 
paired sample data was not available (see Methods). (B) Averaged methylation levels for the top 30 marker candidates in tumors (orange dots) and paired 
NM (green dots) for each patient in the three datasets mentioned in (A). (Two tumors of the GSE131013 dataset displayed hypo- rather than hypermeth-
ylation relative to their matched NM samples.) (C) Receiver operating characteristic (ROC) curves showing the differentiating potential of the “per sample 
mean methylation level” at our top 30 candidate marker DMR set, at the 100 randomly selected sets of 30 DMRs from our Supplementary Tables 2, at VIM 
DMR, at NDRG4/BMP3 DMR and at SEPT9 DMR in our test dataset and the GSE131013 and GSE48684 datasets. AUCs are given in each graph (the AUC of 
the randomly selected sets of 30 DMRs, i.e., gray curve, represents the mean of AUCs obtained across all 100 random sets)
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of DMRs validated in this study can thus be productively 
mined to establish promising biomarker sets for fecal 
DNA based screening assays.

Abbreviations
AUC  Area under the curves
cADN  Conventional adenomas
CRC  Colorectal cancer
DF  Degrees of freedom
DM  Differential methylation
DMR  Differentially methylated region
FDRs  False discovery rates
IGV  Integrative Genome View
MDS  Multidimensional scaling
NM  Normal colon mucosa
preCRC  Precancerous colorectal lesion
ROC  Receiver operating characteristic
SSL  Sessile serrated lesion
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