
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Chen et al. BMC Cancer         (2023) 23:1139 
https://doi.org/10.1186/s12885-023-11456-3

BMC Cancer

†Chen Chen and Yuanzhen Liu contributed equally to this work.

*Correspondence:
Yifan Wang
wangyf@zjcc.org.cn
Dong Xu
xudong@zjcc.org.cn

Full list of author information is available at the end of the article

Abstract
Background  Calcification is a common phenomenon in both benign and malignant thyroid nodules. However, 
the clinical significance of calcification remains unclear. Therefore, we explored a more objective method for 
distinguishing between benign and malignant thyroid calcified nodules.

Methods  This retrospective study, conducted at two centers, involved a total of 631 thyroid nodules, all of which 
were pathologically confirmed. Ultrasound image sets were employed for analysis. The primary evaluation index 
was the area under the receiver-operator characteristic curve (AUROC). We compared the diagnostic performance 
of deep learning (DL) methods with that of radiologists and determined whether DL could enhance the diagnostic 
capabilities of radiologists.

Results  The Xception classification model exhibited the highest performance, achieving an AUROC of up to 
0.970, followed by the DenseNet169 model, which attained an AUROC of up to 0.959. Notably, both DL models 
outperformed radiologists (P < 0.05). The success of the Xception model can be attributed to its incorporation of deep 
separable convolution, which effectively reduces the model’s parameter count. This feature enables the model to 
capture features more effectively during the feature extraction process, resulting in superior performance, particularly 
when dealing with limited data.

Conclusions  This study conclusively demonstrated that DL outperformed radiologists in differentiating between 
benign and malignant calcified thyroid nodules. Additionally, the diagnostic capabilities of radiologists could be 
enhanced with the aid of DL.
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Background
Thyroid nodules represent a common endocrine disease, 
with a detection rate of up to 68% in adults [1, 2]. The 
majority of these nodules are benign and pose minimal 
risk [3]. However, malignant thyroid nodules can burden 
patients psychologically, with certain high-risk cases car-
rying the potential of metastasis. Therefore, it becomes 
crucial to differentiate between benign and malignant 
thyroid nodules. Ultrasonography (US) and fine needle 
aspiration (FNA) constitute the two primary methods 
for distinguishing between benign and malignant thy-
roid nodules [4, 5]. FNA, being an invasive procedure, 
can be significantly burdensome for patients [6]. Hence, 
US emerges as the preferred evaluation method for thy-
roid nodule evaluation [3]. During ultrasound examina-
tions, several nodule features, including calcification, a 
hypoechoic appearance, irregular margins, and a taller-
than-wide shape, are strongly correlated with malig-
nancy [2]. Among these features, calcification is present 
in approximately 19.8–32.1% of all thyroid nodules and is 
considered one of the most critical ultrasound indicators 
[7, 8]. However, calcification is not a specific marker for 
malignancy since it can also occur in benign nodules [9].

Currently, radiologists primarily differentiate between 
benign and malignant calcified thyroid nodules by assess-
ing the type of calcification present [10]. Calcification can 
be categorized into three types: microcalcification, mac-
rocalcification, and peripheral calcification [11]. Among 
these types, microcalcification carries the highest risk of 
malignancy. The American College of Radiology classifies 
thyroid nodules with echogenic foci in ultrasound images 
into three groups: macrocalcification is assigned one 
point, peripheral calcification is assigned two points, and 
the presence of punctate echogenic foci is assigned three 
points [12]. The higher the point value, the greater the 
associated risk of malignancy [13]. However, both ultra-
sound imaging and US-FNA methods have limitations in 
determining the type of calcification. Although microcal-
cification (indicated by punctate echogenic foci) exhibits 
the highest correlation with malignancy, nodules with 
microcalcification are not necessarily malignant [14–16]. 
Furthermore, nodules exhibiting either macrocalcifica-
tion or peripheral calcification cannot be automatically 
classified as benign [17]. In conclusion, the clinical sig-
nificance of various calcification types remains unclear, 
underscoring the need for a more objective approach to 
distinguishing between benign and malignant thyroid 
nodules featuring calcification.

In recent years, there has been a growing interest in 
artificial intelligence (AI), particularly in the context of 
deep learning (DL) and its automatic image analysis capa-
bilities. Liu et al. [18] developed a combined DL model 
with a high discrimination ability for predicting malig-
nant microcalcification in Breast Imaging-Reporting and 

Data System (BI-RADS) 4 breast nodules, outperform-
ing junior doctors. Patel et al. [19] utilized DL segmen-
tation and computed tomography radiomics to evaluate 
the microarchitectural changes in cardiovascular calci-
fication following in vivo interventions. Nam et al. [20] 
developed DL algorithms capable of detecting calcifica-
tion in chest radiographs, while Yao et al. [21] developed 
a multimodal DL model for predicting cervical lymph 
node metastasis in papillary thyroid carcinoma. How-
ever, limited studies currently apply DL techniques to 
predict the malignancy risk associated with calcified thy-
roid nodules.

The risk of malignancy linked to various types of cal-
cifications in thyroid nodules remains inconclusive, and 
the clinical significance of calcification has not been ade-
quately studied. Therefore, our study employs DL tech-
niques to automatically extract malignant features from 
ultrasound images of calcified thyroid nodules and pre-
dict the risk of malignancy. Our objective is to compare 
the diagnostic performance of our method with that of 
radiologists and investigate whether it can enhance the 
diagnostic capabilities of radiologists in making accurate 
clinical decisions for patients with thyroid nodules.

Methods
Study design and datasets
This retrospective diagnostic study was conducted at two 
centers and included patients who met the following cri-
teria: (1) age 18 years or older; (2) ultrasonographic diag-
nosis of thyroid nodules; (3) detection of calcification in 
both ultrasound and pathology reports; and (4) a defini-
tive pathological diagnosis of either benign or malignant 
nodules (confirmed through surgical specimen or FNA 
[Bethesda II or VI]). Two pathologists made the patho-
logical diagnoses, and in case of any disagreement, the 
diagnosis of a third senior pathologist was used. Ultra-
sound images of low quality with incomplete lesions were 
excluded after screening.

Written informed consent from the patients was 
waived by the ethics committee of the Independent Eth-
ics Committee of Zhejiang Cancer Hospital and the 
Medical Ethics Committee of Taizhou Cancer Hospital 
(IRB-2020-287, IRB-2023-001-IIT) and all images and 
data were anonymized.

Evaluation metrics
The primary outcome measure was to investigate the 
area under the receiver-operator characteristic curve 
(AUROC) for diagnosing calcified thyroid nodules. The 
secondary outcomes included accuracy (ACC), sensi-
tivity (SEN), specificity (SPE), positive predictive value 
(PPV), and negative predictive value (NPV) for calcified 
thyroid nodules. We compared the diagnostic perfor-
mance of the DL models with that of radiologists with 
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varying levels of seniority and investigated whether radi-
ologists could improve their diagnostic accuracy with the 
aid of the DL model.

Procedures
Figure 1 presents an overall schematic of this retrospec-
tive diagnostic study. We conducted a retrospective 
search in the thyroid ultrasound image databases of both 
Zhejiang Cancer Hospital (Center 1) and Taizhou Can-
cer Hospital (Center 2) to identify ultrasound images of 
patients with thyroid nodules recorded between January 
2020 and December 2022. We included images that fea-
tured comprehensive ultrasound data and clear patholog-
ical results, resulting in a total of 1265 images from 546 
nodules from Center 1 and 126 images from 85 nodules 
from Center 2. We divided the 546 nodules from Center 
1 into training and verification sets in an 8:2 ratio. The 85 
nodules from Center 2 were designated as a separate test 
set. Notably, there was no patient overlap between Cen-
ter 1 and Center 2.

A total of 1391 ultrasound images of thyroid nodules 
in Digital Imaging and Communications in Medicine 
(DICOM) format underwent a lossless conversion to 
the Joint Picture Group (JPG) format. Manual crop-
ping and removal of noise information, including ultra-
sound equipment and patient information, from around 
the original image was performed. As shown in Fig.  2, 
two radiologists, each possessing over five years of work 
experience, utilized LabelMe software to outline the nod-
ule area by marking it within a rectangular box on the 
complete ultrasound image. Following this delineation, 
a JSON format file containing coordinates, width, and 

height information for the upper left corner of the nodule 
was generated. Subsequently, the nodules were extracted 
from the complete ultrasound image using the JSON 
format files, resulting in images that only featured the 
nodule area. To meet the input size requirements of vari-
ous models, the size of the cropped nodule area image 
was adjusted accordingly before input into the model. 
The image length and width were adjusted to 224 × 224, 
299 × 299, and 331 × 331 pixels, respectively, to align 
with the required image input size of the model, and the 
images were normalized. Due to the limited number of 
thyroid calcified nodules and the sparse nature of medi-
cal data, various data augmentation techniques such as 
rotation, flipping, scaling, translation, and mixing [22, 
23] were applied to transform the existing ultrasound 
images. These augmentation methods serve to enhance 
the generalization capabilities of DL models. The ultra-
sound images of thyroid calcified nodules from Center 
1 were divided into a training set (80%) and a validation 
set (20%). The training set images were expanded to five 
times their original data volume, which was employed for 
training the DL models.

In this study, we employed a total of five convolutional 
neural network (CNN) models, each with distinct struc-
tures and depths: DenseNet121, DenseNet169, NASNet-
Large, ResNet101v2 and Xception. These models were 
utilized to extract features from thyroid calcified nod-
ules and establish the classification models. The neural 
network’s backpropagation method was employed to 
iteratively update the model parameters, ultimately facili-
tating the classification of benign and malignant thyroid 
calcified nodules.

Fig. 1  Overall schematic for differentiating between benign and malignant thyroid nodules with calcification using DL models
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For transfer learning in this study, we utilized the 
pre-training weight parameters from these models in 
the ImageNet context. The fully connected layers of the 
original models’ weight parameters’ were removed and 
replaced with four fully connected layers containing 
1024, 512, 512, and 2 neurons, respectively. During the 
training process, fine-tuning was applied to expedite the 
model’s search for the optimal global solution, with the 
models being iterated for 300 epochs. To prevent over-
fitting, three dropout regularizations were introduced 
between the fully connected layers, randomly deactivat-
ing 50% of the neurons during training. Binary cross-
entropy loss and the Adam optimizer were employed to 
iteratively update the model’s weight parameters. The 
initial learning rate for the optimizer was set at 0.001, 
with a dynamic adjustment strategy. If the ACC did not 
increase for five consecutive epochs during the training 
process, the learning rate was reduced, and the learning 
rate factor was set to 0.5. During training, a batch size of 
eight was utilized. The SoftMax activation function was 
applied in the final fully connected classification layer 
to output the probabilities of benign and malignant thy-
roid calcified nodules, enabling the DL models to evalu-
ate these nodules. We re-evaluated the generalization 
performance of the model by conducting 3-fold cross-
validation, independently re-adjusting the hyperparam-
eters for each model during this process. Given that we 
employed DL models with varying convolutional layers 
and structures, maintaining consistency in hyperparam-
eters across all models was crucial to ensure fair model 
training. Therefore, all hyperparameters were initialized 
with default values from the TensorFlow scientific data-
base. The ROC curve was generated from the average 

probabilities calculated during the three-fold cross-
validation, and the remaining metrics were determined 
through voting to establish the final category results 
based on the outcomes of the three-fold cross-validation. 
Two junior and two senior radiologists were tasked with 
diagnosing 126 identical ultrasound images from Cen-
ter 2, depicting thyroid nodules, to assess the potential 
clinical applicability of our model. The four radiologists 
initially conducted independent diagnoses of the thy-
roid nodules in the test set. Subsequently, after a wash-
out period exceeding two months, they re-evaluated the 
same images with the assistance of a DL model. During 
the initial diagnosis, the radiologists were required to 
independently identify benign and ma-lignant thyroid 
calcified nodules. Importantly, the pathological diagnosis 
for all nodules was established but kept confidential from 
the radiologists. The radiologists were informed that 
their diagnostic performance would be compared with 
that of the DL models. Fol-lowing this initial phase, and 
after the washout period, we furnished the radiologists 
with the DL model’s reference diagnosis, which included 
the malignant probability of nodules and the classifica-
tion of benign and malignant nodules based on the DL 
model’s as-sessment. The radiologists had the option to 
either adhere to their initial diagnosis or incorporate the 
DL model’s results into their final diagnosis. The diagnos-
tic efficacy of the DL model remained undisclosed to the 
radiologists.

Statistical analysis
All statistical analyses were conducted using Python (ver-
sion 3.8.13), Numpy (version 1.22.3), and Scipy (version 
1.8.0). Quantitative data were expressed as mean ± SD. 

Fig. 2  An illustration of the process of inputting images
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The main evaluation index was the AUROC. A 2 × 2 con-
fusion matrix was generated to calculate ACC, SEN, SPE, 
PPV, NPV and F1-score (F1) [24, 25]. The receiver opera-
tor characteristic (ROC) curve was plotted, depicting the 
true positive rate (SEN) and the true negative rate (SPE). 
Subsequently, AUROC values were calculated, and the 
significance of AUROC differences was assessed using 
the Delong test, with P < 0.05 considered indicative of a 
significant difference between the two AUROCs.

Results
Patients
The study included a total of 631 thyroid nodules, and 
Table 1 provides an overview of the characteristics of the 
patients and nodules examined in the study. In Center 1, 
the mean age of the patients was 51.5 ± 11.6 years, com-
prising 380 females and 105 males. Meanwhile, Center 2 
recorded a mean patient age of 54.5 ± 11.0 years, encom-
passing 58 females and 22 males. The average nodule 
size in Center 1 measured 1.3 ± 1.1  cm, with 72.7% of 
the nodules being smaller than 1.5  cm. The malignancy 
rate for nodules in Center 1 was 54.6%. Similarly, Cen-
ter 2 reported an average nodule size of 1.4 ± 1.2  cm, 
with 69.4% of the nodules being smaller than 1.5  cm. 
The malignancy rate for nodules in Center 2 was 58.8%. 
Table  1 presents an overview of the image distribution 
within the dataset.

Performance of models
After 300 epochs of learning, the external test set from 
Center 2 was employed to evaluate the performance of 
the five classification models. The Xception classifica-
tion model exhibited the highest performance, achieving 
an AUROC of up to 0.970, followed by the DenseNet169 

model with an AUROC of up to 0.959. The key distinc-
tion between the Xception model and the other four 
models lies in its incorporation of deep separable convo-
lution into the model structure. This structural element 
segregates the channel axis of the image data from the 
spatial axis and subsequently conducts separate convolu-
tions on these two channels. This separation framework 
results in a reduction in the model’s parameter count, 
reduces computational complexity, and enhances over-
all efficiency. Furthermore, this structure enhances the 
model’s capacity to capture both local features and global 
information within the image, ultimately elevating the 
model’s ability to comprehend image content. Given its 
fewer parameters and stronger feature extraction capabil-
ities, the Xception model exhibits superior generalization 
performance and overall performance, particularly when 
dealing with limited data samples. Figure 3 illustrates the 
AUROC curves for all five models, while Table 2 provides 
an overview of the evaluation metrics for each model.

Performance of radiologists with and without DL 
assistance
The Xception classification model outperformed other 
models, closely followed by the DenseNet169 model 
(Table 2). Table 3 presents the performance of both junior 
and senior radiologists in diagnosing benign and malig-
nant thyroid calcified nodules. The combined AUROC 
of the two junior radiologists was 0.674, while that of the 
two senior radiologists was 0.745. These findings indicate 
that both models outperformed the radiologists, with 
a statistically significant difference (a P-value < 0.05, as 
indicated in Table 4).

Table  3 and Table  5 provide insight into the diagnos-
tic performance of radiologists in distinguishing between 
benign and malignant thyroid calcified nodules, both 
with and without the assistance of the Xception model. 
In the absence of the DL model, the combined AUROC 
for the two junior radiologists was 0.674 (0.574, 0.774). 
However, with the DL model’s assistance, the AUROC 
for the junior radiologists increased to 0.743 (0.650, 
0.836). The combined ACC also improved from 0.694 
(0.675,0.855) to 0.753 (0.662, 0.845). Similarly, when not 
aided by the DL model, the combined AUROC for Radi-
ologist 4 was 0.719 (0.623, 0.815), and with the DL mod-
el’s assistance, it increased to 0.764 (0.674, 0.855). The 
ACC also improved from 0.729 (0.635, 0.823) to 0.788 
(0.701, 0.875).

Attention maps generated by CAM
Upon forwarding the image of the calcified thyroid nod-
ule to the Xception model, a convolution operation is 
performed, followed by the application of the Rectified 
Linear Unit (ReLu) activation function to nonlinearly 
process the extracted features. Subsequently, the image is 

Table 1  Patient and Nodule Characteristics*
Center 1 Center 2

Age (years) 51.5 ± 11.6 54.5 ± 11.0
Sex
  Female 78.4(380/485) 72.5(58/80)
  Male 21.6(105/485) 27.5(22/80)
Nodule size(cm) 1.3 ± 1.1 1.4 ± 1.2
  < 1.0 cm 53.3(291/546) 45.9(39/85)
  1.0 to < 1.5 cm 19.4(106/546) 23.5(20/85)
  1.5 to < 2.0 cm 9.0(49/546) 11.8(10/85)
  ≥ 2.0 cm 18.3(100/546) 18.8(16/85)
Final pathological
  benign 45.4(248/546) 41.2(35/85)
  malignancy 54.6(298/546) 58.8(50/85)
Distribution of images
(Original images/Augmen-
tation images)

Training
data set

Valida-
tion
data set

Test
data set

benign 562/2810 141/- 58/-
malignancy 449/2245 113/- 68/-
*Unless otherwise noted, values represent percentages
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subjected to depth-separable convolution for further fea-
ture extraction. Layer skip connections are incorporated 
within this process to augment feature utilization. After 
multiple iterations of this layer, global average pooling 
(GAP) is employed to reduce the dimensionality of the 
features. A fully connected layer operates on the features 
post-global average pooling, facilitating feature learn-
ing and classification prediction, ultimately producing 

the benign and malignant probability scores for calci-
fied nodules. The Xception model workflow is illustrated 
in Fig.  4. Throughout this process, we implemented the 
class activation mapping (CAM) model to generate atten-
tion maps highlighting the critical regions in the predic-
tion of nodules. Figure  5 displays these maps, with the 
red areas indicating the regions of primary focus for the 
DL model. These selected nodules were instances where 

Table 2  Diagnostic performance of DL models in the test set
Densenet121 DenseNet169 NASNetLarge ResNet101V2 Xception

ACC
(95% CI)

0.741
(0.648, 0.834)

0.906
(0.844, 0.968)

0.882
(0.814, 0.951)

0.941
(0.891, 0.991)

0.929
(0.875, 0.984)

SEN
(95% CI)

0.886
(0.818, 0.953)

0.857
(0.783, 0.932)

0.857
(0.783, 0.932)

1.000
(1.000, 1.000)

0.914
(0.855, 0.974)

SPE
(95% CI)

0.640
(0.538, 0.742)

0.940
(0.890, 0.990)

0.900
(0.836, 0.964)

0.900
(0.836, 0.964)

0.940
(0.890, 0.990)

PPV
(95%CI)

0.633
(0.530, 0.735)

0.909
(0.848, 0.970)

0.857
(0.783, 0.932)

0.875
(0.805, 0.945)

0.914
(0.855, 0.974)

NPV
(95%CI)

0.889
(0.822, 0.956)

0.904
(0.841, 0.967)

0.900
(0.836, 0.964)

1.000
(1.000, 1.000)

0.940
(0.890, 0.990)

AUC
(95%CI)

0.842
(0.778, 0.905)

0.959
(0.924, 0.994)

0.931
(0.887, 0.975)

0.954
(0.918, 0.991)

0.970
(0.940, 1.000)

F1 0.744 0.922 0.900 0.947 0.940

Fig. 3  ROC curves of the DL models and the performance of radiologists aided by the Xception model
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doctors’ judgments were incorrect, but the model made 
accurate assessments.

Discussion
This study evaluated various methods for differentiating 
between benign and malignant thyroid calcified nodules. 
Results from the external test set demonstrated that the 
Xception classification model achieved the highest per-
formance with an AUROC of up to 0.970, followed by the 
DenseNet169 model with an AUROC of up to 0.959. The 
Xception classification model, which demonstrated supe-
rior generalization ability, provided valuable assistance 
to radiologists of varying experience levels in differenti-
ating between benign and malignant calcified nodules. 
These findings underscore the diagnostic potential of DL 
methods in assisting radiologists to make more accurate 

clinical diagnoses, potentially reducing the need for 
unnecessary FNA procedures for thyroid calcified nod-
ules. Typically, DL models outperform radiologists due 
to their ability to discern intricate details beyond human 
perception. In this study, we employed the Gradient-
CAM technique to generate attention maps, highlighting 
regions of interest for the CNN. In the future, it is antici-
pated that additional feature visualization methods for 
DL models can be utilized to visualize areas of concern, 
thus enabling the model to directly communicate to doc-
tors which features it deems significant when rendering 
judgments.

Calcification serves as a common indicator in thy-
roid nodules, and distinct types of calcifications suggest 
varying degrees of malignancy. Previous studies have 
reported that malignant calcification in thyroid nodules 

Table 3  Diagnostic performance of four radiologists
Radiologist 1
(Junior)

Radiologist 2
(Junior)

Juniors
Average

Radiologist 3
(Senior)

Radiologist 4
(Senior)

Seniors
Average

ACC
(95% CI)

0.706
(0.609,0.803)

0.682
(0.583,0.781)

0.694
(0.596, 0.792)

0.765
(0.675,0.855)

0.729
(0.635,0.823)

0.747
(0.655, 0.839)

SEN
(95% CI)

0.514
(0.408,0.620)

0.600
(0.496,0.704)

0.557
(0.451, 0.663)

0.800
(0.715,0.885)

0.657
(0.556,0.758)

0.729
(0.635, 0.823)

SPE
(95% CI)

0.840
(0.762,0.918)

0.740
(0.647,0.833)

0.790
(0.703, 0.877)

0.740
(0.647,0.833)

0.780
(0.692,0.868)

0.760
(0.669, 0.851)

PPV
(95%CI)

0.692
(0.594,0.790)

0.618
(0.515,0.721)

0.655
(0.554, 0.756)

0.683
(0.584,0.782)

0.676
(0.577,0.775)

0.680
(0.581, 0.779)

NPV
(95%CI)

0.712
(0.616,0.808)

0.725
(0.630,0.820)

0.719
(0.623, 0.815)

0.841
(0.763,0.919)

0.765
(0.675,0.855)

0.780
(0.692, 0.868)

AUC
(95%CI)

0.677
(0.578,0.776)

0.670
(0.570,0.770)

0.674
(0.574, 0.774)

0.770
(0.681,0.859)

0.719
(0.623,0.815)

0.745
(0.652, 0.838)

P-value All P < 0.05

Table 4  The p-values of the DeLong test for different methods in the test set
DenseNet169 Xception Radiologists(Junior) Radiologists(Senior)

DenseNet169e 1 0.4516 0.0022 0.0192
Xception 0.4515 1 0.0021 0.0019
Radiologists (Junior) 0.0022 0.0021 1 0.2216
Radiologists (Senior) 0.0192 0.0019 0.2216 1

Table 5  Diagnostic performance of four radiologists aided by the Xception model
Radiologist 1
(Junior)

Radiologist 2
(Junior)

Juniors
Average

Radiologist 3
(Senior)

Radiologist 4
(Senior)

Seniors
Average

ACC
(95% CI)

0.729
(0.635, 0.824)

0.776
(0.688, 0.865)

0.753
(0.662, 0.845)

0.694
(0.596, 0.792)

0.788
(0.701, 0.875)

0.741
(0.649, 0.834)

SEN
(95% CI)

0.657
(0.556, 0.758)

0.714
(0.618, 0.810)

0.686
(0.587, 0.784)

0.571
(0.466, 0.677)

0.629
(0.526, 0.731)

0.600
(0.496, 0.704)

SPE
(95% CI)

0.780
(0.692, 0.868)

0.820
(0.738, 0.902)

0.800
(0.780, 0.885)

0.780
(0.692, 0.868)

0.900
(0.836, 0.964)

0.840
(0.764, 0.916)

PPV
(95%CI)

0.676
(0.577, 0.776)

0.735
(0.642, 0.829)

0.706
(0.677, 0.803)

0.645
(0.543, 0.747)

0.815
(0.732, 0.897)

0.730
(0.638, 0.822)

NPV
(95%CI)

0.765
(0.675, 0.855)

0.804
(0.720, 0.888)

0.785
(0.765, 0.872)

0.722
(0.627, 0.817)

0.776
(0.687, 0.865)

0.749
(0.657, 0.841)

AUC
(95%CI)

0.719
(0.623, 0.814)

0.767
(0.677, 0.857)

0.743
(0.650, 0.836)

0.676
(0.576, 0.775)

0.764
(0.674, 0.855)

0.720
(0.625, 0.815)

P-value All P < 0.05
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typically arises from the proliferation of blood vessels, 
dense fibrous tissue, and the accumulation of calcium 
salts [10]. Calcification can be present in both benign and 
malignant thyroid nodules, and the morphological fea-
tures often overlap [26]. In postoperative histopathologi-
cal examinations, microcalcification is associated with 
the presence of psammoma bodies, which are round, 
lamellar, crystalline calcified deposits measuring between 
10 and 100 μm in size and are distinctive features unique 
to papillary thyroid carcinoma. Hence, microcalcifica-
tions are highly indicative of malignancy, with an SPE 

ranging from 86 to 95% and a PPV varying between 42% 
and 94% [27]. However, the identification of microcal-
cifications in ultrasound images is highly dependent on 
the scanning angle and the radiologists’ experience, and 
outcomes may differ across varying imaging machines. 
Regarding peripheral calcification, certain studies [4, 
28, 29] have suggested that the disruption and thicken-
ing of peripheral calcification, along with the presence 
of a peripheral halo around thyroid nodules, strongly 
indicate a heightened likelihood of malignancy. How-
ever, several other studies [17, 30] refute this conclusion, 

Fig. 5  CAM-Generated attention maps, “B” stands for benign and “M” for malignant

 

Fig. 4  Workflow diagram of the Xception model, “B” stands for benign and “M” for malignant
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possibly due to the subjective interpretation of radiolo-
gists regarding peripheral calcification [30, 31]. Similarly, 
previous studies have reported conflicting and incon-
sistent results regarding the malignant risk associated 
with macrocalcification [32–37]. This variability may 
stem from variations in the composition and echogenic 
characteristics displayed in ultrasound images of thyroid 
nodule. Discrepancies may also arise from differences in 
how radiologists define distinct calcification types and 
the specific attributes of the study populations. Ha et al. 
[37] integrated the Thyroid Imaging, Reporting and Data 
System (TI-RADS) to stratify the malignant risk of thy-
roid nodules with different echogenic foci types. Their 
findings revealed that the PPV for nodules featuring large 
echogenic foci without shadowing, macrocalcification, 
peripheral curvilinear or eggshell echogenic foci, with 
or without shadowing, was relatively low (33.3–56.4%). 
However, when the highly suspicious categories within 
TI-RADS were combined, the PPV notably increased to 
a range of 50.0–90.9%. In our study, the PPV achieved 
by the DenseNet169 and Xception models could reach 
as high as 90.9% and 91.4%, surpassing the traditional 
combination of TI-RADS for assessing the malignant risk 
associated with calcified nodules.

Both US and FNA have limitations in determining the 
malignant risk of thyroid calcified nodules. FNA, for 
instance, can only observe morphological and structural 
changes in a limited number of cells. Additional con-
straints include a limited comprehension of the overall 
tissue structure and the potential for undetected cases 
due to unsatisfactory sampling. Consequently, there is 
a pressing need for supplementary diagnostic methods. 
DL methods offer potential advantages over traditional 
diagnostic techniques due to their objectivity and repro-
ducibility. These methods operate by automatically clas-
sifying images through the training of CNNs on extensive 
datasets. A CNN comprises multiple convolutional layers 
capable of automatically extracting meaningful features 
from input data and integrating them as they traverse 
through deep layers. Specifically, CNNs excel at automat-
ically classifying images by extracting optimal features, 
identifying, and analyzing the characteristics of thyroid 
nodules, and effectively distinguishing between benign 
and malignant nodules [38, 39]. Given that some radiolo-
gists may overestimate the malignant risk associated with 
calcification, it becomes crucial to maintain a high SPE in 
the identification of thyroid calcified nodules to minimize 
unnecessary FNA or surgery for benign calcified nodules. 
The DL method proposed in this study demonstrates its 
ability to significantly enhance the diagnostic accuracy 
of radiologists with varying levels of experience in dis-
tinguishing between benign and malignant thyroid cal-
cified nodules, potentially averting unnecessary invasive 
procedures for benign calcified nodules. A distinguishing 

feature of the Xception model compared to the other 
four models lies in the introduction of deep separable 
convolution within the model structure. This structural 
enhancement translates to fewer parameters and reduces 
computational complexity compared to the other four 
models. Simultaneously, this structural element enhances 
the model’s capability to capture features across differ-
ent scale feature maps during feature extraction, thereby 
strengthening its capacity to comprehend and convey 
image content. Furthermore, this enhancement allows 
the Xception model to exhibit robust learning capabili-
ties even with limited sample data, achieving superior 
performance with the same volume of data. Although the 
AUROC of the Xception model reached 0.970, surpass-
ing the performance of the other models and radiologists 
with varying levels of experience, the radiologists’ per-
formance did not match or exceed that of the Xception 
model, even when aided by the DL model. Radiologists 
displayed only marginal improvements in diagnostic pro-
ficiency when comparing the results with and without 
the DL model’s assistance. This divergence could poten-
tially be attributed to radiologists’ lack of awareness 
regarding the performance of our DL model during their 
second diagnosis, fostering a heightened sense of confi-
dence and subjectivity. The noticeable decline in perfor-
mance exhibited by Radiologist 3 further underscores the 
significant subjectivity that can persist among radiolo-
gists during the process of assisted image interpretation. 
In future studies, we intend to inform radiologists of the 
model’s results, which may lead to improved DL-assisted 
image interpretation. Additionally, it is worth noting 
that we only provided static images, and the DL model 
could identify numerous features not discernible to the 
naked eye. Nonetheless, the limited cut surface may have 
resulted in the loss of valuable information for radiolo-
gists. As demonstrated in Tables 3 and 5, junior radiolo-
gists were able to match or even surpass the performance 
of the senior radiologists with the assistance of the DL 
model.

Our study has several limitations that warrant 
acknowledgment. Firstly, selection bias was inevitable 
as we exclusively included calcified nodules with con-
firmed pathological diagnosis. A significant proportion 
of benign nodules do not undergo pathological examina-
tion, potentially contributing to the higher incidence of 
malignancy observed in our study. Secondly, the static 
ultrasound images used in this study offer a limited angle 
for viewing thyroid nodules, possibly resulting in lower 
ACC for radiologists compared to dynamic video identifi-
cation. Future studies should consider including dynamic 
videos to enhance accuracy. Thirdly, while radiologists 
were tasked with assessing benign and malignant thyroid 
nodules in our study, in clinical practice, radiologists may 
prescribe FNA for certain suspicious benign nodules. 
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Consequently, the performance of radiologists in our 
study may have been overestimated. Finally, our study 
specifically focused on thyroid calcified nodules, thus 
neglecting consideration of other non-calcified nodules. 
Early nodule screening relies heavily on the expertise of 
radiologists and the capabilities of imaging equipment, 
especially given the small size and concealed location of 
nodules. Our approach, being an AI method based on 
ultrasound images, is inherently limited in this regard. 
Alternatively, the utilization of T-cell receptor (TCR) 
sequencing data offers a promising avenue for early can-
cer diagnosis and demonstrates greater generalizability 
than our approach, which solely targets thyroid calcified 
nodules [40–42]. However, this method is expensive and 
does not accurately pinpoint the nodule’s location, poten-
tially impacting subsequent treatment planning. In the 
future, it would be prudent to integrate TCR data with 
existing imaging screening methods and assess whether 
it can elevate the diagnostic proficiency of doctors.

Conclusions
In conclusion, our study trained and validated DL mod-
els using 1265 images of 546 nodules in Center 1, with an 
external test set of 126 images of 85 nodules from Cen-
ter 2. Our findings affirm that DL methods outperform 
radiologists in the evaluation of thyroid nodules with cal-
cification, establishing them as valuable adjunctive tools. 
However, further training and validation on multicenter 
data are necessary before integrating this method into 
clinical practice.
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