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Abstract
Objective Radiomic and deep learning studies based on magnetic resonance imaging (MRI) of liver tumor are 
gradually increasing. Manual segmentation of normal hepatic tissue and tumor exhibits limitations.

Methods 105 patients diagnosed with hepatocellular carcinoma were retrospectively studied between Jan 2015 
and Dec 2020. The patients were divided into three sets: training (n = 83), validation (n = 11), and internal testing 
(n = 11). Additionally, 9 cases were included from the Cancer Imaging Archive as the external test set. Using the 
arterial phase and T2WI sequences, expert radiologists manually delineated all images. Using deep learning, liver 
tumors and liver segments were automatically segmented. A preliminary liver segmentation was performed using the 
UNet + + network, and the segmented liver mask was re-input as the input end into the UNet + + network to segment 
liver tumors. The false positivity rate was reduced using a threshold value in the liver tumor segmentation. To evaluate 
the segmentation results, we calculated the Dice similarity coefficient (DSC), average false positivity rate (AFPR), and 
delineation time.

Results The average DSC of the liver in the validation and internal testing sets was 0.91 and 0.92, respectively. In 
the validation set, manual and automatic delineation took 182.9 and 2.2 s, respectively. On an average, manual and 
automatic delineation took 169.8 and 1.7 s, respectively. The average DSC of liver tumors was 0.612 and 0.687 in the 
validation and internal testing sets, respectively. The average time for manual and automatic delineation and AFPR in 
the internal testing set were 47.4 s, 2.9 s, and 1.4, respectively, and those in the external test set were 29.5 s, 4.2 s, and 
1.6, respectively.

Conclusion UNet + + can automatically segment normal hepatic tissue and liver tumors based on MR images. It 
provides a methodological basis for the automated segmentation of liver tumors, improves the delineation efficiency, 
and meets the requirement of extraction set analysis of further radiomics and deep learning.
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Introduction
Since radiomics-related research is becoming increas-
ingly important for hepatocellular carcinoma research, 
accurate and efficient tumor segmentation has become 
increasingly critical. As tumors are heterogeneous, MRI 
imaging sequences vary, imaging protocols vary, and 
radiologists with varying degrees of experience define 
liver tumors manually [1], which is not easy to repeat [2]. 
It is imperative that clinicians utilize artificial intelligence 
technology to solve this problem [3]. Standardized image 
analysis and reporting can reduce the inconsistency in 
image interpretation. At present, Liver Reporting and 
Data System is one of the most widely used systems [4, 5]. 
Nevertheless, the workload per case read by a diagnostic 
radiologist is increased with the use of the system. Semi-
automatic image segmentation [6] has led to an improve-
ment. However, its accuracy is low, and its effectiveness 
depends directly on the doctor’s experience. Automated 
segmentation [7] has become a research hotspot in 
recent years. Nevertheless, most of the studies in these 
two categories lack external validation.

Medical image segmentation has undergone three 
stages of development, involving traditional image seg-
mentation, machine learning, and deep-learning tech-
niques [8], Radiomics based on this has been widely 
used in clinical prediction of tumor staging [9]. Deep 
learning techniques have revolutionized medical imag-
ing across various domains. In lung nodule detection 
[10], CNNs analyze CT scans for early cancer detection. 
Prostate segmentation benefits from U-Net’s precision 
in MRI analysis [11], Brain tumor segmentation employs 
CNNs for accurate tumor delineation in MRI scans [12]. 
The type of deep-learning model determines the content 
and accuracy of the segmentation results. In the field of 
liver and liver tumor segmentation, several recent studies 
[13–17] report computed tomography (CT)–based liver 
segmentation using deep learning methods, and the seg-
mentation performance appears to be good [18]. Hepato-
cellular carcinoma is currently diagnosed and evaluated 
using magnetic resonance imaging (MRI), which is more 
sensitive and specific than CT for lesions with diam-
eter < 3  cm and equivalent to CT for larger lesions [19]. 
Applying deep learning to MRI-based liver segmenta-
tion faces challenges due to MRI’s diverse contrasts, 
artifacts, and tissue variations. Unlike CT, MRI lacks 
consistent intensity values, requiring models to adapt to 
variations. Additionally, the soft tissue contrast in MRI 
presents unique segmentation complexities. Address-
ing these variations and contrasts is pivotal for accurate 
MRI-based liver segmentation. Few reports are published 

on the semantic segmentation of livers and liver tumors 
using MRI deep-learning model frameworks [20]. The 
application of UNet + + has exhibited great potential in 
medical imaging, such as fully automated tumor segmen-
tation and response assessment in brain imaging [21, 22] 
and prostate imaging [23]. The strength of this algorithm 
lies in the divide and conquer solution rather than feature 
fusion. However, its performance on segmenting hepato-
cellular carcinoma is unclear. In this study, we aimed to 
develop a deep learning model using UNet + + that can 
automatically segment the liver and liver tumor from 
multisequence MR images.

Materials and methods
Clinical data
This study examined the Picture Archive and Communi-
cation System (PACS) at Sun Yat-Sen University Cancer 
Hospital to identify individuals with hepatocellular car-
cinoma (pathologically or clinically diagnosed [24]), who 
underwent MRI examination before treatment between 
Jan 2015 and Dec 2020. Patients treated through radio-
frequency ablation or microwave ablation [25] were 
selected. The Ethics Committee of Sun Yat-Sen Univer-
sity approved the study (SLB2022-047-02). Informed 
consent has been obtained from the patients/participants 
in this study.

Enrollment criteria
The inclusion criteria were as follows: (1) patients with 
clinical or pathological diagnosis of hepatocellular car-
cinoma, (2) number of tumors ≤ 3, (3) age of patients: at 
least 18 years, (4) implementation of multiphase dynamic 
contrast-enhanced MRIs, (5) Diagnosis: Patients included 
in our study were diagnosed with hepatocellular carci-
noma (HCC) based on clinical and radiological findings. 
The diagnosis was confirmed using standard clinical cri-
teria and imaging modalities, (6) Imaging Data: Patients 
had undergone magnetic resonance imaging (MRI) 
examinations for liver evaluation, specifically with mul-
tisequence MR images that included arterial phase and 
T2-weighted images, (7) Availability of Annotations: The 
inclusion criteria required that expert radiologists had 
manually annotated the MR images to provide ground 
truth segmentations of liver tumors. These annotations 
served as the reference standard for evaluating the per-
formance of the UNet + + model. The exclusion criteria 
were as follows: (1) metastasis of hepatocellular carci-
noma, (2) no clear boundary between the liver tumor 
and surrounding tissue, (3) poor image quality or motion 
defects, (4) use of Gd-EOB-DTPA as the contrast agent 
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in MRI, (5) Incomplete or Poor-Quality Imaging Data, (6) 
Missing Annotations,7) Maging artifacts: Patients with 
MR images affected by significant imaging artifacts that 
could interfere with accurate tumor segmentation were 
excluded.

In total, 105 patients were enrolled in the study, includ-
ing 96 males and 9 females. The baseline conditions of 
the patients are shown in Table 1. Clinical characteristics 
such as age, gender, and the number of tumors revealed 
in MRI were analyzed before ablation treatment. The 
number of tumors and their maximum diameter were 
obtained from electronic medical records.

Prior to ablation, the last enhanced MR images were 
selected, and all images were acquired when the patient 
was fully inhaled in a supine position. MRI was performed 
using Discovery MR 750 (GE Healthcare, Milwaukee, 
WI, USA). The T1WI was performed using gradient echo 
with the repetition time (TR) of 3.5–4.0 ms, echo time 
(TE) of 1.5–2.0 ms, field of view (FOV) of 300 × 400 mm, 
matrix of 256 × 256, flip angle of 10°, thickness of 5 mm, 
and crossing gap of 1–2 mm. The T2WI was performed 
using spin echo with TR of 2500 ms, TE of 90 ms, FOV of 
300 × 400 mm, matrix of 384 × 256, flip angle of 20°, thick-
ness of 5  mm, and crossing gap of 1–2  mm. The diffu-
sion-weighted imaging (DWI) obtained 2 b values (0 and 
800 s/mm2) with TR of 2600 ms, TE of 59.5 ms, FOV of 
300 × 400 mm, matrix of 128 × 128, flip angle of 90°, thick-
ness of 5 mm, and crossing gap of 1–2 mm. The contrast 
agent was gadoterate meglumine (0.1 mmol/kg). A series 
of images was acquired after intravenous injection of the 
contrast agent at three different time points: the arterial 
(25–30 s), portal venous (60–70 s), and delayed (3 min) 
phases. The acquired MR images were uploaded to PACS.

Manual segmentation of the MR images
Two radiologists with 5 or 7 years of experience in read-
ing upper abdominal magnetic resonance (MR) images 
independently evaluated the imaging features irrespec-
tive of clinical data. Using 3D-slier software [26] (https://
www.slicer.org/, version: 4.10.2 r28257, Windows 11 

professional edition), they manually segmented 3D 
images of whole liver and tumors at the arterial phase 
and T2WI MR images. On the subject MR images, a 
semi-automated segmentation algorithm was applied 
using the flood fill algorithm of the 3D Slicer software. 
It was necessary to install the Segment Editor Extra 
Effects extension through the extension’s manager prior 
to installation. Once the DICOM module has loaded data 
images, observers are able to identify the location of the 
HCC. Mouse cursors were used to add nodes around 
the tumour region. Afterward, flood fill effects were 
activated, and ROI were segmented according to simi-
lar voxel intensities. During the finalization phase, the 
segmented tumour was manually edited as a semi-auto-
mated segmentation process. Consensus was achieved 
through discussions and consensus meetings in case of 
discrepancies. The masked image was determined by 
overlaying individual delineations, creating a consensus 
delineation considered the gold standard for model train-
ing and evaluation.

Image preprocessing
MRI images underwent intensity normalization, resizing 
to a common resolution, and window-level adjustment. 
Voxel size was standardized through interpolation. Image 
registration for T1 arterial phase and T2WI images was 
performed using rigid registration to align them for 
accurate segmentation. For this study, the voxel size of 
the modified MR images was uniformly set to 1.0 mm × 
1.0 mm × 5.0 mm. To register the images of T1 arterial 
phase and T2WI from the same case, the SimpleIT [27] 
(http://www.simpleitk.org) registration tool was used. 
The pure black background frame with voxel value of 0 
in the original MR image was removed to reduce invalid 
training caused by the black background (voxel value = 0). 
Only the portion of the image containing human tissue 
was retained to reduce invalid training. Image voxel val-
ues were sorted from small to large, and the entire MRI 
voxel values varied from 0 to 99.8%. The details of the 
hardware and software configurations used in this study 
are given in the Supplementary Tables 1 and 2.

Development of deep neural network model
The two-stage semantic segmentation utilized 
UNet + + for liver and tumor delineation. In the first 
stage, the liver was segmented using 2D slices. Then, the 
liver mask was input for tumor segmentation using both 
2D and 3D UNet++. Axial slices were processed indepen-
dently during evaluation to provide accurate 2D predic-
tions (Fig.  1). From these models, slices using the gold 
standard in segmentation were learned, and two-dimen-
sional (2D) segmentation of the liver and tumor was gen-
erated (Supplementary Fig. 1). The algorithm was applied 
to each axial slice during the evaluation, and the resulting 

Table 1 Patient Baseline Information
Parameter Numerical value
Patients Numbers 105

Age(mean ± standard deviation) 58 ± 11

Gender( Male/Female) 96/9

Tumor Numbers 198

single/multiple 51/54

Median number of tumors 2

Imaging-based diagnosis of hepatocellular 
carcinoma

95

Pathologically diagnosed hepatocellular carcinoma 10

Tumor diameter (cm) 2.2 ± 1.5

Tumor location (right lobe/left lobe/both sides) 60/20/25

https://www.slicer.org/
https://www.slicer.org/
http://www.simpleitk.org
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2D segmentation was superimposed to produce a 3D seg-
mentation of the entire image sequence.

Model training
Random scaling, rotation, and flipping altered image 
orientation. Affine elastic transformation simulated tis-
sue deformations. Noise injection mimicked real-world 
imperfections. Cropping focused on relevant regions, 
enriching training data. These techniques enhanced 
model robustness by introducing diverse variations and 
reducing the risk of overfitting. The specific data aug-
mentation methods include random scaling (the range 
of the scaling ratio is 0.8–1.2), random rotation (the 
range of the rotation angle is ± 180°), random flip, ran-
dom affine elastic transformation, random noise, random 
cropping, etc. For the first-stage model, the size of the 
cropped image block during training was 224 × 224. For 
the second-stage model, the size of the cropped image 
block during training was 128 × 128. During training, the 
loss functions used were the cross-entropy loss function 
and DSC loss function. The solver used was Adam. The 
initial learning rate was set as 0.001, and the L2 regular 
term coefficient was set as 0.0001.

Results handling after segmentation
After the initial segmentation, the predicted liver mask 
results were subjected to a post-processing stage. This 
involved applying morphological operations, specifi-
cally dilation and erosion, to enhance the accuracy of 
the masks. The dilation operation expanded the seg-
mented areas slightly, while the erosion operation shrunk 
them back, resulting in smoother and more coherent 

liver masks. This post-processing step helps mitigate 
any potential inconsistencies or noise introduced dur-
ing the initial segmentation process. The predicted liver 
mask results of each MR image were analyzed in accor-
dance with the first-stage network. Domains with the 
largest volume were retained, and those with smaller 
volumes were deleted. Small voids were eliminated via 
morphological closure operations on the remaining con-
nected domains. Finally, a final liver mask prediction was 
obtained. For the second-stage network, the predicted 
liver mask results of each MR image were analyzed by 
the connected domain, and the independent connected 
domains were distinguished. The mean probability of 
tumor class in the last activation layer from each inde-
pendent connection domain is shown in Supplementary 
Figs. 2 and 3.

Statistical analysis
The performance of automated segmentation was evalu-
ated by comparing fully automated segmentation with 
manual segmentation of liver tumors using the gold 
standard. The quality of the segmentation was measured 
using the metrics defined in the liver tumor segmenta-
tion challenge, including the Dice similarity coefficient 
(DSC) [28]. To evaluate the performance of the algorithm 
in the detection task, the sensitivity (percentage of cor-
rectly detected lesions) and average false positivity rate 
(AFPR) [29] were calculated. Consequently, if the auto-
mated segmentation does not overlap with the manual 
segmentation that uses the gold standard, the result of 
automated segmentation was regarded as false positive. 
Additionally, the DSC of each tumor was measured to 

Fig. 1 Automated segmentation process. To make masks, the MR arterial phase and T2 images of each patient were extracted from the training set and 
were manually delineated layer by layer to identify the liver and tumor. Ground truth is provided by these masks. A model for automatic delineation is 
trained based on the ground truth. Next, the validation and test sets were assembled and input in the trained model, and finally layer by layer, the images 
with masks were obtained
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assess segmentation quality. The concordance correla-
tion coefficient [30] was calculated using MedCalc (ver-
sion 20.027, 64-bit, www.medcalc.org) to compare the 
consistency of the true and predicted volumes of liver 
tumors, as well as the time required for fully automated 
and manual segmentations. The volumes of liver tumors 
obtained in manual segmentation of external test set and 
automated segmentation were compared using Prism 
(Version 9.0.0, 64-bit, www.graphpad.com).

Results
Characteristics of patients
A total of 105 patients with multisequence MR images 
containing 198 lesions were included in this study. 
According to a ratio of 8:1:1, the entire data set was ran-
domly divided into 83, 11, and 11 training, validation, and 
internal testing groups, respectively. Table 1 summarizes 
the baseline characteristics of the patients in the train-
ing and internal testing groups. The average age of the 
patients was 58 years. The majority of patients had mul-
tiple lesions. Most of the diagnosis was based on clinical 
evidence. The average diameter of the tumors was 2.2 cm, 
and most of them were located in the right lobe of the 
liver.

Liver segmentation
The semantic segmentation of the liver exhibited supe-
rior performance in the validation and internal testing 
groups, and the automatic delineation time was signifi-
cantly shorter than the manual delineation time (Supple-
mentary Table 3). In the validation set, the average DSC 
value was 0.91, and the average time saved by automatic 
delineation was 180.7  s. In the internal testing set, the 
average DSC value was 0.922, and the average time saved 
by automatic delineation was 168.1 s. In both the valida-
tion and internal testing sets, automated segmentation 
of the liver exhibited a good performance, resulting in 
an increase in segmentation efficiency and reduction in 
segmentation time. Supplementary Figs. 4 and 5, respec-
tively, show the worst and best cases of automated seg-
mentation of the liver in this study.

Tumor segmentation
The DSC was calculated based on each patient (Supple-
mentary Table  4). Although the automatic delineation 
saved 44.5  s, the average DSC was only 0.526, and the 
false positivity rate was 1. This indicated that on an aver-
age, one extra false-positive lesion was segmented per 
patient. Patient no. 2 had two lesions, whereas only one 
lesion was automatically segmented. The occurrence of 
false-positive lesions can be attributed to several factors, 
including variations in image quality, tissue appearances, 
and complex tumor shapes. The model might misinter-
pret normal structures or artifacts as tumors, leading to 

these false positives. Further analysis is needed to refine 
the model’s sensitivity and minimize these instances.

Case-based statistics would result in lower DSC val-
ues. Because some patients had multiple tumors, the 
segmented tumors were statistically analyzed, and the 
results of each tumor were separately evaluated. In 
Supplementary Tables 5, a DSC of 0 indicated a missed 
detection; it is most often associated with tumors of 
diameter < 2  cm or unclear segmentation of the tumor 
from the surrounding normal liver tissue. In the internal 
testing set, the average DSC value was 0.61. The size of 
multiple tumors in the internal testing set was relatively 
small, which may contribute to the decrease in the aver-
age DSC value. Supplementary Figs. 6 and 7, respectively, 
show the worst and best cases of automated segmenta-
tion of the tumors in this study.

Furthermore, the algorithm for segmenting liver 
tumors was externally validated in this study using the 
public liver cancer data set of TCIA [31]. The data set 
consisted of 97 patients, among which, more than 40 
underwent MRI examination. The patients having MR 
images of poor quality were excluded from the analysis. 
The algorithm was validated using a public liver cancer 
dataset from TCIA, comprising 9 cases. MR image qual-
ity varied, but the algorithm demonstrated consistent 
tumor segmentation performance across different data 
sources. This external validation confirmed the mod-
el’s applicability beyond our dataset. (Supplementary 
Table 6). The average time saved by automatic delineation 
was 25.3 s; the average DSC value per case was 0.611, and 
the AFPR was 1.6. However, in case no. 4, only one of the 
two lesions was segmented. In case nos. 6 and 5, three 
and one extra lesions were segmented, respectively. Each 
of the remaining cases had two extra lesions segmented. 
If the segmentation was analyzed based on each tumor, 
the results are shown in Supplementary Table 7. In total, 
10 lesions were automatically segmented from 9 patients, 
with an average DSC of 0.687. Supplementary Fig.  8 
shows the results of automated segmentation of the liver 
tumors in patient no. 1 in the external test set.

While evaluating the above segmentation results, the 
quality of the 2D slices was primarily considered. Clini-
cians are more concerned with the volume of segmented 
slices. Therefore, we compared the volume of tumors 
obtained by automated segmentation with the real vol-
ume obtained by manual segmentation. With a DSC of 
0.391, most tumors were not accurately segmented in 
automated segmentation, resulting in a relatively small 
tumor volume. Figures 2 and 3 indicate the difference in 
the tumor volume between manual and automated seg-
mentations from various perspectives. The difference 
in tumor volume can impact treatment decisions and 
follow-up evaluations. Smaller automated volumes may 
lead to underestimation, affecting accurate assessment. 

http://www.medcalc.org
http://www.graphpad.com
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Clinical interpretation might be affected due to potential 
inconsistencies in tumor delineation. Strategies to har-
monize automated and manual volumes are crucial for 
reliable clinical insights.

Discussion
In this study, the DSC value of the liver and liver tumor 
segmentations was > 0.9 and > 0.6, respectively, with 
UNet + + applied to multisequence-enhanced MRI. Addi-
tionally, the automated segmentation of the liver and 
liver tumor, respectively, saved > 160 and > 20  s on an 
average per case. Moreover, the threshold segmentation 
method reduced false-positive results. This algorithm can 
likely improve diagnostics and efficacy of MR imaging.

Few studies are conducted on the segmentation of the 
liver and liver tumors using multisequence-enhanced 
MRI. The baseline conditions of the patients enrolled 
in this study were consistent with those of real-world 
patients with liver cancer (Table  1). Zhou [32] evalu-
ated the data set segmented by UNet + + using six public 
medical images, and the DSC of CT-based liver segmen-
tation was > 0.9. In our study, in the automated segmen-
tation of the liver, the DSC of the validation and internal 
testing sets was 0.91 and 0.92, respectively. In the sub-
sequent segmentation of liver tumors, the DSC values 
in the internal testing set based on patients and lesions 
were 0.526 and 0.612, respectively. For further validation, 
an external test set was used, in which the DSC values of 
liver tumor segmentation based on patients and lesions 
were 0.611 and 0.687, respectively. The automated seg-
mentation saved 25.3–44.5  s. For the internal testing 
and external sets, the time ratio between automated and 
manual segmentations was 1:16 and 1:17, respectively. 
Bousabarah et al. [33] applied UNet network structure to 
detect liver tumors using MRI sequences of three phases; 
mean DSC between automated and corresponding man-
ual segmentations of lesions was 0.64/0.68 (validation/
test) and 0.91/0.91 for the liver segmentations. Although 
the conclusions of Bousabarah et al. [33] are generally 
consistent with our results, their study did not perform 
external verification. In our study, we compared the dif-
ference between the real and the predicted volumes of 
liver tumors in the external validation set, and statistical 
analysis indicated that the difference was not significant 
(P = 0.23). Chen et al. achieved the DSC values of 0.92 
and 0.75 for CT-based liver and liver tumor segmenta-
tions, respectively. In our study, the DSC of liver tumor 
segmentation was < 0.7, possibly because of the compli-
cated MR imaging protocol and average tumor diameter 
of 2.2  cm. A meta-analysis [34] reported that dynamic 
contrast-enhanced MRI was 89% specific for detecting 
liver tumors of small size but was only 64% sensitive. 
Importantly, although both statistics were higher than 
the CT results, missed diagnosis is still possible, which 
would result in the training model being less effective in 
detecting small lesions. Supplementary Table 4 indicated 
that in the internal testing set, unsegmented lesions were 
observed in case nos. 2, 3, 9, and 11, in which all lesions 
were < 1 cm in diameter.

Fig. 3 Comparison of manually and automatically delineated tumor 
volumes in the external test set. The actual and predicted volumes were 
compared. Since the P value was 0.23, the difference between the two 
indicators was not statistically significant

 

Fig. 2 Scatter plot of actual volume vs. predicted volume of liver tumors 
in the external test set. The concordance correlation coefficient after the 
logarithm of the actual and predicted volumes was 0.91, indicating that 
the volume of the 9 livers in the external test set obtained via automated 
segmentation was close to the actual volume
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A high false positivity rate has always been a barrier to 
improve the accuracy of intrahepatic tumor segmenta-
tion. Despite its ability to detect lesions that can be over-
looked by clinicians, erroneous segmentation of blood 
vessels as tumors is common. Supplementary Tables  4 
and 6 indicated that the AFPRs of the internal testing and 
external test sets were 1 and 1.6, respectively, which were 
higher than those reported by Bousabarah et al. (0.75). 
This may be explained by the fact that in our study, the 
liver was automatically segmented, and the automatic 
detection was performed only on the liver contour, leav-
ing the blood vessels in the liver unsegmented. Further, 
the detection results were again input into the model to 
perform intrahepatic tumor segmentation. The lesions 
exhibited high signal in the arterial phase and medium 
signal in T2WI. During image post-processing, the 
threshold was adjusted to reduce the false positivity rate. 
However, the signal intensity of the tumor in the arterial 
phase was close to that of a certain blood vessel, which 
was difficult for the computer to distinguish. False image 
registration between T2WI and arterial phase led to mis-
matched signals. In total, 2 lesions were present in seg-
ment 4 (Fig.  2). Their signal was significantly different 
from that of the surrounding liver tissue, which could 
be misdiagnosed as a tumor by computer. However, the 
false-positive lesions were right next to the real tumor 
(Fig. 2). Considering that this study is based on 2D image 
modeling, the connection was not considered between 
layers in the slicing area where the liver tumors were 
located. Additionally, the oversegmentation of the liver 
may lead to the introduction of extrahepatic interference, 
resulting in the identification of some tissues outside the 
liver as lesions. Although the automated segmentation 
covered most of the liver tumor area, some extrahepatic 
tissue was misidentified as liver tumor (Fig. 2). Neverthe-
less, the false positivity rate in this study is acceptable in 
clinical practice.

This study has some limitations. It must be noted that 
sufficient amount of publicly available data was not used 
in this study. Comparisons with previous studies that 
used different data sets may cause performance errors. 
Dynamic contrast-enhanced MRI is a complex technique, 
and subtle changes in the imaging protocol may affect 
the performance. Prospective, multicenter studies are 
needed to further verify the generalization ability of the 
model. Accuracy of the registration determines the per-
formance of a model; therefore, further research is neces-
sary on more advanced registration methods. This study 
used only 2D images and did not effectively use spatial 
context information.

In this study, we employed the UNET + + architecture 
by integrating T2-weighted and T1-enhanced sequences 
to enhance the efficiency of liver and intrahepatic 
tumor segmentation. This integration shows promise 

in reducing the time required for manual annotations 
by clinical professionals and creating better conditions 
for advanced imaging genomics research. While the 
automatic tumor segmentation accuracy still requires 
improvement, the approach of combining these two 
sequences may offer novel insights for further enhancing 
segmentation precision.
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