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Background
Diffuse large B-cell lymphoma (DLBCL) is a highly 
aggressive form of non-Hodgkin’s lymphoma (NHL), 
originating from B-lineage lymphocytes, accounting for 
30–40% of cases [1–3]. Moreover, this lymphoid neo-
plasm has highly variable gene expression profiles and 
genetic alterations [4, 5]. The most common up-front 
treatment is R-CHOP [6]. However, due to its hetero-
geneity, 60% of patients are curable with combination 
therapy and the remainders still succumb to the disease 
[7]. Unfortunately, those who develop the disease refrac-
tory to up-front treatment or relapse after remission have 
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Abstract
Background Recent studies have indicated that epigenetic alterations contribute significantly to lymphoma 
pathogenesis. A type of epigenetic regulation known as histone acetylation plays a crucial role in transcriptional 
regulation in eukaryotic cells. Specifically, a significant effect of histone acetylation modifications on the abnormal 
progression and microenvironment of diffuse large B-cell lymphoma (DLBCL) has been observed.

Methods To provide insight into the significance of histone acetylation-related genes, we developed a HAscore 
model for analyzing histone acetylation patterns in DLBCL samples. Furthermore, KAT2A, a regulator of histone 
acetylation, was knocked down in DLBCL cell lines to investigate its role in proliferation, cell cycle, and apoptosis.

Results The HAscore model has been demonstrated to provide insight into the significance of these patterns, 
showing that patients with a low HAscore have distinct tumor immune microenvironments and poorer prognoses. 
Besides, KAT2A was identified as a potential biomarker related to immune infiltration and malignant pathways in 
DLBCL.

Conclusion According to these findings, it is evident that the histone acetylation pattern score model is helpful in 
describing the immune status of DLBCL and that KAT2A may be used as a biomarker for its treatment.
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a poor prognosis [8–10]. To understand the underlying 
mechanisms of DLBCL progression, more studies are 
necessary. As a result, stratifying DLBCL patients and 
developing predictive models can provide more precise 
molecular subtyping and, therefore, more customized 
treatment.

Epigenetic alterations are directly linked to lymphoma 
pathogenesis. As one of these post-translational modifi-
cations, histone acetylation has been extensively studied 
[11]. Post-translational modifications of histones regulate 
transcription and DNA repair and are linked to the stable 
maintenance of repressive chromatin [12]. The N-termi-
nal tail of histones contains lysine residues that are tightly 
regulated by acetylation regulators. Acetylation reac-
tions are catalyzed by histone acetyltransferases (HATs), 
while deacetylation reactions are catalyzed by histone 
deacetylases (HDACs) [13]. Besides, other regulators 
recognize modified histones and play a role in acetyla-
tion. The three types of regulators are regarded as “writ-
ers,“ “readers,“ and “erasers.“ Increasing evidence suggests 
that the tumor microenvironment (TME) plays a critical 
role in malignancy development and maintenance. The 
process is accomplished through sustained proliferation 
and immune evasion [14, 15]. As a result of several signal 
molecules being activated and inhibited, histone acetyla-
tion has recently been linked to cancer and TME. In vari-
ous types of human malignancies, aberrant expression 
of HDACs has been reported [16, 17]. It has also been 
reported that many HDAC inhibitors are effective against 
several hematologic and solid malignancies [18, 19]. 
The HAT paralogs p300 and CBP are involved in many 
vital cellular processes and have critical roles in several 
pathological conditions, including cancer [20–22]. Cur-
rent studies indicated that somatic mutations affect-
ing CREBBP and EP300 are a hallmark of DLBCL [23]. 
Multiple studies have also shown that histone deacety-
lase inhibitors (HDACi) can improve the abilities of the 
immune system to eradicate tumor cells by changing the 
TME through various mechanisms [24, 25].

Collectively, histone acetylation is critical in regulat-
ing TME. Targeting histone acetylation modulators can 
disrupt the resistance to cancer immunotherapy. Recent 
research has concentrated on individual histone acetyla-
tion modulators and their impact on cancer treatment 
and prognosis. We retrospectively collected transcription 
information from public databases to better understand 
how histone acetylation regulators impact the immune 
system. We investigated histone acetylation regulatory 
variables and infiltration of immune cells, as well as the 
value of HAscore in targeted DLBCL immunotherapy.

Materials and methods
Dataset acquisition and clinical samples
The Gene Expression Omnibus (GEO) and the Cancer 
Genome Atlas (TCGA) databases provided gene expres-
sion data and comprehensive clinical annotations. Tran-
scriptome data was derived from fragments per kilobase 
million and converted into transcripts per million (TPM) 
and then transformed into log2 (TPM + 1) values for fur-
ther analysis. The UCSC Xena database also provided 
genomic mutations (including somatic mutations and 
copy number variations (CNV). This study focused on 
the DLBCL cohorts (GSE10846 and GSE31312) as well as 
the TCGA-DLBC. The R package limma “normalizeBe-
tweenArrays” package was used for normalization after 
gene symbol conversion (R version: 4.1.2; Bioconductor 
version: 3.13). A method in “sva” package called “Com-
Bat” was utilized to adjust for batch effects caused by 
non-biotechnical bias [26, 27].

Cell lines
Human DLBCL cell lines OCI-LY1, OCI-LY3, OCI-LY8, 
OCI-LY10, and U2932 were cultured in IMDM (Gibco, 
MD, USA), supplemented with 10% FBS (Gibco). The 
cells were maintained under optimal conditions, with a 
temperature of 37 °C and a humid atmosphere containing 
5% CO2. Peripheral blood mononuclear cells and serum 
were isolated from healthy volunteers.

Lentiviral generation and cell transfection
The stable knockdown of KAT2A was encoded by clon-
ing the shRNAs into lentiviral vectors (Beijing Syngen-
tech Co., Ltd., China). The manufacturer’s instructions 
were followed for lentivirus infection. To select the sta-
bly transfected cells, the medium was supplemented with 
puromycin (2.0  g/ml, Sigma-Aldrich, USA). A 72-hour 
timeframe was used for the collection and analysis of 
cells.

qRT-PCR
Total RNA was extracted using RNAiso Plus (TaKaRa, 
Dalian, China) following the manufacturer’s protocol. 
Reverse transcription reactions were undertaken using 
reverse transcription reagents (Vazyme). Expression lev-
els of specific genes were then measured using qRT-PCR 
on LightCycler 480II system (Roche, Basel, Switzerland). 
Normalized results were determined based on GAPDH 
expression.

The KAT2A primer sequence was as follows:
KAT2A: forward 5-CCCGCTACGAAACCACTCAT-3, 

reverse 5-GCATGGACAGGAATTTGGGGA-3.

Cell proliferation assay
The cells were added to 96-well plates at a density of 
1 × 104 per well. The proliferation of cells was determined 
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after 24, 48, and 72  h of exposure to CCK-8 (Dojindo 
Laboratories, Kumamoto, Japan). After incubation for 
four hours, the OD was measured at 450 nm.

Western blot
The Western blot analysis was performed as described 
previously [10]. The primary antibody used in this assay 
was KAT2A (66575-1-Ig, Proteintech). GAPDH was used 
as an internal reference.

Flow cytometry
Cell cycle and apoptosis were determined by Navios 
flow cytometer. Cells were stained for 15 min and moni-
tored for cell cycle. Annexin V-PE/7-aminoactinomycin 
(7AAD) apoptosis detection assays (BD Biosciences) 
were used to detect apoptosis.

Consensus clustering analysis
38 recognized histone acetylation regulators were iso-
lated from the published literature [28–30]. An unsuper-
vised clustering algorithm of 884 DLBCL samples was 
performed based on their expression levels for 38 histone 
acetylation regulators. The patients were clustered using 
the R package “consensusClusterplus”, and the classifica-
tion was performed 1,000 times to ensure stability [31]. 
Principal Component Analysis (PCA) was employed to 
illustrate the clustering conditions of given samples with 
tumors by dimension reduction.

Gene set variation analysis (GSVA)
We used the “GSVA” R package to analyze differ-
ences in histone acetylation modification patterns 
between biological processes. The gene sets “c2.cp.kegg.
v7.5.1.symbols” were accessed from MSigDB. Genes 
related to histone acetylation modifications were func-
tionally annotated with a threshold of FDR < 0.05.

Identification of DEGs in histone acetylation modification 
characteristics
Patients were divided into three groups by their expres-
sion of histone acetylation regulators. An analysis of dif-
ferentially expressed genes (DEGs) exhibiting various 
characteristics among histone acetylation patterns was 
conducted using the limma R package [32]. Accord-
ingly, the DEGs were selected based on |logFC|> 1 and 
adjusted P values < 0.001. Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [33–35] pathway analysis and 
Gene Ontology (GO) biological were processed using the 
R package “clusterProfiler” and “org.Hs.eg.db”.

Estimation of tumor environment cell infiltration
Adapted from Charoentong’s study [36], the gene set 
was used to define immune cell types. A fraction of the 
immune cells infiltrating each sample was determined 

based on their relative abundance. Based on the single-
sample gene set enrichment analysis (ssGSEA) algorithm, 
ESTIMATE was calculated by the R package “ESTI-
MATE” based on immune cell and stromal cell-specific 
gene expression levels to calculate a score reflecting the 
level of immune cell and stromal cell infiltration. Box-
plots of ESTIMATE score, immune score, and stromal 
score for different risk groups were demonstrated using 
the R package “ggpubr”.

Evaluation and generation of HAscore
There has been an effort to develop a method for quanti-
fying the pattern of histone acetylation modifications by 
developing a scoring approach (HAscore). The overlap-
ping DEGs from different HA clusters were first accessed 
to divide patients into several clusters via unsupervised 
clustering. Following a univariate Cox regression model, 
prognostic-related DEGs were selected to construct HA 
gene signatures. Following determining the prognostic 
value of gene signature scores, a method similar to the 
Genome Grading Index [37] was applied to define the 
HAscore for each patient: HAscore = ∑(PC1i + PC2i), 
where i indicates the expression value of each histone 
acetylation regulator.

Statistical analysis
Patients’ survival was analyzed by the Kaplan-Meier 
analysis, and overall survival (OS) between subgroups by 
the log-rank test was determined. Using the “surv-cut-
point” function in the “survminer” R software package, 
the optimal cut-off point was determined, resulting in 
the classification of patients into high- and low-HAscore 
subgroups, as well as high- and low-KAT2A expression 
subgroups. The difference between three or more groups 
was examined using one-way ANOVA and Kruskal-
Wallis tests [38]. p values were analyzed using two-sided 
statistical tests in all statistical analyses, and p < 0.05 was 
considered statistically significant. At least three inde-
pendent experiments were conducted, and the mean 
and standard deviation (SD) were used in describing the 
experimental data. R and GraphPad Prism (version 8.0) 
were utilized to conduct all the statistical analyses.

Results
Genetic variants of DLBCL histone acetylation regulators
A systematic review of histone acetylation publications 
identified 43 histone acetylation regulatory genes, includ-
ing 10 “writers”, 18 “erasers”, and 15 “readers” (Table 
S1). The rate of somatic mutations of 43 histone acety-
lation regulators was assessed to determine the genetic 
alterations in DLBCL. As evidenced by the TCGA data-
base, 12 of the analyzed samples had mutations in his-
tone acetylation regulators, with a frequency of 32.43% 
(Fig. 1A). The study results showed that CREBBP had the 
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Fig. 1 Molecular characterization and expression variation landscape of HA regulators in DLBCL. (A): Mutation frequencies of 38 HA regulators in 37 
DLBCL patients. (B): HA regulator expression in mutation and wild groups. (C): The CNV frequency of HA regulators in DLBCL. (D): The position of the 
histone acetylation regulators CNV on 23 chromosomes. (E-G): 38 HA regulator expression in normal tissue (blue) and tumor tissue (red). The top and 
bottom of the boxes indicate the interquartile range of values. The asterisk represents the statistical p-value (*p < 0.05, ** p < 0.01, *** p < 0.001).
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highest mutation frequency, followed by KAT6A, EP300, 
HDAC8, HDAC9, BRD4, BRD2, PBRM1, SMARCA2, 
BAZ2B, and SMARCA4. The remaining genes had no 
mutations in the DLBCL samples. In terms of the muta-
tion status of CREBBP, DLBCL samples were grouped 
into two categories: mutation and wild group. Several 
genes were found to be overexpressed in the mutation 
group (Fig.  1B). Regarding CNVs, HDAC9, YEATS4, 
HDAC7, HDAC11, and KAT2B exhibited high amplifica-
tion rates, whereas KAT6A exhibited copy number loss 
(Fig.  1C). Chromosome-wide copy number alterations 
of HA regulators have been identified (Fig.  1D). Subse-
quently, we investigated the expression levels of histone 
acetylation regulators in both normal and DLBCL tissues 
in “writers”, “erasers”, and “readers”, respectively, to inves-
tigate the differences in the expression of these regula-
tors in the two groups of sample (Fig. 1E-G). Most genes 
were upregulated in DLBCL samples compared to nor-
mal samples, except for HDAC5, DPF3, and SMARCA2. 
There is a high degree of heterogeneity in histone acetyla-
tion regulators, suggesting that aberrant expression pat-
terns of HA regulators may contribute to carcinogenesis 
and progression of the disease.

Construction of histone acetylation patterns
A univariate Cox regression model demonstrated the 
predictive significance of histone acetylation regulators 
(Fig.  2A and Table S2). The results showed that mul-
tiple regulators were risk factors for DLBCL, and some 
regulators were protective factors. An analysis of spear-
man correlations was conducted in order to describe the 
interactions among the regulator connections (Fig.  2B). 
According to the results, most of the regulators were 
positively correlated. A significant correlation was found 
between genes belonging to the same biological group 
(writers, erasers, and readers), and a positive correlation 
was also found between genes with opposite biologi-
cal functions. The results suggest that there is extensive 
crosstalk among histone acetylation regulators, which 
collectively regulate histone acetylation modifications 
and influence DLBCL development. HA regulators were 
analyzed with unsupervised clustering to identify three 
patterns of histone acetylation. 884 DLBCL patient sam-
ples were grouped according to their gene expression, 
with 163 cases belonging to cluster A, 455 cases belong-
ing to cluster B, and 266 cases belonging to cluster C (Fig. 
S1A-D). Significantly, PCA analysis revealed differences 
between the three different histone acetylation patterns 
(Fig.  2C). Prognostic analysis of the three subtypes of 
histone acetylation modifications revealed that HAclus-
ter A had the worst prognosis (Fig. 2D). Additionally, the 
correlation between clinical factors and gene expression 
was analyzed. The results presented in Fig. 2E illustrated 
the correlation among three distinct histone acetylation 

patterns. Compared to the other two groups, HAcluster 
A showed a significantly higher incidence of activated 
B-cell–like (ABC) DLBCL. There is a well-established 
association between ABC DLBCL and a poor progno-
sis [7], indicating decreased survival observed among 
HAcluster A patients.

Immune infiltration and biological process associated with 
histone acetylation patterns
In accordance with the KEGG gene set, GSVA enrich-
ment analysis examined the differences in biological 
behavior among the three modification patterns (Fig. 3A-
B, Fig. S1E). The results of GSVA analysis revealed 
that HAcluster A was enriched in several metaboli-
cally relevant pathways. Additionally, HAcluster A was 
enriched in pathways related to tumors, including the 
DRUG-METABOLISM/JAK-STAT/MAPK/NOTCH/
PARP signaling pathway and apoptosis, in compari-
son to HAcluster B and HAcluster C (Fig.  3C). Subse-
quently, TME cell infiltration analysis showed substantial 
differences in histone acetylation patterns among the 
three groups, with HAcluster A exhibiting higher levels 
of activated dendritic cells and MDSCs and lower lev-
els of nature killer cells compared to HAcluster B and 
HAcluster C (Fig.  3D). Based on RNA expression lev-
els of DLBCL, the ESTIMATE algorithm was employed 
to calculate the stromal, immune, and estimated scores 
(Fig.  3E-F). The boxplots showed that HAcluster A had 
significantly lower StromalScore and ESTIMATEScore 
and had significantly higher tumor purity than the other 
two groups. This is consistent with the previous analy-
sis. According to the previous research, we assessed the 
immunosuppressive, immune cytolytic, and antigen-pro-
cessing effects (Fig. 3G) [37, 39]. The results showed that 
HAcluster A had the highest immunosuppression, which 
indicated that the tumor microenvironment of HAcluster 
A was significantly different.

Construction of HA gene signature
For a better understanding of the differences among 
these three histone acetylation patterns, we identified 
929 DEGs (Fig. S2A) significantly associated with patient 
survival in the previous cohort. This was followed by an 
unsupervised cluster analysis that classified patients into 
different genotypes (Fig. S2B-E). In the analysis of GO 
and KEGG enrichment of these DEGs, the main func-
tions were found to be RNA splicing, histone modifi-
cation, DNA replication, PI3K-AKT, MAPK, and Ras 
signaling (Fig.  4A-B). A model-based clustering analy-
sis led to the identification of three different modifica-
tion patterns, including 179 cases in geneCluster A, 450 
cases in geneCluster B, and 255 cases in geneCluster C, 
respectively. In addition, a prognostic crossover could be 
observed for gene cluster A, which had a good prognosis 
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Fig. 2 Construction of histone acetylation patterns. (A): The univariable cox regression analyses of histone regulators for overall survival. (B): Correlation 
between the HA regulators. (C): PCA of the three histone acetylation modification patterns. (D): Survival curves for three HAclusters in DLBCL. (E): Unsu-
pervised clustering of 38 HA regulators in DLBCL patients. HAcluster, survival status, ECOG, gender, N extra, and age are used to annotate DLBCL patients.
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Fig. 3 Histone acetylation patterns and their biological characteristics in DLBCL. (A, B): Enrichment analysis of GSVA activated by biological pathways 
among different HAclusters. (C): Malignant pathways that differ among the three different clusters. (D): Expression of TME-infiltrated cells in the three 
HAclusters. (E): ESTIMATEScore, ImmuneScore, and StromalScore among the three different HAclusters. (F): TumorPurity among the three different 
HAclusters. (G): Immune-related pathways differ among clusters.
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Fig. 4 Construction of geneCluster and its prognostic significance. (A, B): GO (A) and KEGG enrichment analysis (B) of HA-related genes. (C): Kaplan-
Meier curves of different geneClusters. (D): Expression of 38 HA regulators in three geneClusters. (E): Unsupervised clustering of HA regulators in the 
DLBCL cohort identified geneClusters A, B, and C. GeneClusters, HAclusters, survival status, N extra, age, COO, gender, and patient age were annotated.
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(Fig. 4C). This suggests that these three different histone 
acetylation modification patterns are indeed present in 
DLBCL. As with previous HA modification patterns, 
significant differences were observed within HA gene-
Clusters (Fig.  4D). Additionally, DEG expression varied 
significantly among the three HA geneClusters (Fig. 4E). 
GeneCluster A demonstrated the highest level of DEGs 
expression, followed by geneCluster B and C, which was 
also in line with patient survival.

HAscore-related clinical features and TME immune activity
A set of models of histone acetylation modification was 
developed based on individual differences and com-
plexity of each DLBCL, called the HAscore, which can 
be used to quantify individual DLBCLs. In Fig. S3, the 
alluvial chart shows the change in the patient’s individ-
ual attributes. In HAcluster A, the majority of samples 
belonged to geneCluster A, which all had low HAscores. 
Also of note is that most of the patients in geneCluster B 
and C were in HAcluster B and C with high HA scores. 
Using the R package “survminer”, we calculated a cut-off 
value of -1.18397065. Patients were successfully classified 
into high and low groups according to their HAscores 
(Fig.  5A). Additionally, HAscore results indicated that 
a greater percentage of patients died in the low HAs-
core group, while surviving patients had significantly 
higher levels of HAscore than those who died (Fig.  5B-
C). Based on these findings, high HAscore patients had 
a statistically significant survival advantage. Furthermore, 
Kruskal-Wallis analysis revealed significant differences 
in HAscores between HAclusters. A significantly lower 
mean HAscore was observed in HAcluster A and gene-
Cluster A with poor prognoses (Fig.  5D-E). As a result, 
HAscore levels were strongly correlated with the survival 
benefits of patients.

For a more comprehensive understanding of the cor-
relation between HAscores and the immune status of 
patients, we quantified different immune cell subsets 
and infiltration scores for each patient. Further analysis 
of the relationship between HAscore and TME revealed 
a positive correlation between immune cells and high 
HAscore levels. Based on the CIBERSORT algorithm, 
we confirmed the association of tumor-initiating cells 
(TICs) with HAscore (Fig. 5F-G). Furthermore, from the 
ESTIMATE algorithm, the low HAscore group had low 
expression in stromalscore, immunescore, and ESTIMA-
TEscore (Fig. 5H). Consequently, the low HAscore group 
had a higher tumor purity, which is strongly correlated 
with poor prognosis (Fig. 5I). HAscore groups differed in 
terms of immune infiltration in this study. This suggests 
a regulatory role for histone acetylation regulators in the 
immune microenvironment of patients with DLBCL.

KAT2A was expressed in high levels in DLBCL
In light of the fact that KAT2A is closely related to sev-
eral histone regulators, HAscore is able to predict the 
outcomes of DLBCL patients. In addition, we examined 
whether KAT2A might serve as a potential biomarker 
in the treatment of DLBCL. Based on the public data-
base, KAT2A was overexpressed in DLBCL patients 
with poor prognoses (Fig.  6A-B). Similarly, KAT2A was 
found to be positive in non-Hodgkin’s lymphoma in HPA 
(Fig.  6C). Furthermore, we observed that KAT2A was 
mainly overexpressed in many DLBCL cell lines com-
pared to CD19 + B cells in both protein and RNA levels 
(Fig.  6D-E). KAT2A was found to be associated with T 
cell activation as well as metabolic processes accord-
ing to the GO analysis of DEGs (Fig. 6F). Moreover, we 
analyzed the relationship between KAT2A and TME and 
found a negative correlation with immune cells. It was 
found that there is a strong correlation between KAT2A 
and adaptive immune responses (such as activated CD4 
T cells, Type 1 T helper cells, Type 17 T helper cells, 
Gamma delta T cells) and innate immune responses, 
such as plasmacytoid dendritic cells and natural killer T 
cells (Fig.  6G). In particular, low expression of KAT2A 
is closely associated with cells that perform antitumor 
functions.

Role of KAT2A in the progression of DLBCL
To elucidate the clinical significance of KAT2A in 
DLBCL, we knocked down KAT2A in two DLBCL cell 
lines (OCI-LY1 and U2932), resulting in stable KAT2A 
KD cell lines (Fig. 7A-B), of which shKAT2A#3 exhibited 
the highest efficacy. Further function investigations were 
performed based on shKAT2A#3 cell lines. By staining 
the cells with PI, we monitored the cell cycle. Compared 
with shControl cells, there was a significant increase in 
G2/M phase DLBCL cells after KAT2A was knocked 
down (Fig. 7C-D). We investigated the effect of KAT2A 
knockdown on apoptosis (Fig.  7E-F) and found that it 
significantly increased apoptosis rates. In addition, the 
stable KAT2A knockdown cells showed growth suppres-
sion as opposed to shControl cells (Fig.  7G). Therefore, 
KAT2A knockdown significantly inhibits the prolifera-
tion of the G2/M phase in DLBCL cell lines. As indicated 
by the findings of the study, KAT2A appeared to be capa-
ble of promoting DLBCL progression through its effects 
on proliferation, apoptosis, and cell cycle progression 
during the G2/M phase.

Discussion
Histone acetylation is an epigenetic modification nec-
essary for cancer biology. KAT7, for example, inhib-
its tumor cell proliferation and invasion by acetylating 
H4K5 at promoters of FOXO1 and FOXO3a genes [40], 
and HDAC5 loss increased H3K27-ac acetylation and 
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Fig. 5 HA score groups with prognosis and immunological characteristics. (A) Kaplan–Meier curve of the patients with different HAscores cohort. (B-C): 
The percentage of patients in low HAscore groups and high HAscore groups with differing survival outcomes. Differences between survival status groups 
in terms of HAscore. (D): Differences between scores among three HAclusters in the DLBCL cohort. (E): Difference in scores between three gene clusters 
in the DLBCL cohort. (F-G): The differential and correlation between the HA score and TICs were analyzed using the CIBERSORT algorithm. (H): The differ-
ence in TME scores between the groups according to their HAscore. (I): TumorPurity between the HAscore groups.
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Fig. 6 KAT2A was expressed in high levels in DLBCL. (A): Expression of KAT2A in TCGA. (B): Prognosis of KAT2A in GEO. (C): Expression of KAT2A in NHL in 
public databases. (D-E): KAT2A is highly expressed in DLBCL cell lines. (F): GO analysis based on DEGs of KAT2A. (G): A correlation of the abundance and 
correlation of TME infiltrating cells among different HAscore groups.
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Fig. 7 Inhibition of DLBCL progression by KAT2A knockdown. (A-B): The knockdown effect of KAT2A was confirmed by RT-qPCR and protein blotting 
analyses. (C-D): KAT2A knockdown arrests the cell cycle in the G2/M phase. (E-F): KAT2A knockdown promoted cell apoptosis. (G): KAT2A knockdown 
decreased cellular proliferative activity.
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circumvented oncogene-related cell cycle repression [41]. 
Considerable research has been conducted on individual 
histone acetylation regulators and their role in cancer; 
however, a comprehensive assessment of these regulators 
and their interactions remains lacking. Our research aims 
to develop a more complete understanding of the differ-
ent histone acetylation patterns and their associated bio-
logical properties.

Based on a preliminary analysis of the expression of 
histone acetylation regulator genes, most genes were 
significantly different between normal and tumor sam-
ples with an association with prognosis. According to 
unsupervised clustering of 36 modulators, patients were 
categorized into three histone acetylation phenotypes. 
Survival analysis revealed three distinct patterns of his-
tone acetylation modification associated with prognosis. 
To further characterize these different histone acetyla-
tion phenotypes, we determined DEGs among them. The 
HAscore model was developed based on these genes 
to assess histone acetylation phenotypes in individual 
patients quantitatively. All patients in HAcluster A have 
a low HAscore, associated with the poorest survival out-
come. Moreover, we found a close relationship between 
most acetylation-related genes. One of these risk factors, 
KAT2A, has been found to be closely related to histone 
acetylation regulators.

In order to shed light on the mechanisms underlying 
the different prognoses of patients with different pheno-
types, the biological characteristics of each pattern were 
examined. The results of GSVA analysis confirmed that 
HAcluster A showed enrichment in several metabolically 
relevant pathways. Tumorigenesis and tumor progres-
sion are supported by abnormal metabolic activity, which 
allows cells to obtain essential nutrients from the envi-
ronment [42]. Moreover, we found that PARP, JAK-STAT, 
MAPK, NOTCH, and apoptosis were significantly acti-
vated in HAcluster A. Enrichment of these malignancy 
signaling pathways may be indicative of malignant pro-
gression, which may result in a poor prognosis [43–45].

A growing number of studies have suggested that TME 
components may contribute to cancer development [46–
48]. An investigation into the relationship between his-
tone acetylation modifications and TME cell infiltration 
was undertaken to to understand the antitumor immune 
response to DLBCL better. HAcluster A, with the low-
est OS, exhibited a significantly higher level of MDSCs, 
which play a crucial role in immunosuppression [49]. 
MDSC is characterized by its ability to suppress immune 
cell function, including inhibition of T cell proliferation 
[50]. Each pattern is characterized by a different degree of 
TME infiltration, with immunosuppression characteristic 
of HAcluster A group. By analyzing histone acetylation 
patterns, we evaluated the potential therapeutic effects 
of HAscore based on differences in signaling pathways 

and tumor microenvironments between the different pat-
terns. In the high-score group, higher levels of immune-
activating cells were observed, including activated CD4 
T cells and CD56 bright natural killer cells. CD4 + T cells 
have antitumor activity through the production of effec-
tor cytokines that activate CD8 + T cells [51]. By modu-
lating DC and T cell responses, CD56 bright natural killer 
cells can positively influence the anticancer response 
[52]. This indicated that the HAscore contributed to fur-
ther defining the microenvironment and thereby guiding 
more effective treatment.

Furthermore, our research revealed that KAT2A corre-
lates with DLBCL prognosis and functions independently. 
An enzyme in the HAT family, lysine acetyltransferase 
2  A (KAT2A), is involved in transcriptional activation 
through histone acetylation, histone succinylation, and 
recruitment of transcriptional coactivators [53]. Several 
studies have demonstrated that KAT2A functions as an 
epigenetic oncogene in several cancers [54, 55]. In previ-
ous studies, KAT2A has been shown to be a viable tar-
get for reducing the growth of acute myeloid leukemia 
by significantly promoting myeloid differentiation and 
apoptosis [56]. However, little was investigated between 
KAT2A and DLBCL. In this study, we utilized the bioin-
formatic methods to find that histone regulator KAT2A 
was a risk factor in DLBCL. The stable KAT2A KD cell 
lines were constructed for further study. Moreover, our 
research found that KAT2A deficiency could prohibit cell 
proliferation, promote cell apoptosis, and arrest cells in 
the G2/M phase. These findings suggest that inhibiting 
KAT2A may inhibit tumor growth.

In conclusion, our findings suggest that genetic sig-
natures derived from histone acetylation regulators can 
be used to provide personalized survival assessments 
for patients newly diagnosed with DLBCL. It might 
provide clinicians with valuable information regarding 
treatment decisions, follow-up, and prognosis for their 
patients. There are some limitations to the study, despite 
its strengths. All the data we used were from public data-
bases. It would be beneficial to collect more prospective 
real-world data to confirm its clinical utility. On the other 
hand, the specific mechanism of the effect of KAT2A in 
DLBCL still needs to be further explored.
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