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Abstract
Background The objective of this study was to estimate the accuracy of transcriptome-based classifier in differential 
diagnosis of uterine leiomyoma and leiomyosarcoma. We manually selected 114 normal uterine tissue and 31 
leiomyosarcoma samples from publicly available transcriptome data in UCSC Xena as training/validation sets. We 
developed pre-processing procedure and gene selection method to sensitively find genes of larger variance in 
leiomyosarcoma than normal uterine tissues. Through our method, 17 genes were selected to build transcriptome-
based classifier. The prediction accuracies of deep feedforward neural network (DNN), support vector machine (SVM), 
random forest (RF), and gradient boosting (GB) models were examined. We interpret the biological functionality of 
selected genes via network-based analysis using GeneMANIA. To validate the performance of trained model, we 
additionally collected 35 clinical samples of leiomyosarcoma and leiomyoma as a test set (18 + 17 as 1st and 2nd test 
sets).

Results We discovered genes expressed in a highly variable way in leiomyosarcoma while these genes are expressed 
in a conserved way in normal uterine samples. These genes were mainly associated with DNA replication. As gene 
selection and model training were made in leiomyosarcoma and uterine normal tissue, proving discriminant of ability 
between leiomyosarcoma and leiomyoma is necessary. Thus, further validation of trained model was conducted in 
newly collected clinical samples of leiomyosarcoma and leiomyoma. The DNN classifier performed sensitivity 0.88, 
0.77 (8/9, 7/9) while the specificity 1.0 (8/8, 8/8) in two test data set supporting that the selected genes in conjunction 
with DNN classifier are well discriminating the difference between leiomyosarcoma and leiomyoma in clinical sample.

Conclusion The transcriptome-based classifier accurately distinguished uterine leiomyosarcoma from leiomyoma. 
Our method can be helpful in clinical practice through the biopsy of sample in advance of surgery. Identification of 
leiomyosarcoma let the doctor avoid of laparoscopic surgery, thus it minimizes un-wanted tumor spread.
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Pre´cis.
A new transcriptome-based classifier was able to accu-

rately distinguish uterine leiomyoma from leiomyosar-
coma using data from preoperative biopsy specimens.

Introduction
Uterine leiomyoma is a common, benign smooth muscle 
tumor arising from the uterus. In a cross-sectional study, 
the estimated cumulative incidence of leiomyomas by the 
age of 50 years was over 70% [1]. Uterine leiomyosarcoma 
is a rare malignancy arising from smooth muscle cells of 
the uterus and is usually diagnosed postoperatively. A 
study reported that the risk of occult uterine leiomyosar-
coma is 17.3 per 10,000 laparoscopic supracervical hys-
terectomy or myomectomy [2].

Preoperative differential diagnosis between uterine 
leiomyoma and leiomyosarcoma is important because it 
affects treatment and prognosis. For example, suspected 
malignancy is one of the indications for hysterectomy in 
women with uterine leiomyoma [3]. Consequently, many 
asymptomatic women with uterine leiomyoma undergo a 
hysterectomy because they worry about the risk of uter-
ine leiomyosarcoma. Additionally, preoperatively undi-
agnosed uterine leiomyosarcoma can result in reduced 
survival, especially in the case of unintentional morcella-
tion of uterine leiomyosarcoma [4].

However, preoperative differential diagnosis between 
uterine leiomyoma and leiomyosarcoma is difficult. Dif-
ferential diagnosis using sonography is inaccurate due to 
its limited soft-tissue characterization [5]. Even magnetic 
resonance imaging (MRI) cannot reliably distinguish 
uterine leiomyoma and leiomyosarcoma [6]. Although 
advanced imaging techniques such as multiparametric 
MRI and positron emission tomography were promising, 
they have limitations [6]. Similarly, preoperative tumor 
biopsy reported an overlap in histopathologic score 
between uterine leiomyoma and leiomyosarcoma [3]. It 
was suggested that the small size of biopsy specimens can 

result in mis-diagnosis because standard histopathologi-
cal evaluation of uterine leiomyosarcoma requires multi-
section examination [3].

We hypothesized that transcriptome analysis would be 
useful in differential diagnosis between uterine leiomy-
oma and leiomyosarcoma. The differential diagnosis via 
transcriptome analysis of preoperative biopsy specimens 
may lead to optimization of treatment plan in women 
with uterine leiomyoma or leiomyosarcoma. The objec-
tive of this study was to estimate the accuracy of tran-
scriptome-based classifiers in the differential diagnosis of 
uterine leiomyoma and leiomyosarcoma.

Methods
Data set
We used 19,131 transcriptomes from UCSC Xena which 
provides pre-processed integrated data of the Cancer 
Genome Atlas (TCGA), tumor alterations relevant for 
genomic driven therapy (TARGET), and Genotype Tissue 
Expression (GTEx) databases in fragment per kilobase of 
transcript per million mapped reads (FPKM) values.

We classified the 19,131 transcriptomes by their tissue 
of origin. There were 8,167 transcriptomes from normal 
tissue, and for 114 samples, the primary sites were uterus 
(n = 78), cervix (n = 3), cervix uteri (n = 10), or endome-
trium (n = 23). We used these 114 samples for classifier 
generation, using 92 samples for gene selection/training 
and 22 samples for validation (Table 1).

We manually selected 258 sarcoma samples from 
the 19,131 transcriptomic data where their annotation 
showed primary tumor. We chose 31 sarcoma samples 
from uterine sites including corpus uteri (n = 4) or uterus 
(n = 27). The primary diagnoses of the 31 samples were 
leiomyosarcoma (n = 29) or myxoid leiomyosarcoma 
(n = 2). In this study, we considered the 31 uterine-origin 
sarcoma samples as leiomyosarcoma and used these sam-
ples for training (n = 25) / validation (n = 6) of the predic-
tion model.

We manually selected 114 normal uterine tissue and 
31 leiomyosarcoma samples from publicly available tran-
scriptome data for this study (Table 1).

We collected clinical samples of leiomyoma and leio-
myosarcoma cases. Samples were collected from different 
research sites and sequenced in two different batches. For 
the 1st sequenced data, 22 samples from a tissue reposi-
tory were collected. After excluding 4 samples with poor 
RNA quality or failed library construction, 18 samples (9 
uterine leiomyoma and 9 uterine leiomyosarcoma) with 
FPKM values of 23,043 genes were categorized as the 1st 
test set. For the 2nd sequenced data, 27 samples from 
two tissue repositories were collected. After excluding 
10 samples with poor RNA quality or failed library con-
struction, 17 samples (8 uterine leiomyoma and 9 uterine 

Table 1 The number of samples in the training, validation, and 
test sets

Classifier generation Classifier 
evaluation

TCGA TARGET GTEx Clinical 
validation 
samples

Training Validation Test 
− 1st

Test 
− 2nd

Sub-
total

Leiomyosarcoma 25 6 9 9 49

Normal tissue 
(uterus, cervix, 
cervix uteri, 
endometrium)

92 22 0 0 114

Leiomyoma 0 0 9 8 17

Subtotal 117 28 18 17 180
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leiomyosarcoma) with FPKM values of 23,043 genes were 
categorized as the 2nd test set (Table 1).

The training/validation set was used to generate classi-
fiers, and the 1st and 2nd test sets were used to measure 
the performance of the classifiers. Test sets were never 
used during training the prediction classifiers, and the 
best classifier was chosen based solely on the 1st test set. 
Thus, the 2nd test set can be considered as an indepen-
dent validation set.

RNA sequencing in test sets
The libraries were prepared for 151  bp paired-end 
sequencing using the TruSeq Stranded mRNA Sample 
Preparation Kit (Illumina, San Diego, CA, USA). mRNA 
molecules were purified and fragmented from 1  µg of 
total RNA using oligo (dT) magnetic beads. The frag-
mented mRNAs were synthesized as single-stranded 
cDNAs through random hexamer priming. By applying 
this as a template for synthesis of the second strand, dou-
ble-stranded cDNA was prepared. After sequential pro-
cess of end repair, A-tailing, and adapter ligation, cDNA 
libraries were amplified with PCR (polymerase chain 
reaction). Quality of these cDNA libraries was evalu-
ated using the Agilent 2100 BioAnalyzer (Agilent, Santa 
Clara, CA, USA). They were quantified with the KAPA 
library quantification kit (Kapa Biosystems, Wilming-
ton, MA, USA) according to the manufacturer’s library 
quantification protocol. Following cluster amplification 
of denatured templates, sequencing was progressed as 
paired-end (2 × 151  bp) using Illumina NovaSeq6000 
(Illumina).

The Phred quality score of 30 indicates a probability of 
1 in 1000 for an incorrect base call. To ensure high con-
fidence in the sequencing data, adapter sequences and 
ends of reads with a Phred quality score less than 30 were 
trimmed, and simultaneously, reads shorter than 50  bp 
were removed using cutadapt v.2.8 [7].

Filtered reads were mapped to the human reference 
genome (GRCh38 from ENSEMBL genome browser 94) 
using the aligner TopHat v.2.0.13 [8]. Gene expression 
estimation was performed using Cufflinks v.2.2.1 [9]. To 
normalize sequencing depth among samples, FPKM val-
ues were calculated.

Data preprocessing and gene selection
Data preprocessing consisted of three steps: within-sam-
ple standardization, data splitting, and feature selection. 
The preprocessing steps are depicted in Fig. 1. To reduce 
the scale difference between samples, within-sample 
standardization was performed using the GAPDH gene, 
also known as glyceraldehyde-3-phosphate dehydro-
genase, as a reference. GAPDH is a widely used house-
keeping gene that is consistently expressed in cells, 
maintaining relatively stable expression levels regardless 

of cellular conditions. It is commonly employed as a ref-
erence gene for normalizing gene expression data and 
comparing expression levels across various conditions. 
Briefly, we subtracted the transformed FPKM value of 
GAPDH (log2 transformed after adding 0.001) from that 
of each gene for each sample. The training/validation set 
were randomly split into a training (n = 117) and a vali-
dation set (n = 28) in a 4:1 ratio. Both sets consisted of 
normal uterine tissue and leiomyosarcoma samples in the 
same proportion. The training set comprised 92 normal 
samples and 25 leiomyosarcoma samples, while the vali-
dation set included 22 normal samples and 6 leiomyosar-
coma samples (Table 1).

The number of genes shared by the training/validation 
and test sets was 22,651, of which we selected 6,795 genes 
with an average expression FPKM value of upper 30% in 
the training set. Under the hypothesis that non-malig-
nant leiomyoma samples share similar gene expression 
profile to normal samples, we narrow down candidate 
genes. For this, we use leiomyoma samples in the test 1st 
set (n = 8), another leiomyoma samples in the 2nd data 
set left over and not used feature selection and model 
training. We selected 3,122 genes from the 6,795 genes 
showed no significant differential expression between 
the leiomyoma samples in the 1st test set and the normal 
samples in training set (cutoff of var.test p-value < 0.05 
and t.test p-value < 0.05). We defined the 3,122 genes as 
not differentially expressed genes between normal and 
leiomyoma samples (NDEG). We introduced a new trans-
formation technique that sets the average of each sample 
to zero by subtracting the average of the sample, referred 
to as “zero-sum transformation” in this study. The zero-
sum transformation was performed using 3,122 genes. 
To select genes with greater variance in leiomyosarcoma 
compared to normal samples, we computed the mean 
sum of squares (MSS) for each gene. The MSS was calcu-
lated separately for normal and leiomyosarcoma samples 
using the following equation:

 
MSSofgenei =

x21i + x22i + · · · + x2ni
n

 (1)

where genei is i-th gene, with i = 1, 2, …, k, k is the num-
ber of genes, n is the number of samples, and xni is the 
zero-sum transformed FPKM value of i-th gene in the 
sample. Then, MSS ratio was calculated by dividing the 
MSS of leiomyosarcoma by the MSS of normal.

 
MSSratioofgenei =

MSSLMSofgenei
MSSnormalofgenei

 (2)

In the Eq. (2), MSSLMS is MSS of uterine leiomyosarcoma 
and MSSnormal is MSS of normal uterine tissue.
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Based on the point where the gap observed in the MSS 
ratio graph of the top 20 genes, we selected the top 17 
genes with high MSS ratio (Supplementary Fig.  1). Like 
the training set, zero-sum transformation was performed 

using NDEG on the validation and test sets. The selected 
17 genes from the training set were used to train, vali-
date, and evaluate the performance of classifiers.

Fig. 1 An overall workflow of the proposed classifiers approach. Two datasets, TCGA TARGET GTEx and test set, were used in this study. After standardizing 
the two datasets, they were split for training, validation, and testing. Features were selected only from the training set and were used to build classifiers. 
To obtain classifiers with the highest performance, we employed Bayesian optimization for hyperparameter tuning. TCGA = The Cancer Genome Atlas; 
TARGET = tumor alterations relevant for genomics-driven therapy; GTEx = Genotype-Tissue Expression; FPKM = fragment per kilobase of transcript per mil-
lion mapped reads; ENSGs = Ensembl genes; NDEG = not differentially expressed genes; MSS = mean sum of squares; ML = machine learning; DNN = deep 
feedforward neural network; SVM = support vector machine; RF = random forest; GB = gradient boosting
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Deep learning and machine learning algorithms
We evaluated several classifiers, including deep feedfor-
ward neural network (DNN), support vector machine 
(SVM), random forest (RF), and gradient boosting (GB), 
for our analysis. The DNN classifier utilized a hidden 
layer structure with a rectified linear unit (ReLU) activa-
tion function, and the output layer employed a sigmoid 
activation function. Batch normalization was imple-
mented to address the vanishing gradient problem. Adam 
optimizer with a learning rate of 0.001 was selected, 
and binary crossentropy served as the loss function. 
The DNN classifier provided probability predictions for 
uterine leiomyosarcoma, and the samples were classi-
fied using a cutoff value of 0.5. For the SVM classifier, we 
explored different parameters including kernel type, C, 
and gamma. The RF classifier was assessed with varia-
tions in parameters such as the number of estimators, 
maximum depth, and maximum features. The GB clas-
sifier involved tuning the learning rate, number of esti-
mators, maximum depth, and maximum features. We 
utilized the SVM, RandomForestClassifier, and Gradi-
entBoostingClassifier algorithms provided by the scikit-
learn library for implementing the respective classifiers.

Hyperparameter tuning and evaluation
The DNN classifier had five hyperparameters including 
dropout rate, the number of hidden layers, the number of 
hidden layer nodes, batch size, and epochs. To determine 
the optimal set of hyperparameters, we performed Bayes-
ian optimization of DNN classifier provided in the Keras-
Tuner library [10]. We defined binary crossentropy as an 
objective function for optimization and the total number 
of trials was set at 500. We considered configurations of 
hyperparameters composed of dropout rate from 0.1 to 
0.7, the number of hidden layers from 2 to 8, the num-
ber of hidden layer nodes from 2 to 32, batch size from 
8 to 64, and epochs from 30 to 200 for the DNN classi-
fier. Binary crossentropy was used as a metric function to 
select the classifier with the best performance. The struc-
ture of the selected classifier is depicted in Supplemen-
tary Fig. 2. The hyperparameter optimization of SVM, RF, 
and GB classifiers was performed in the same manner, 
except for the choice of objective function, which was 
accuracy in all cases. The configurations of hyperparam-
eters and the hyperparameter values with the best per-
formance of each classifier are shown in Supplementary 
Table 1.

The performances of the classifiers were evaluated 
using metrics such as accuracy, sensitivity, specificity, 
balanced accuracy, and area under the curve (AUC). The 
accuracy and AUC were utilized to determine the best 
classifier.

Functional analysis of genes
The selected genes were subjected to functional analysis 
using GeneMANIA (https://genemania.org/). Signifi-
cant functions were determined with false discovery rate 
(FDR) < 0.1 as cutoff.

Results
Gene expression
In the training set, normal uterine tissue samples showed 
consistently low MSS values for the selected genes, indi-
cating conserved gene expression levels (Supplementary 
Table  2). Conversely, uterine leiomyosarcoma samples 
exhibited high MSS values. Specifically, genes such as 
PGR, TRIM22, BOK, NAALADL1, AFAP1L2, and ESR1 
showed MSS values greater than 5 in uterine leiomyo-
sarcoma samples. This pattern was not only observed in 
the training set but also in the validation and test sets, 
where the expression levels of the selected genes in uter-
ine leiomyosarcoma samples displayed greater variability 
compared to those in normal uterine tissue and uterine 
leiomyoma samples (Fig.  2). Thus, leiomyosarcoma is 
expected to have different expression pattern when it is 
compared to non-cancer samples. The visualized cluster-
ing pattern clearly demonstrates the distinction, as the 
uterine leiomyosarcoma samples are clustered separately 
from the normal uterine and uterine leiomyoma samples 
(Fig. 3). A total of 17 genes included in the classifiers are 
listed with their MSS ratio in Supplementary Table  2. 
Functional analysis showed that the selected genes were 
mainly associated with DNA replication preinitiation 
complex, DNA strand elongation, and protein-DNA 
complex (Supplementary Table 3).

Performance of classifiers
Machine learning methods, including SVM, RF, GB, 
and DNN, were trained using normal uterine tissue and 
leiomyosarcoma samples, and they showed AUC values 
of 1.000 in both training and validation sets. We evalu-
ated the performance of classifiers using newly collected 
clinical samples consisting of uterine leiomyoma and 
leiomyosarcoma (1st and 2nd test set in the figures). The 
AUC values of SVM, RF, GB, and DNN classifiers from 
the 1st test set were 0.926, 0.938, 0.975, and 0.975 respec-
tively and those from the 2nd test set were 0.792, 0.792, 
0.819, and 0.806. In comparison among SVM, RF, GB, 
and DNN classifiers, the DNN classifier had the highest 
accuracy and AUC value in the 1st test set (Fig. 4, Supple-
mentary Fig.  3). The probability of uterine leiomyosar-
coma for the test set using the DNN classifier is depicted 
in Supplementary Fig. 4. Accuracy, sensitivity, specificity, 
and balanced accuracy of DNN classifier in the 1st test 
set were 0.944, 0.889, 1.000, and 0.944, respectively; those 
in the 2nd test set, which is an independent validation set, 
were 0.882, 0.778, 1.000, and 0.889, respectively (Table 2). 

https://genemania.org/


Page 6 of 11Kim et al. BMC Cancer         (2023) 23:1215 

Those of SVM, RF, and GB classifiers for 1st and 2nd test 
sets are summarized in Supplementary Table 4. On visu-
alization of the last hidden layer of the DNN classifier, the 
last hidden layer representations of uterine leiomyoma 
were closer to those of normal uterine tissue than malig-
nant tumor (Fig. 5).

Discussion
Previous studies and novelty of this study
To distinguish uterine leiomyosarcoma from leiomy-
oma, many studies have used imaging modalities, but 
only a few studies have used RNA or DNA profiles. A 
study including 13 leiomyoma and 13 leiomyosarcoma 
formalin-fixed paraffin-embedded (FFPE) tissue sam-
ples reported that tumor mutation was more frequent 
in leiomyosarcoma than in leiomyoma [11]. Another 
study including 20 leiomyoma and 10 leiomyosarcoma 
fresh/FFPE tissue samples found several genes dif-
ferentially expressed between uterine leiomyoma and 

leiomyosarcoma [12]. One more study including 7 leio-
myoma and 9 leiomyosarcoma tissue samples reported 
that the gene expression profile is different between uter-
ine leiomyoma and leiomyosarcoma [13]. However, these 
studies did not attempt to build a classifier and did not 
report how accurately they can predict whether a tumor 
is leiomyoma or leiomyosarcoma.

To the best of our knowledge, the present study is the 
first to generate a transcriptome-based classifier and 
reported the performance of the classifiers in differential 
diagnosis of uterine leiomyoma and leiomyosarcoma. We 
showed that uterine leiomyoma and leiomyosarcoma can 
be distinguished using transcriptome analysis with good 
accuracy.

Genes with high variability in uterine leiomyosarcoma
We identified genes that exhibited larger variance in uter-
ine leiomyosarcoma compared to normal uterine tissue 
and uterine leiomyoma samples. Among these genes, the 

Fig. 2 Expression patterns between datasets of 17 selected genes. The expression patterns of selected 17 genes in training set (a), validation set (b), 1st 
test set (c), and 2nd test set (d). Gene expression patterns in the normal (n = 114 samples from uterus, cervix, cervix uteri, endometrium) and leiomyoma 
groups (n = 17 samples) are stable, while they are dynamic in the leiomyosarcoma groups (n = 49 samples). The patterns were similar in all datasets. Color 
corresponds to the label. The y-axis represents GAPDH-scaled and zero-sum transformed expression values. These values were used to train the classifiers
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PGR gene stood out with the highest MSS ratio of 22.655. 
It encodes progesterone receptor (PGR), which plays a 
crucial role in regulating uterine function through antag-
onistic and synergistic interactions with estrogen recep-
tors (ER) [14]. Additionally, ESR1, which encodes ER, 
ranked second in terms of MSS value in uterine leiomyo-
sarcoma samples following PGR. ESR1 is associated with 
gynecologic cancers, including breast cancer, endome-
trial cancer, and ovarian cancer [15–17]. Both PGR and 
ER have also been reported as positive prognostic mark-
ers for uterine leiomyosarcoma [18]. TRIM22 displayed 
the second highest MSS ratio among the identified genes. 
Saito-Kanatani et al. reported TRIM22 as a progesterone-
responsive gene in Ishikawa endometrial cancer cells, 
suggesting its involvement in regulating progesterone 
actions in uterine cells [19].

In addition, BOK, NAALADL1, and AFAP1L2 were 
identified as genes with MSS values greater than 5 in 
uterine leiomyosarcoma samples. Although not specific 
to gynecologic cancers, there have been reports on these 
genes in relation to other cancer types. BOK, also known 
as BCL2-related ovarian killer, is involved in regulating 
the cell cycle and the pro-apoptotic pathway [20]. Sev-
eral studies have investigated the role of BOK in cancer 

cells, with Carberry et al. suggesting that BOK protein 
may serve as a prognostic marker in colorectal cancer, 
and Zeilstra et al. reporting an association between BOK 
expression and intestinal adenomas [21, 22]. NAALADL1 
encodes NAALADaseL, which is studied as a biomarker 
in prostate cancer. A previous study has discovered that 
the expression of NAALADL1 is upregulated in neu-
roendocrine prostate cancer [23]. AFAP1L2 belongs 
to the actin filament-associated protein (AFAP) fam-
ily, which is known affect tumor cell proliferation, inva-
sion, epithelial-mesenchymal transition and participate 
in tumor progression. AFAP1L2 has been reported to 
be associated with tumor progression or suppression in 
various cancers, including prostate cancer, non-small-cell 
lung cancer, breast cancer and carcinogen-induced skin 
tumorigenesis [24–27].

The selected genes utilized in the proposed classi-
fier have been reported to exhibit expression changes in 
various types of cancers. Particularly, they include genes 
associated with female hormones, which likely contrib-
uted to the predictive performance of the classifier in dis-
tinguishing uterine leiomyosarcoma from normal uterine 
tissue and uterine leiomyoma.

Fig. 3 Graphical representation of the selected 17 genes. Heat map plot of the differentially expressed 17 genes in normal uterine tissue and leiomyo-
sarcoma. Normal (n = 114 samples) and leiomyoma (n = 17 samples) show similar gene expression profiles, whereas leiomyosarcoma (n = 49 samples) 
displays a different profile. The distinct cluster of leiomyosarcoma can be seen in Label annotation. In the Dataset annotation, clusters were not identified. 
The scaled expression levels of the upregulated genes and downregulated genes are exhibited as red and blue, respectively
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Functional analysis
We conducted a functional enrichment test on the 
selected genes to discover the functions associated with 
uterine leiomyosarcoma. We have identified three terms 
related to DNA replication: “DNA replication preinitia-
tion complex” (FDR = 4.3e-5), “DNA strand elongation” 
(FDR = 1.3e-3), and “protein-DNA complex” (FDR = 4.8e-
3). Notably, a previous study reported an association 
between “DNA strand elongation” and uterine leiomyo-
sarcoma [28]. MCM3, which is involved in these func-
tions, belongs to the minichromosome maintenance 
(MCM) family and has been previously reported in rela-
tion to cancer [29]. MCM family consists of MCM2 to 7, 

and they play crucial roles in “cell cycle progression” and 
“regulating the initiation and progression of DNA repli-
cation” [30]. Especially, the expression of MCM2 is signif-
icantly upregulated in uterine leiomyosarcoma compared 
to normal myometrium and uterine leiomyoma [13, 30, 
31]. In this study, we observed a similar pattern in the 
expression of MCM3, one of the genes used in the pro-
posed classifier. Hence, MCM3 holds potential as a novel 
marker for uterine leiomyosarcoma.

Fig. 4 Prediction performance (AUC) of tuned DNN classifier in train, validation, 1st, and 2nd test. Receiver operating characteristic (ROC) curves of the 
classifier in training set (a), validation set (b), 1st test set (c), and 2nd test set (d). The area under the curve (AUC) values are shown in the plot legend
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Use of normal uterine tissue instead of uterine leiomyoma 
in classifier training
In the training/validation set, we used normal uterine 
tissue instead of uterine leiomyoma due to the unavail-
ability of public transcriptome data for leiomyoma. To 
address this limitation, during the feature filtering pro-
cess, we excluded genes that showed differential expres-
sion between normal tissue and leiomyoma using the 
1st test data. Despite being trained with normal uterine 
tissue and leiomyosarcoma samples, the proposed DNN 
classifier effectively distinguished leiomyosarcoma from 
leiomyoma in the test sets through the feature filtering 
process, demonstrating its accurate performance. We 
identified that normal uterine tissue and uterine leio-
myoma had similar expression profiles in several visu-
alizations. Moreover, genes used in the classifiers do 
not overlap with genes that are differentially expressed 
between uterine leiomyoma and normal tissue (Sup-
plementary Fig.  4) [32]. Therefore, we believe that the 

Table 2 Confusion matrix in test sets
1st test set

Actual
Leiomyoma Leiomyosarcoma Subtotal

Prediction Leio-
myoma

9 1 10

Leio-
myosar-
coma

0 8 8

Subtotal 9 9 18

2nd test set

Actual

Leiomyoma Leiomyosarcoma Subtotal

Prediction Leio-
myoma

8 2 10

Leio-
myosar-
coma

0 7 7

Subtotal 8 9 17

Fig. 5 Visualization of the last hidden layer of DNN classifier. The t-SNE plot of the last hidden layer of the DNN classifier. Normal and leiomyoma samples 
were clustered, and leiomyosarcoma samples formed different clusters. Distinct clusters between the normal and leiomyoma group and leiomyosarcoma 
group were identified
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substitution of leiomyoma with normal uterine tissue 
did not significantly affect the performance of the clas-
sifiers. We may improve the performance of the classifier 
if we collect more uterine leiomyoma samples in future 
studies.

Variance of expression
Differentially expressed genes (DEGs) via mean differ-
ence test have been widely used in transcriptome analy-
sis. In this study, we used a novel approach that focused 
on divergence of gene expression pattern. There have 
already been many studies focusing on the analysis of 
gene expression variability. There is evidence that genes 
with high variability of expression are often associated 
with disease phenotypes [33, 34]. Notably, the variance 
of gene expression in cancer tissues is higher than that 
in normal tissues [35–37]. We applied this insight that 
gene expressions in cancer tissues are heterogenous while 
their expressions in normal tissues are conserved, for dis-
tinguishing uterine leiomyosarcoma from normal uterine 
tissue and leiomyoma. There are several studies using 
variance of gene expression for gene selection. Roberts et 
al. classified cancer subtypes using variance-based gene 
selection [38]. Dinalankara et al. used the variance-ratio 
statistic to distinguish benign growths from cancerous 
growths [36]. Moreover, they observed that not only was 
the variability of gene expression higher in both adenoma 
and cancer samples than in normal samples, but also that 
the cancer samples had higher variability compared to 
adenomas. This characteristic was applied to the present 
study, and the classifiers successfully distinguished uter-
ine leiomyosarcoma from leiomyoma in model evalua-
tion. As far as we know, this is the first study classifying 
uterine leiomyoma and leiomyosarcoma using variance-
based gene selection. We believe that this novel approach 
may be more practically applied to the differential diag-
nosis between cancer and normal, and even disease and 
normal states.

Impact of this study
The impact of preoperative differential diagnosis between 
uterine leiomyoma and leiomyosarcoma is huge. Unnec-
essary surgery can be avoided in women with uter-
ine leiomyoma and early surgery can be performed in 
women with uterine leiomyosarcoma. Additionally, an 
appropriate surgical approach such as laparotomy instead 
of laparoscopy can be used in women with uterine 
leiomyosarcoma.

Limitations
This study has several limitations. Firstly, due to the 
unavailability of transcriptome data for leiomyoma, we 
used normal uterine tissue as a substitute in the training/
validation set. Secondly, the sample size in the training, 

validation, and test sets was relatively small. However, 
compared to previous studies [11–13], the current study 
can be considered relatively large in scale. Thirdly, the 
underlying reasons for the differential expression of the 
selected genes between uterine leiomyoma and leiomyo-
sarcoma were not investigated in this study, and further 
research is needed to address this aspect.

Conclusion
We successfully developed a transcriptome-based clas-
sifier using publicly available transcriptome data and 
showed that the classifier accurately distinguished uterine 
leiomyosarcoma from leiomyoma. The differential diag-
nosis via transcriptome analysis of preoperative biopsy 
specimens may lead to optimization of treatment plans in 
women with uterine leiomyoma or leiomyosarcoma.
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