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Abstract
Background Downstaging of hepatocellular carcinoma (HCC) makes it possible for patients beyond the criteria to 
have the chance of liver transplantation (LT) and improved outcomes. Thus, a procedure to predict the prognosis of 
the treatment is an urgent requisite. The present study aimed to construct a comprehensive framework with clinical 
information and radiomics features to accurately predict the prognosis of downstaging treatment.

Methods Specifically, three-dimensional (3D) tumor segmentation from contrast-enhanced computed tomography 
(CT) is employed to extract spatial information of the lesions. Then, the radiomics features within the segmented 
region are calculated. Combining radiomics features and clinical data prompts the development of feature selection 
to enhance the robustness and generalizability of the model. Finally, we adopt the support vector machine (SVM) 
algorithm to establish a classification model for predicting HCC downstaging outcomes.

Results Herein, a comparative study was conducted on three different models: a radiomics features-based model (R 
model), a clinical features-based model (C model), and a joint radiomics clinical features-based model (R-C model). 
The average accuracy of the three models was 0.712, 0.792, and 0.844, and the average area under the receiver-
operating characteristic (AUROC) of the three models was 0.775, 0.804, and 0.877, respectively.

Conclusions The novel and practical R-C model accurately predicted the downstaging outcomes, which could be 
utilized to guide the HCC downstaging toward LT treatment.
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Background
Liver transplantation (LT) is a potentially curative treat-
ment in patients with hepatocellular carcinoma (HCC), 
and the 5-year overall survival (OS) after LT was > 70% 
[1–4]. However, two-thirds of HCC patients did not 
meet the criteria for diagnosis [5, 6]. For advanced 
HCC patients, the median survival was 6–7 months if 
untreated, and the 5-year survival was 18–32% post-LT 
[3, 6–9]. Downstaging was defined as reducing the tumor 
burden to meet the criteria for LT, making it possible 
for patients beyond the criteria to have the chance of LT 
[4, 10, 11]. Recent studies have shown that 5-year OS 
of HCC patients after successful downstaging to Milan 
criteria was 73.2–93.8%, which was similar to patients 
initially meeting the Milan criteria and better than that 
of no transplantation (31.2%) [4, 12, 13]. The definition 
of successful downstaging was controversial, however, 
recent studies commended that the OS of HCC patients 
after successful downstaging to the setting criteria was 
similar to patients initially meeting the criteria [14–16].

Predicting the outcomes of downstaging could provide 
individualized treatment, reduce unnecessary interven-
tions, and provide healthcare to HCC patients. Due to 
the wide range of downstaging failure rates 23–89%, 
there is an urgent requirement for an objective and accu-
rate downstaging prediction model [16–18]. Some stud-
ies speculated that downstaging-failed patients had more 
frequent MVI and worse tumor grades than successful 
patients [14]. In the study by Barakat et al., the noninfil-
trative expanding tumor type was the sole predictor of 
successful downstaging; however, noninfiltrative evalua-
tion was difficult, especially in small tumors [3]. Overall, 
no specific objective models are available to predict the 
downstaging response precisely. Radiomics can deduce 
more information than human eyes and achieve brilliant 
prognostic accuracy in various clinical tasks, such as the 
prediction of microvascular invasion [19, 20]. Machine 
learning (ML) was used successfully in many applications 
related to classification (diagnosis), such as lung cancer 
and response to treatment. To the best of our knowledge, 
no previous studies have predicted the downstaging out-
comes using ML in HCC patients.

In the current study, we developed a model based on 
clinical data and radiomics features to predict the down-
staging success in HCC undergoing local regional or sys-
temic therapy, which was validated in an independent 
test cohort. The present study aimed to establish an HCC 
downstaging prediction model based on clinical data and 
radiomics features through ML.

Materials and methods
Patients
Patients diagnosed with HCC who received locore-
gional therapy or systemic therapy for downstaging were 

considered for this study from March 2015 to Decem-
ber 2021 in Beijing Tsinghua Chunggung Hospital (Bei-
jing, China) and from January 2019 to December 2021 in 
The First Hospital of Jilin University (Jilin, China). The 
diagnosis of HCC was based on radiographic imaging 
(Liver Imaging Reporting and Data System, LI-RADS) or 
biopsy. The inclusion criteria were as follows: (1) patients 
with baseline enhanced computed tomography (CT) and 
follow-up imaging 4–12 weeks after the first downstag-
ing and complete clinical data; (2) the tumor was beyond 
the up-to-seven criteria. The exclusion criteria were 
as follows: (1) patients with cholangiocarcinoma and 
mixed hepatocellular-cholangiocarcinoma (diagnosed 
by pathology); (2) patients with metastasis. The success-
ful downstaging in the current study was to facilitate LT. 
Based on the modified Response Evaluation Criteria in 
Solid Tumors (mRECIST) assessment, the endpoint of 
successful downstaging is that the patients meet the up-
to-seven criteria for LT.

The clinical features consisted of demographic, labo-
ratory parameters, and radiologic features. The demo-
graphic characteristics included age, sex, body mass 
index (BMI), hepatic virus infection, cirrhosis, ascites, 
Child-Pugh class, and chronic disease. Routine base-
line laboratory examinations included white blood cells 
(WBCs), platelet count (PLT), hemoglobin (Hb), serum 
alpha-fetoprotein (AFP) level, Child-Pugh class, serum 
alanine aminotransferase (ALT), aspartate aminotrans-
ferase (AST), serum total bilirubin (TB), serum albu-
min (ALB), serum gamma-glutamyl transferase (GGT), 
prothrombin time (PT), and serum creatinine (Scr). The 
radiologic features included tumor number and mac-
rovascular invasion. Enhanced CT scans were acquired 
using CT scanners. The slice thickness was 0.625–5 mm.

The discovery cohort was randomly divided into 
two cohorts: the training set (n = 74, 70%) and the test 
set (n = 32, 30%) (see  Fig.  1). The study was conducted 
according to the guidelines of the Declaration of Helsinki 
and approved by Beijing Tsinghua Changgung Hospital 
Ethics Committee (Approval No. 21269-4-04).

Radiomics analysis
Tumor segmentation
Tumor segmentation was performed by two experienced 
radiologists using ITK-SNAP (version 3.6.0) during the 
portal-venous phase of enhanced CT and reviewed by a 
senior radiologist, as shown in Fig. 2A.

Data pre-processing
The homogenous feature was calculated using default 
parameters. Since the CT images were heterogeneous, 
we performed image normalization to resample the CT 
volume to the same target spacing (1,1,1). Specifically, 
third-order spline interpolation was utilized for in-plane 
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resampling, whereas nearest neighbor interpolation was 
performed for out-of-plane interpolation.

Features selection and model development
Radiomics features were extracted from each region of 
interest (ROI) using the pyradiomics package (https://
www.cnpython.com/pypi/pyradiomics website, v3.0.1).

All features (including radiomics features and clinical 
information) were normalized to a standard scale based 
on z-scoring normalization.

 
X =

(x− µ)

σ

Where µ is the average value of all features, σ is the stan-
dard deviation of all features.

The least absolute shrinkage and selection opera-
tor (LASSO) regression model was used to select imag-
ing features in high-dimensional data for the predictive 
model, as shown in Fig. 2B.

Next, we developed three models using only radiomics 
features (R), only clinical features (C), and both (R-C), 
respectively (see Fig.  2C). The classification prediction 

models were constructed based on a selection support 
vector machine (SVM) using the scikit-learn package.

Univariate analyses were performed to determine the 
clinical features. Clinical data that reached statistical 
significance in univariate analysis were included in the 
ML. In the model, we input missing values by the median 
of non-missing entries in the specific feature column. 
Finally, the candidate clinical variables and radiomics fea-
tures were utilized to investigate the prediction model.

SHapley Additive exPlanations (SHAP) value was uti-
lized to compute the distribution of features in the pre-
diction model [21]. To enhance the interpretability of 
the model, we employed the SHAP value to express the 
importance of features in the established SVM classifica-
tion model.

Normalization, LASSO, performance, and validation of 
the predictive model (confusion matrix and classification 
report) was assessed using scikit-learn packages (https://
scikit-learn.org/stable/).

Statistical analysis
Results were expressed as mean ± standard deviation 
and medians with interquartile range for continuous 

Fig. 1 Patient recruitment workflow
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variables. Data were analyzed using the chi-square test, 
fisher’s exact test, t-test, or Mann–Whitney U test,  as 
appropriate. True-positive (TP), true-negative (TN), 
false-negative (FN), and false-positive (FP) were consid-
ered variables for calculating performance metrics. The 
performance of the prediction model was quantified by 
accuracy, precision, and recall. Accuracy, precision, and 
recall were defined as follows:

 
Accuracy =

TP + TN

TP + FN + FP + TN

 
Precision =

TP

TP + FP

 
Recall =

TP

TP + FN

In addition, the area under the receiver-operating char-
acteristic curve (AUROC), the area under the precision-
recall curve (AUPRC) and F1-score were utilized as 
evaluation indexes. F1 score was defined as:

 
F1 =

2TP

FP + FN + 2TP

The clinical utility of the models was evaluated using 
decision curve analysis (DCA). The statistical compari-
son of AUROC was evaluated using Delong test. Statis-
tical analyses were performed using SPSS v25.0 and R 
4.3.2. Statistical significance was set at p < 0.05.

Results
Baseline clinical characteristics
A total of 106 HCC patients who underwent downstag-
ing in Beijing Tsinghua Changgung Hospital from March 
2015 to November 2021 and in The First Hospital of Jilin 
University from January 2019 to December 2021 were 
collected. The patients’ clinical features are listed in 
Table  1. This retrospective cohort comprised 95 males 
and 11 females with a mean age 56.36 ± 1.07 years. Also, 
54 patients had successful downstaging, while the other 
52 presented failed downstaging. The detailed downstag-
ing treatments are listed in Table S1.

The two groups were similar in their distribution of 
age, sex, BMI, hepatic virus infection, cirrhosis, ascites, 
chronic disease (hypertension and diabetes mellitus), and 
type of treatment (Table  2). Among all factors, the fol-
lowing clinical features were related to the downstaging 
outcomes in univariate analyses: Child-Pugh class, AST, 
GGT, AFP, Portal Vein Tumor Thrombus (PVTT), and 
the number of tumors (p < 0.05).

Fig. 2 Model development overview
(A) Data preparation
(B) Feature extraction
(C) Model validation
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Feature extraction
For R model features selection, a total of 112 radiomics 
features were extracted and normalized. A total of 18 
features with nonzero coefficients in the LASSO regres-
sion model were selected, including two image-original 
related features, six shape-related features, two first-order 
features, and eight textural features. For the C model’s 
features, four features were selected: PVTT, tumor num-
ber, AFP, and GGT.

The R-C model consisted of 13 features with nonzero 
coefficients in LASSO regression model, including 10 
radiomics features and three clinical features. The clinical 
features were as follows: PVTT, tumor number, and AFP. 
The radiomics features included one image-related fea-
ture, three shape-related features, one first-order feature, 
and five textural features. Moreover, 8 radiomics features 
comprised the R and R-C models.

The importance of selected features was showed in Fig-
ure S2. The detailed features of three models were listed 
in Table S2.

Predictive Model Development and Validation
We adopted the SVM algorithm to establish three clas-
sification models for predicting HCC downstaging out-
comes with the features selected above: R, C, and R-C. 
Next, we tested the performance of different models in 
the same training and test cohorts. The training cohort 
consisted of 74 (70%) cases, and the test cohort consisted 
of 32 (30%) cases. In the test cohort, the accuracy of the 
R model, C model, and R-C model was 0.656, 0.781, and 
0.875, and the AUROC of the three models was 0.827, 
0.816, and 0.933, respectively. The ROC, P-R curve, and 
confusion matrix of the test and training cohorts of the 
different models are shown in Fig.  3. Precision, recall, 
and F1-score are shown in Table  3. While the Delong 
test indicated that there was no significant difference in 
AUROC between each pair of models in the test cohort 
(Table S3). It is noteworthy that the R-C model demon-
strated notably improved accuracy compared to the R 
model (p = 0.039, Table S4). The R model, C model, and 
R-C model showed good performance; however, the R-C 
model had better prognostic ability than the others.

Herein, we adopted k-fold cross-validation to test the 
stability of the three models. After k-fold cross-validation 
(k = 3, repeat = 2), all three models showed stable perfor-
mance in the test cohort and training cohorts (see Fig. 4A 
and B). In the test cohort, the average accuracy of the R, 
C, and R-C models was 0.712, 0.792, and 0.844, the aver-
age AUROC of the three models was 0.775, 0.804, and 
0.877, and the average AUPRC of the three models was 
0.785, 0.760, and 0.859, respectively. Figure  4C showed 
the DCA of the three models in the test cohort.

Inspection of model features
Feature importance was also assessed using SHAP values 
in the trained R-C SVM model (see Fig.  5). The impact 
of each key feature on the model prediction was shown 
in SHAP values. For different trained models, the SHAP 
values of features may not be consistent. However, the 
importance of tumor burden (such as tumor diam-
eter, tumor number, and PVTT) was stable in different 
cohorts. However, if we only used tumor burden to build 
the predictive model, accuracy and AUROC were poorer 

Table 1 Demographic and baseline data
Characteristics No. of patients 

(n = 106)
Age (years) (± SD) 56.36(± 1.07)
Sex ratio (M: F) 95:11
BMI(kg/m2) (± SD) 24.70(± 0.32)
Hypertension 29(27.4%)
Diabetes mellitus 15(14.2%)
Viral hepatitis 88(83.0%)
Cirrhosis 65(61.3%)
Ascites 31(29.2%)
Child-Pugh class
A 73(68.9%)
B 26(24.5%)
C 7(6.6%)
WBC(109/L) (IQR) 5.27(3.93,6.63)
Hb(g/L) (IQR) 138.5(123.8,149.3)
PLT(109/L) (IQR) 149.0(97.0,220.3)
Scr (µmol/L) n = 104(IQR) 63.30(56.38,73.53)
PT(s) (IQR) 12.75(11.90,14.10)
ALT(U/L) (IQR) 39.85(24.73,72.90)
AST(U/L) (IQR) 44.55(32.85,65.23)
TB(µmol/L) (IQR) 19.06(14.83,31.56)
GGT(U/L) (IQR) 111.20(56.00,199.20)
ALB(g/L) (± SD) 37.30(± 0.52)
AFP (ng/ml) n = 105
<800 62(59.0%)
≥800 43(41.0%)
PVTT
Yes 37(34.9%)
No 69(65.1%)
Type of treatment
Locoregional therapy 88(83.0%)
Locoregional therapy and systemic therapy 18(17.0%)
Number of tumors
1–2 63(59.4%)
3–5 20(18.9%)
>5 23(21.7%)
Outcomes of downstaging
Successful 54(50.9%)
Failed 52(49.1%)
M, male; F, female; BMI, body mass index; WBCs, white blood cells; PLT, platelet 
count; Hb, hemoglobin; AFP, α-fetoprotein; ALT, alanine aminotransferase; 
AST, aspartate aminotransferase; TB, serum total bilirubin; ALB, albumin, GGT, 
gamma-glutamyl transferase; PT, prothrombin time; Scr, serum creatinine; PVTT 
portal vein tumor thrombus
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Table 2 Univariate analysis for different outcomes of downstaging
Variables Successful(n = 54) Failed(n = 52) P 

value
Age (years) (± SD) 54.98(± 1.58) 57.79(± 1.43) 0.192
Sex ratio (M: F) 48:6 47:5 0.801
BMI(kg/m2) (± SD) 24.78(± 0.47) 24.60(± 0.45) 0.783
Hypertension 0.736
Negative 40(74.1%) 37(71.2%)
Positive 14(25.9%) 15(28.8%)
Diabetes mellitus 0.360
Negative 48(88.9%) 43(82.7%)
Positive 6(11.1%) 9(17.3%)
Viral hepatitis 0.667
Negative 10(18.5%) 8(15.4%)
Positive 44(81.5%) 44(84.6%)
Cirrhosis 0.214
Negative 24(44.4%) 17(32.7%)
Positive 30(55.6%) 35(67.3%)
Ascites 0.233
Negative 41(75.9%) 34(65.4%)
Positive 13(24.1%) 18(34.6%)
Child-Pugh class 0.021
A 40 (74.1%) 33(63.5%)
B 8(14.8%) 18(34.6%)
C 6(11.1%) 1(1.9%)
WBC(109/L) (IQR) 5.06(3.72,6.09) 5.79(4.36,7.24) 0.051
Hb(g/L) (IQR) 135.0(124.0,150.3) 140.0(121.3,148.8) 0.716
PLT(109/L) (IQR) 147.0(97.0,215.5) 154.5(95.0,221.8) 0.945
Cr(µmol/L) n = 104(IQR) 67.40(56.65,76.50) 62.10(56.30,66.90) 0.088
PT(s) (IQR) 12.6(11.8,14.0) 12.9(12.3,14.1) 0.368
ALT(U/L) (IQR) 37.55(23.48,75.40) 40.95(25.03,67.23) 0.745
AST(U/L) (IQR) 36.50(26.93,59.15) 53.20(37.13,73.50) 0.001
TB(µmol/L) (IQR) 17.25(13.38,25.31) 21.87(16.15,32.13) 0.063
GGT(U/L) (IQR) 73.05 (47.23,147.10) 157.55(95.98,299.00) < 0.001
ALB(g/L) (IQR) 39.15(33.03,42.40) 36.25(32.78,39.68) 0.067
AFP (ng/ml) n = 105 0.015
<800 38(70.4%) 24(47.1%)
>=800 16(29.6%) 27(52.9%)
PVTT < 0.001
Negative 46(85.2%) 23(44.2%)
Positive 8(14.8%) 29(55.8%)
Number of tumors < 0.001
1–2 42(77.8%) 21(40.4%)
3–5 12(22.2%) 8(15.1%)
>5 0(0.0%) 23(44.2%)
Type of treatment 0.101
Locoregional therapy 48(86.5%) 40(76.9%)
Locoregional therapy and systemic therapy 6(13.5%) 12(23.1%)
M, male; F, female; BMI, body mass index; WBCs, white blood cells; PLT, platelet count; Hb, hemoglobin; AFP, α-fetoprotein; ALT, alanine aminotransferase; AST, 
aspartate aminotransferase; TB, serum total bilirubin; ALB, albumin, GGT, gamma-glutamyl transferase; PT, prothrombin time; Scr, serum creatinine; PVTT, portal 
vein tumor thrombus
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than the R-C model (Figure S1). The average accuracy 
and AUROC were 0.769 and 0.792, respectively, when the 
tumor burden parameter was used to build the model; in 
the same test cohort, the average accuracy and AUROC 
of the R-C model were 0.788 and 0.814, respectively.

Discussion
In this study, the R-C model was proposed for the first 
time, which accurately predicted the downstaging out-
comes of HCC patients in LT. Previous clinical studies 
focused on the survival after LT within successful down-
staging; however, only a few studies concentrated on pre-
dicting the downstaging response in HCC patients [4, 

13, 14, 22]. Since the reported downstaging failure rates 
varied, predicting the outcomes of pre-treatment in HCC 
patients provided individual treatment strategies.

The biological nature of a tumor involves multiple 
interacting components, which might be reflected when 
considering various features [23]. In the current study, we 
constructed the R model, C model, and R-C model with 
k-fold cross-validation. The average accuracy of the three 
models was 0.712, 0.792, and 0.844, the average AUROC 
of the three models was 0.775, 0.804 and 0.877, and the 
average AUPRC of the three models was 0.785, 0.760 
and 0.859, respectively. In terms of incorporating wave-
let transform features, we performed a comprehensive 
comparative analysis of R model and original radiomics 
features with wavelet transform features model (R_w 
model). We filtered to obtain 18 and 22 features from R 
features and R_w features, respectively (Table S5). Upon 
meticulous evaluation of the results presented in Table 
S6 and Figure S3, it was evident that the R_w model did 
not surpass the performance of the R model on the ROC 
(p = 0.2291) and P-R curves. To strike a balance between 
interpretability and effectiveness in the model, the focus 
of this study was on choosing the most representative 
R model features instead of R_w ones. The R-C model, 
with better accuracy, AUROC and AUPRC, showed 
more stability than the other models. The R-C model 
consisted of clinical data, and radiomics features per-
formed better than previous studies. Based on objective 

Table 3 Performance in test and train cohorts of three models
Precision Recall F1-score

Test cohort R model 0 0.61 0.73 0.67
1 0.71 0.59 0.65

 C model 0 0.83 0.67 0.74
1 0.75 0.88 0.81

R-C model 0 0.82 0.93 0.87
1 0.93 0.82 0.87

Train cohort R model 0 0.97 0.92 0.94
1 0.92 0.97 0.95

 C model 0 1.00 0.73 0.84
1 0.79 1.00 0.88

R-C model 0 0.97 0.92 0.94
1 0.92 0.97 0.95

0, failure;1, success

Fig. 3 Performance of the R model, C model, and R-C model
(A) ROC and P-R curves of the three models in test and training cohorts
(B) Confusion matrix of the three models in the test and training cohorts
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multidimensional parameters, the R-C model is consid-
ered an effective, accurate, and intelligent method that 
accurately predicts the downstaging success of HCC 
patients in LT.

Nowadays, radiomics revealed tumor heterogeneities, 
which made it possible to study the correlation between 

radiomics features and downstaging outcomes [20, 24–
26]. In our R-C model, we identified 10 predictors from 
112 radiomics features. Four features were tumor mor-
phological-related, including diameter, axis length (least 
and major), and sphericity. In addition to tumor size-
related features, we also found that shape_sphericity was 

Fig. 5 Feature inspection
(A) Feature inspection in specific R-C model (Train cohort)
(B) Feature inspection in specific R-C model (Test cohort)
(C-D) Feature inspection in specific patient

 

Fig. 4  K-fold cross-validation
(A) ROC of three models in the test and training cohorts
(B) P-R curve of three models in the test and training cohorts
(C) DCA of three models in the test cohorts
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positively correlated to the downstaging outcomes, and 
the regular shape indicated good tumor biological behav-
ior. Besides these, the other eight features were image 
original features, first order features and textural features.

Some radiomics features, which had predictive implica-
tions that were not reported before, implied tumor het-
erogeneity and were difficult to identify by radiologists 
and physicians [20, 27]. To the best of our knowledge, 
although studies speculated that morphological features 
might be predictors of HCC downstaging outcomes, 
no study has demonstrated the correlation between 
radiomics and downstaging outcomes. However, the 
performance of the R model was not as stable as the R-C 
model, which might be because radiomics features could 
reveal tumor heterogeneities but failed to reflect liver 
function and macrovascular invasion, which is essential 
for outcomes [28, 29]. Thus, in the R-C model, we used 
clinical features to improve the accuracy of the predic-
tion model.

In a review of downstaging for LT, most studies showed 
that Child–Pugh class and tumor burden were associated 
with the outcome of downstaging [2, 14, 16, 30–33]. Such 
studies focused on the differences between successful 
and failed downstaging groups but lacked a test cohort. 
One liver function-related feature (GGT) in our C model 
was considered a predictive feature. Based on the current 
study, the Child–Pugh class was not the predictive fea-
ture, which might be because the laboratory parameters 
were more objective in assessing liver function compared 
to Child–Pugh class [2, 31, 32]. Previous studies dem-
onstrated that when used alone, AFP has low sensitivity 
in HCC surveillance; however, imaging in combination 
with AFP reached optimal sensitivity [34]. In the cur-
rent study, the AFP was critical in different outcomes of 
downstaging, and AFP was one of the predictors in the 
R-C model. Previous studies recommended that tumor 
burden (such as tumor size, tumor number, tumor vol-
ume, or macrovascular invasion) was related to HCC 
survival, while some studies used tumor burden as a pre-
dictor of survival in patients who underwent transcathe-
ter arterial chemoembolization [14, 30–33, 35]. However, 
the tumor size was controversial, and some studies 
found that necrosis was high in large tumors [36, 37]. In 
our study, the tumor burden-related features were criti-
cal in the R-C model, especially tumor diameter, tumor 
number, and PVTT. This finding was in agreement with 
previous studies. However, when we constructed a pre-
dictive model, only tumor diameter, tumor number, and 
PVTT were used, the predictive ability was limited. This 
indicated that the radiomics features were necessary for 
enhanced performance.

Nevertheless, the present study had some limitations. 
Firstly, it was a small patient cohort encompassing two 
centers, and the predictability of the tumor downstaging 

treatment was beyond the scope of our study. Secondly, 
it was a retrospective study but exhibited a potential pre-
dicted value. Further, a multicenter clinical trial should 
be designed to examine the R-C model and focus on find-
ing the standardized downstaging protocol.

In conclusion, we investigated the downstaging out-
comes of HCC patients for LT by analyzing the clinical 
data and radiomics features. The novel and practical R-C 
model accurately predicted the downstaging outcomes 
and could be applied as guidance for the downstaging 
treatment in the future.
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