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Abstract 

Background  Dysbiosis of gut microbiota has been linked to numerous diseases, including cancer. The unique role 
of gut microbiota in urological tumors is gaining prominence. However, it is still controversial whether the dysbiosis 
of gut microbiota should be one of the etiological factors of bladder cancer (BCa), prostate cancer (PCa) or kidney 
cancer (KCa).

Materials and methods  The microbiome genome-wide association study (GWAS) from the MiBioGen consortium 
(18,340 samples of 24 population-based cohorts) was utilized as the exposure data. Additionally, outcomes data (951 
BCa cases and 307,092 controls; 1,631 KCa cases and 238,678 controls; 79,148 PCa cases and 61,106 controls) were 
extracted from the GWAS of the FinnGen and PRACTICAL consortia. To detect the potential causative bacterial traits 
for BCa, PCa, and KCa, a two-sample Mendelian randomization (MR) analysis was performed, employing the inverse-
variance weighted or Wald ratio method. Sensitivity analyses were subsequently conducted to explore the robustness 
of the primary results. Finally, the reverse MR analysis was undertaken to mitigate the reverse causation.

Results  This study suggested that Bifidobacterium (p = 0.030), Actinobacteria (p = 0.037 for phylum, 0.041 
for class), and Ruminococcustorques group (p = 0.018), exhibited an association with an increased risk of BCa using 
either the inverse-variance weighted or Wald ratio method. By utilizing the Wald ratio method, Allisonella (p = 0.004, 
p = 0.038) was associated with a decreased risk of BCa and PCa, respectively. Furthermore, Ruminococcustorques group 
(p = 0.028) and Erysipelatoclostridium (p = 0.048) were causally linked to an elevated risk of KCa.

Conclusions  This MR study supports that genetically predicted gut microbiota is causally related to BCa, PCa 
and KCa. Additionally, distinct bacterial traits are identified in relation to each tumor type.

Keywords  Gut microbiota, Bladder cancer, Prostate cancer, Kidney cancer, Mendelian randomization, FinnGen

Introduction
Urological tumors pose a severe threat to human life and 
health on a global scale. According to the Global Burden 
of Disease Study (2019), the incidence rates of bladder 
cancer (BCa), prostate cancer (PCa), and kidney cancer 
(KCa) stand at 6.5, 17.4, and 4.6 per 100,000 person-
years, collectively accounting for 9.81% of the world-
wide tumor incidence. The mortality rates of PCa, BCa, 
and KCa are respectively 6.3, 2.9, and 2.1 per 100,000 
person-years, contributing to approximately 9.14% of 
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all tumor-related fatalities [1]. Furthermore, variations 
in incidence rates are observed globally, with higher 
incidence rates in industrialized nations like the United 
States and Europe. Meanwhile, the incidence rates of 
South American countries are higher than rising nations 
like African and Asian [2–4]. In recent decades, with the 
application of immunotherapy in tumors, focusing on the 
organism immunity of tumors and the various factors 
that regulate the immune status is increasing, and gut 
microbiota is one of them [5]. Since the Human Micro-
biome Project launched, there has been increasing evi-
dence to suggest that the microbiome, including urinary 
tract, gut, and intratumoral microbes, contributes to uro-
logic tumorigenesis [6].

Recently, gut microbiota has gained widespread atten-
tion as a remarkable factor to regulate the health of 
organism. Dysbiosis of gut microbiota can regulate 
immune, energy, lipid and glucose metabolism path-
ways that involved in the development of diseases, such 
as obesity, type 2 diabetes, hepatic steatosis, and can-
cer [7]. The gut microbiota plays an important role in 
the development of various gastrointestinal disorders, 
including colorectal cancer and inflammatory bowel dis-
ease, for which digestive tract is habitat of gut microbi-
ota [8]. With organs indirect contact with each other, it 
remains unclear whether a relevancy exists between gut 
microbiota and urinary system. According to some pre-
liminary investigations, gut microbiota affects the growth 
of PCa, BCa, and KCa through their metabolites [9–11]. 
Matsushita M et al. reported that short-chain fatty acids 
(SCFAs) producing bacteria, namely Rikenellaceae, Alis-
tipes, and Lachnospira, of those which were consider-
ably increased in men with high Gleason prostate cancer 
[12]. He et  al. demonstrated that among BCa patients, 
Prevotella, Clostridium cluster XI, and the concentration 
of butyric acid in feces were significantly reduced [13]. 
Dai et  al. reported that the disturbance of tryptophan 
metabolites in gut microbiota is associated with renal 
cancer metastasis [11]. However, due to the scarcity of 
large-scale real-world studies, these observations remain 
to be definitively substantiated. Furthermore, investiga-
tions into gut microbiota are inherently challenging and 
resource-intensive, requiring advanced molecular tools 
and techniques (i.e., macrogenome, metabolome, lipi-
dome, and macrotranscriptome) while grappling with the 
complexities of confounding factors, biases, and reverse 
causation in general observational studies.

Genome-wide association studies (GWAS) detect 
genetic variants across large populations to verify pheno-
type-genotype associations, and more than 50,000 asso-
ciations of genome-wide significance have been reported 
in various common diseases and traits [14]. MR is a sta-
tistical method that leverages GWAS data as distinct 

phenotypes to address the limitations of observational 
studies. By considering genetic variants as instrumen-
tal variables (IVs), MR seeks to uncover the potential 
causal links between exposures and outcomes [15]. MR 
has been widely applied in research on causal inference. 
Recently, MR investigations have revealed the causal-
ity between gut microbiota and several illnesses such as 
colorectal cancer, Alzheimer’s disease, autoimmune dis-
eases, or psychiatric disorders [16–19].

This study aims to investigate the potential causality 
between gut microbiota and urological tumors, specifi-
cally prostate cancer, bladder cancer, and renal cancer, by 
employing the two-sample MR method.

Materials and methods
Study design overview
This study employs the two-sample MR method to inves-
tigate the causal associations between gut microbiota and 
PCa, BCa, and/or KCa. Summary statistic data for gut 
microbiota and PCa, BCa, or KCa were extracted from 
the substantial GWASs to select the IVs. Under the con-
dition of published research and open-access summary 
data were used, thus further ethical approval or partici-
pant consent was unnecessary.

To mitigate the potential biases on the results, adher-
ence to three major assumptions in MR method is cru-
cial: (1) IVs must exhibit a significant association with 
the exposure [20]; (2) IVs should exclusively influence the 
outcome via the exposure [20]; and (3) IVs must not be 
linked to the outcome due to confounding factors [20]. 
An overview of the study design is illustrated in Fig. 1.

Date sources
Gut microbiota
A large-scale GWAS involved 18,340 participants from 
24 cohorts provides summary statistics for gut micro-
biota, using 16  S rRNA gene sequencing [21]. Avail-
able data were from the MiBioGen (https://​mibio​gen.​
gcc.​rug.​nl/). In all, 211 traits (131 genera, 35 fami-
lies, 20 orders, 16 classes, and 9 phyla) were included 
[21]. First, IVs were selected at p < 5 × 10−8 to meet the 
stricter threshold. Subsequently, linkage disequilibrium 
(LD) clumping was executed to mitigate LD among 
single nucleotide polymorphisms (SNPs) (r2 < 0.001, 
distance = 10,000  kb), resulting in an adjusted cutoff 
(r2 < 0.01, distance = 500 kb) to retain a viable number of 
SNPs for analysis. SNPs without attribution to specific 
bacterial traits were excluded. Finally, “PhenoScanner” 
(http://​www.​pheno​scann​er.​medsc​hl.​cam.​ac.​uk/) was 
used to exclude SNPs that were clearly associated with 
risk factors of the urologic tumors. A total of 1,393 SNPs 
closely related to 25 bacterial traits were incorporated 
into the MR analysis.

https://mibiogen.gcc.rug.nl/
https://mibiogen.gcc.rug.nl/
http://www.phenoscanner.medschl.cam.ac.uk/
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PCa, BCa, and KCa
Summary statistics for PCa (79,148 cases and 61,106 
controls of European descent) were furnished by the 
Prostate Cancer Association Group to Investigate 
Cancer-Associated Alterations in the Genome (PRAC-
TICAL, http://​pract​ical.​icr.​ac.​uk) consortium [22]. 
FinnGen research project (https://​www.​finng​en.​fi), 
which involves participates of European descent, pro-
vided summary statistics for BCa (2,072 cases, 238,678 
controls,) and KCa (1,631 cases, 238,678 controls) [23].

Statistical analysis
F-statistics were employed to test the strength of IVs, 
mitigating potential weak instrument bias which could 
confound causal association estimates. F-statistics 
were calculated through the following formula: F = R2 
(n-k-1)/k(1-R2), where “n” signifies the sample size, “k” 
denotes the number of IVs and “R2” represents the por-
tion of exposure variance elucidated by the IVs [24]. 
Generally, R2 was estimated via employing the equa-
tion required minor allele frequency (MAF) and β value: 

Fig. 1  The overview of design. IVs: instrumental variables; GWAS: Genome Wide Association Study; LD: linkage disequilibrium; SNP: single 
nucleotide polymorphism; BCa: bladder cancer; PCa: prostate cancer; KCa: kidney cancer

http://practical.icr.ac.uk
https://www.finngen.fi
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R2 = 2 × MAF × (1 − MAF) × β2. Due to the lack of MAF 
value in GWAS, the function “get_r_from_bsen” of “Two-
SampleMR” package was employed for R2 estimation. 
The weak IVs were discarded with F-statistics < 10.

In this study, the MR analysis involving bacterial traits 
linked to individual SNPs was conducted using the Wald 
ratio method. Multiple tests, encompassing the inverse 
variance weighted (IVW) method, weighted median 
method, and MR-Egger regression test, were conducted 
for bacterial traits with multiple associated SNPs [25]. 
The results of the IVW method were plausible if the 
three assumptions of MR were satisfied for SNPs [25]. 
The Cochrane’s Q test was performed to scrutinize SNP-
associated heterogeneity for each bacterial trait. In cases 
where significant heterogeneity emerged (p < 0.05), a 
fixed-effects IVW model was applied; contrarily, a ran-
dom-effects IVW model was applied [26]. Additionally, 
MR-Egger intercept test and leave-one-out analysis were 
performed for sensitivity analysis [27]. The p-value of 
MR-Egger intercept test functioned as an indicator of the 
horizontal pleiotropy (statistically significant if p < 0.05) 
[28]. Leave-one-out analysis was used to discern poten-
tial pleiotropic effects stemming from individual SNP. 
Finally, reverse MR analysis was executed to verify the 
existence of reverse causality between BCa, PCa, KCa, 
and gut microbiota. All MR analyses were conducted uti-
lizing “TwoSampleMR” R package (version 4.2.1).

Results
Overview of instrumental variables
Following a sequence of rigorous quality control pro-
cedures, 27 SNP (p < 5 × 10−8, R2 < 0.01) associated 
with 19 bacterial traits were selected as IVs for analysis 

(Supplementary Table  1). The IVs employed in the MR 
analysis possessed F-statistics within a range of 30.07 to 
200.70, all of which exceeded the threshold of > 10. This 
indicates a robust instrument strength and mitigates the 
potential impact of weak instrument bias (Supplemen-
tary Table 2). Limited by the number of available IVs, the 
sensitivity analysis was restricted to the Bifidobacterium. 
Notably, the statistical effect size remained relatively 
consistent across taxonomic levels, encompassing order, 
family, and genus.

Gut microbiota and BCa
In the context of MR analysis, a comprehensive assess-
ment revealed that 7 bacterial traits (encompassing vari-
ous taxonomic levels of phylum, class, order, family, and 
genus) exhibited statistically associations with the risk of 
BCa. This suggests a potential role for specific bacterial 
traits in the etiology of BCa (Table 1; Fig. 2).

Among the aforementioned traits, Bifidobacterium, 
Bifidobacteriaceae, Bifidobacteriales were found to be 
the same category of bacteria, sharing identical IVs rep-
resented by rs182549, rs7322849, and rs7570971. As 
demonstrated in Table  1, the IVW analysis was con-
cluded that Bifidobacterium exhibited a causal relation-
ship with an elevated risk of BCa (OR: 1.496, 95% CI: 
1.039–2.154, p = 0.030); similar results were obtained for 
Bifidobacterium and Bifidobacteriaceae (OR: 1.505, 95% 
CI: 1.040–2.179, p = 0.030; OR: 1.505, 95% CI: 1.040–
2.180, P = 0.030, respectively). The results also remained 
robust in weighted median analyses (OR: 1.512, 95% CI: 
1.011–2.260, p = 0.044; OR: 1.522, 95% CI: 1.005–2.305, 
p = 0.047; OR: 1.522, 95% CI: 1.012–2.290, p = 0.043, 
respectively). The causal relationship observed within 

Table 1  Significant MR analysis results

BCa Bladder cancer, PCa Prostate cancer, KCa Kidney cancer, N. SNP, the number of SNPs used as IVs. SNP Single-nucleotide polymorphism, OR Odds ratio, 
CI Confidence interval, MR Mendelian randomization, IVW Inverse-variance weighted; Significant P was marked in bold

Outcomes Bacterial traits (rank) N.SNP F Methods OR 95% CI P.val

BCa Actinobacteria (class) 2 166.914 IVW 1.546 1.018—2.349 0.041

Bifidobacteriaceae (family) 3 196.473 IVW 1.505 1.040—2.179 0.030

Weighted median 1.522 1.005—2.305 0.047

Ruminococcustorquesgroup 1 31.285 Wald ratio 3.656 1.248—10.706 0.018

Allisonella 1 32.374 Wald ratio 0.534 0.348—0.818 0.004

Bifidobacterium (genus) 3 200.670 IVW 1.496 1.039—2.154 0.030

Weighted median 1.512 1.011—2.260 0.044

Bifidobacteriales (order) 3 196.473 IVW 1.505 1.040—2.180 0.030

Weighted median 1.522 1.012—2.290 0.044

Actinobacteria (phylum) 2 112.438 IVW 1.765 1.034—3.013 0.037

PCa Allisonella (genus) 1 32.374 Wald ratio 0.894 0.805—0.994 0.038

KCa Ruminococcustorquesgroup (genus) 1 31.285 Wald ratio 3.798 1.154—12.504 0.028

Erysipelatoclostridium (genus) 1 34.619 Wald ratio 2.310 1.007—5.301 0.048
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Fig. 2  The forest plots of major results. SNP: single nucleotide polymorphism; BCa: bladder cancer; PCa: prostate cancer; KCa: kidney cancer; IVW: 
inverse-variance weighted; OR: odds ratio
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the higher taxonomic level of Bifidobacteria, specifi-
cally Actinobacteria (phylum) and Actinobacteria (class), 
echoed the findings with an increased risk of BCa (OR: 
1.765, 95% CI: 1.034–3.013, p = 0.037; OR: 1.546: 95% 
CI: 1.018–2.349, p = 0.041, respectively). Additionally, 
Ruminococcustorques group and Allisonella, each had 
only one SNP, exhibited potential causal relationships as 
determined by Wald ratio analyses (OR: 3.656, 95% CI: 
1.248–10.706, p = 0.018; OR: 0.534, 95% CI: 0.348–0.818, 
p = 0.004, respectively).

In the subsequent analyses, Cochran’s Q test did not 
reveal any statistically significant heterogeneity for any 
of the applicable bacterial traits (p > 0.10, Supplemen-
tary Table  3). A leave-one-out analysis was applied and 
identified no single SNP with a significant influence on 
the IVW estimate (Supplementary Fig.  1). Furthermore, 
less directional pleiotropy was inspected in the MR-Egger 
test (Bifidobacterium, intercept p = 0.964; Bifidobac-
teriaceae, intercept p = 0.944; Bifidobacteriales, inter-
cept p = 0.944, Supplementary Table 4). Considering the 
absence of enough SNPs, a sensitivity analysis is not fea-
sible for other bacterial traits.

Gut microbiota and PCa or KCa
Genetical evidence indicated a negative effect of Alli-
sonella on the risk of PCa (OR: 0.894, 95%CI: 0.805–
0.994, p = 0.038) as determined through Wald ratio 
analysis (Table 1; Fig. 2). In parallel, Ruminococcustorques 
group and Erysipelatoclostridium were causally associ-
ated with an elevated risk of KCa (OR: 3.798, 95% CI: 
1.154–12.504, p = 0.028; OR: 2.310, 95% CI: 1.007–5.301, 
p = 0.048, respectively) as indicated by Wald ratio analysis 
(Table 1; Fig. 2). There were not enough SNPs to conduct 
a sensitivity analysis for the aforementioned bacterial 
traits.

Reverse MR analysis
Adopting a consistent threshold with the main analysis 
for SNP selection, reverse MR analysis failed to identify 
any causal relationships between BCa, PCa, KCa, and gut 
microbiota (Supplementary Tables 5, 6).

Discussion
This study pioneers the utilization of a two-sample MR 
approach to identify a potential causal relationship 
between specific gut microbiota taxa and three major 
urological tumors: BCa, PCa, and KCa, which provides 
directions for further mechanistic investigations.

The human microbiota resides ubiquitously across the 
body surface and natural cavities, forming a harmoni-
ous symbiotic equilibrium [1]. Therefore, the intricate 
interplay between human microbiota and organismal 
health has long been a focal point of research. Numerous 

existing researches have revealed the potential influence 
of urinary system bacteria on urological tumor devel-
opment, the widespread concern in the unique role of 
gut microbiota in neoplastic diseases has sparked novel 
inquiries into the relationship between gut microbiota 
and urological tumors [29, 30].

This two-sample MR analysis unveiled a surprising 
increase in the risk of BCa associated with Bifidobacte-
rium at the order, family, and genus levels, Actinobacte-
ria at the phylum and class levels, Ruminococcustorques 
group at the genus level, while Allisonella at the genus 
level appeared to confer a potential protective effect 
against BCa. Bifidobacterium has long been recognized 
as a probiotic abundant in fermented dairy products. 
Studies have indicated that the intake of fermented dairy 
foods is linked to a reduced risk of BCa [31]. Bifidobac-
terium may play a role in the regulation of prolifera-
tion, apoptosis, responses to immune therapy, radiation, 
and chemotherapy [32]. However, existing research on 
the anticancer benefits of probiotics are primarily con-
centrated on the intestinal tract tumors, with a lot of 
unknown of their impact on tumors in other organs [32]. 
Given that the interactions in the intestinal tract are 
more direct and intricate due to the site’s flora aggrega-
tion, it remains questionable whether the preliminary 
findings regarding Bifidobacterium, or even probiotics 
in general, and their effects on intestinal tumors can be 
extrapolated to tumors in other organs. Moreover, Lacto-
bacillus, including Bifidobacterium, has been implicated 
in promoting the pathogenesis of gastric cancer through 
diverse mechanisms, including supplying exogenous lac-
tic acid, stimulating inflammation, angiogenesis, and 
epithelial-mesenchymal transition [33]. Thus, this study 
has a proposal in a novel avenue of etiological evidence 
indicating that Bifidobacterium could potentially contrib-
ute to BCa development. At present, a dearth of research 
exists regarding the specific mechanism underlying the 
relationship between Bifidobacterium and BCa. Future 
exploration is essential to determine whether intestinal 
Bifidobacterium influences critical physiological activi-
ties of urothelial cells through various small molecular 
metabolites or via translocation and colonization of the 
urinary tract. Speculatively, based on current knowledge, 
Bifidobacterium may possess the ability to stimulate mac-
rophages, T lymphocytes, and epithelial cells to secrete 
tumor necrosis factor α, which in turn could promote 
tumor proliferation, survival, and evasion from immune 
surveillance—this represents a potentially promising 
mechanistic pathway [34, 35]. In terms of observational 
studies, a preliminary study of gut microbiota in BCa 
patients, comprised 26 cases and 16 health controls, 
reported decreased gut microbial diversity at the phylum 
level, with decreased relative quantities of Clostridium 
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cluster XI and Prevotella in BCa patients; however, no 
significant difference was observed in relation to Bifi-
dobacterium [13]. Emerging evidence suggests that gut 
microbiota could influence BCa treatment outcomes. 
Non-muscle invasive BCa patients treated with probiot-
ics exhibited lower recurrence rates [36]. Recently, the 
first fecal macro-genomic research of BCa was published, 
encompassing 32 cases and 15 health controls, confirmed 
the viewpoint of gut microbiota dysbiosis in BCa and 
revealed changes in key metabolites. Furthermore, the 
relative abundance of 19 microbiota at the genus level 
(including Bifidobacterium) was diminished in fecal sam-
ples from BCa patients [37]. Besides the unclear reverse 
causality and limited sample size, the inclusion and 
exclusion criteria which only excluded vegetarians, failed 
to account for the potential confounding introduced by 
various dietary habits, and the data of vegetarians were 
omitted. Consequently, the identification of relevant dis-
crepancies necessitates further investigation.

This study also identified that at the genus level, Alli-
sonella decreased the risk of PCa. The intricate interplay 
between gut microbiota and PCa has recently garnered 
significant attention, leading to the emergence of “gut-
prostate axis” concept. However, the precise mecha-
nisms remain elusive. Serveral observational studies have 
individually suggested potential associations between 
PCa and various bacteria, including Streptococcus, Bac-
teroides, massiliensis, Prevotella 9, Erysipelotrichaceae, 
Escherichia/Shigella, Rikenellaceae, Alistipes or Lach-
nospira [12, 38–40]. This study uniquely highlighted the 
role of Allisonella while meticulously addressing reverse 
causality and confounding issues. Metabolites produced 
by gut microbiota, such as SCFAs, may regulate PCa 
growth, and more significantly, androgen production 
by gut microbiota could contribute to the development 
of castration-resistant prostate cancer [9]. Due to the 
intricate nature of gut microbiota, causality should be 
interpreted cautiously; nonetheless, the undeniable sig-
nificance of gut microbiota in the evolution of prostate 
cancer is evident.

Ruminococcustorques group and Erysipelatoclostridium 
at genus level were identified as potential contributors to 
KCa occurrence. The sole available observational study 
(comprising 50 cases and 40 health controls) reported 
positive associations between Blautia, Streptococcus, 
Ruminococcustorques_group, Romboutsia, and Eubacte-
riumhallii group with renal clear cell cancer. This study 
also indicated that Streptococcus promotes renal clear 
cell cancer progression in vitro through the TGF-β sign-
aling pathway [41]. While consensus exists regarding the 
potential involvement of the Ruminococcustorques group 
in the occurrence of KCa, the substantiation of this cor-
relation necessitates more robust empirical evidence.

Several limitations are existed in this study. Firstly, the 
findings are limited to European lineages, thus the sub-
stantial variations in gut microbiota composition across 
different populations were not considered. Secondly, 
the 16  S rRNA gene sequencing method only allowed 
discrimination from the phylum level to the genus level 
and not at a more specific taxonomic level. Thirdly, it is 
unfit to conduct stratified MR due to the unavailability of 
population basic characteristics, such as gender, culture, 
occupation, etc., which bring about a lack of explanatory 
power for the hazards associated with particular popula-
tions. Finally, gut microbiota may be influenced by die-
tary habits or other environmental factors, yet they were 
unable to assess whether genetic instrumental variables 
were correlated with these confounding factors due to 
the unavailability of relevant information.

Conclusions
This MR study supports genetic evidence that gut micro-
biota is causally related to BCa, PCa or KCa, and specific 
bacterial traits are suggested separately. The results offer 
a fresh perspective for exploring the intricate mecha-
nisms through which gut microbiota affects urological 
tumors.
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