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Abstract
Backgrounds Endometrial carcinoma (EC) is one of the most commonly diagnosed gynecologic malignancy in 
China. However, the genetic profile of Chinese EC patients has not been well established yet.

Methods In current study, 158 Chinese EC patients were subjected to next-generation sequencing assay (74 
took testing of EC-related 20-genes panel, and 84 took the expanded panel). Of the 158 patients, 91 patients were 
performed germline mutation testing using the expanded panel. Moreover, the public datasets from TCGA and 
MSKCC were utilized to compare the genomic differences between Chinese and Western EC patients. The proteomic 
and transcriptomic from CPTAC and TCGA were derived and performed unsupervised clustering to identify molecular 
subtypes.

Results Among the 158 patients analyzed, a significant majority (85.4%) exihibited at least one somatic alteration, 
with the most prevalent alterations occurring in PTEN, PIK3CA, TP53, and ARID1A. These genomic alterations were 
mainly enriched in the PI3K, cell cycle, RAS/RAF/MAPK, Epigenetic modifiers/Chromatin remodelers, and DNA 
damage repair (DDR) signaling pathways. Additionally, we identified ten individuals (11.0%) with pathogenic or likely 
pathogenic germline alterations in seven genes, with the DDR pathway being predominantly involved. Compared to 
Western EC patients, Chinese EC patients displayed different prevalence in AKT1, MET, PMS2, PIK3R1, and CTCF. Notably, 
69.6% of Chinese EC patients were identified with actionable alterations. In addition, we discovered novel molecular 
subtypes in ARID1A wild-type patients, characterized by an inferior prognosis, higher TP53 but fewer PTEN and PIK3CA 
alterations. Additionally, this subtype exhibited a significantly higher abundance of macrophages and activated 
dendritic cells.

Conclusion Our study has contributed valuable insights into the unique germline and somatic genomic profiles 
of Chinese EC patients, enhancing our understanding of their biological characteristics and potential therapeutic 
avenues. Furthermore, we have highlighted the presence of molecular heterogeneity in ARID1A-wild type EC patients, 
shedding light on the complexity of this subgroup.
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Introduction
Endometrial carcinoma (EC) is one of the most com-
mon gynecological cancers worldwide, globally causing 
an estimated 90,000 deaths in 2018 [1]. Accompanied by 
the increase of obesity and aging population, the inci-
dence of EC is rising [2]. In China, EC is the second most 
commonly diagnosed gynecological cancer, with approx-
imately 84,520 new cases reported in 2022 [3]. Endome-
trioid endometrial carcinoma (EEC) is the most common 
histologic type, accounting for 85% of all EC cases, and 
following by serous carcinomas, clear cell carcinoma, and 
uterine carcinosarcomas [4]. The Cancer Genomic Atlas 
(TCGA) characterized the genetic landscape of western 
EC in 2013, and classified patients into four molecular 
subgroups: POLE-mutated (ultramutated), microsatel-
lite instability hypermutated, copy number (CN)-low 
and high [5]. Remarkably, EEC was present in all four 
subgroups, while serous carcinoma was mainly found in 
the CN-high subgroup. Notably, patients in the POLE-
mutated subgroup exihibted better progression-free sur-
vival, whereas those in CN-high subgroup (serous-like) 
have the poorest prognosis. The molecular classifica-
tion of EC offers significant targets for the diagnosis and 
treatment of EC and has been endorsed by the National 
Comprehensive Cancer Network (NCCN) guideline.

Extensive research has been conducted on the genomic 
features of western patients with EC. Among them, 
genomic alteration in PTEN and TP53 were found to 
be more common, with prevalence ranging from 22 to 
65% and 28-63%, respectively [5–8]. Moreover, previ-
ous studies have demonstrated the genetic heterogene-
ity of EC, with the prevalence of genetic alterations being 
correlated with specific molecular and histopathologi-
cal subtypes [5, 9]. Recent genomic analyses have also 
identified crucial potential actionable alterations in EC. 
For example, a study found that 67% of EC patients had 
at least one likely therapeutically actionable alteration 
(excluding RAS mutations). The most frequently identi-
fied clinically actionable alterations include PIK3CA vari-
ant, PTEN variant, and ERBB2 amplification. Employing 
actionable alteration testing to guide treatment decisions 
and match patients with the most appropriate clinical tri-
als has shown promising potential to improve outcomes 
for those with advanced disease [10–12]. Notably, around 
47% of EC patients who underwent NGS panel tumor 
profiling and received therapy tailored to their genomic 
profile achieved clinical benefit [6, 13].These findings 
highlight the significance of genomic profiling in guiding 
treatment strategies and enhancing the management of 
EC patients.

However, the genomic landscape of Chinese patients 
with EC remains poorly understood. A recent investiga-
tion examined the genomic characteristics of 79 Chinese 
EEC patients [14], and the results have shed a light on the 

genomic heterogeneity between Chinese and Western EC 
patients.

In this study, we aimed to investigate the genomic alter-
ations in a cohort of 158 Chinese EC patients using next-
generation sequencing (NGS). We described the basic 
profile of driver gene alterations in these patients and 
compared them with counterparts in western cohorts to 
gain a better understand the molecular feature specific 
to Chinese EC patients. Additionally, the findings of this 
study may provide valuable insights for clinicians and 
researchers in tailoring precision medicine for Chinese 
EC patients.

Materials and methods
Biospecimen collection and clinical data
In our cohort, we collected a total of 121 tissues, includ-
ing 32 fresh-frozen tumors and 89 formalin-fixed, 
paraffin-embedded (FFPE) tissues, as well as 37 blood 
samples, from a total of 158 EC patients for genetic test-
ing. Blood samples were collected primarily due to the 
unavailability of archived tumor tissue, the inability to 
obtain fresh tumor tissues and metastatic disease. Addi-
tionally, out of the enrolled patients, 91 individuals con-
sented to undergo germline testing for understanding 
the hereditary characteristics of cancer. This study was 
approved by the clinical ethics committee of Fudan Uni-
versity Shanghai Cancer Center, Fudan University, and all 
patients provided written informed consent. To ensure 
the sample quality, all tumor tissues samples were patho-
logically assessed to have a tumor content beyond 20%. 
All the collected samples successfully passed the quality 
control process and contain sufficient DNA content to 
enable NGS testing with high efficiency.

Target next-generation sequencing
The DNA extraction and next-generation sequencing 
procedures were carried out according to previously 
established protocols [15]. In brief, DNA extraction 
from tumor tissue or peripheral blood mononuclear cell 
(PBMC) samples was performed using the DNeasy Blood 
& Tissue Kit, while plasma samples were utilized for cell-
free DNA (cfDNA) extraction using the QIAamp Cir-
culating Nucleic Acid Kit (both from Qiagen, Inc.). The 
quantification of DNA was performed using the Qubit 
3.0 Fluorometer and the StepOnePlus System, manu-
factured by Life Technologies, Inc. To achieve fragment 
sizes of approximately 200 base pairs (bp), 100 ng of 
genomic DNA (gDNA) from the tumor tissue or PBMC 
was fragmented using the Covaris E210 system. Subse-
quently, next-generation sequencing (NGS) was carried 
out on the tumor or germline gDNA using the Accel-
NGS 2  S DNA Library Kit (Swift Biosciences, Inc.) for 
library preparation and the xGen Lockdown Probes kit 
(IDT, Inc.) for target enrichment. Custom probes for 
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specific genes were synthesized by IDT, Inc. All samples 
were subjected to genetic testing, targeting a panel of 20 
or 499 genes associated with EC, as listed in Supplemen-
tary Table  1. The quantification of the prepared library 
was performed using the Qubit 3.0 Fluorometer from 
Life Technologies, Inc., and its quality and fragment size 
distribution were assessed using an Agilent 2100 Bioana-
lyzer (Agilent Technologies, Inc.). Paired-end sequencing 
was conducted on an Illumina Novaseq 6000 platform, 
manufactured by Illumina Inc., employing 150  bp read 
lengths. The mean coverage achieved for tumor, PBMC, 
and cfDNA samples exceeded 1000×, 200×, and 4000×, 
respectively.

Data processing
The raw sequencing data were aligned to the refer-
ence human genome (UCSC HG19) using the Burrows-
Wheeler Aligner. Duplicate sequences were removed, 
and local realignment was performed. The Genome 
Analysis Toolkit (GATK) v3.7 was utilized to identify and 
characterize single nucleotide variations (SNVs) as well as 
insertions and deletions (INDELs). The ANNOVAR soft-
ware was employed to annotate the identified variants. 
Copy number variations (CNVs) were determined using 
CNVkit, accessible at https://github.com/etal/cnvkit. 
Variants detected in genomic DNA (gDNA) from PBMC, 
with an allele fraction (AF) exceeding 25%, were catego-
rized as germline variants. Additionally, variants with a 
frequency of ≥ 1% in the ExAC (http://exac.broadinsti-
tute.org), 1000 Genomes (http://www.1000genomes.org), 
or ESP6500 databases (https://evs.gs.washington.edu/
EVS) were excluded as benign or likely benign variants. 
Somatic variants specific to the tumor were obtained by 
eliminating germline alterations, thus retaining only the 
variants unique to the tumor.

Actionable alteration annotating
The functional classification of each somatic muta-
tion was performed according to the interpretation and 
reporting standards and guidelines recommended by the 
Association for Molecular Pathology, American Society 
of Clinical Oncology, and College of American Patholo-
gists (ASCO/CAP). Meanwhile, all identified variants 
were annotated following the level of evidence estab-
lished by the OncokB database [16].

Data sources
The genomic and clinical data Western patients diag-
nosed with uterine corpus endometrial carcinoma 
(UCEC), namely UCEC_TCGA and PanCancer Atlas 
(consisting of 517 patients) was obtained from cbiopor-
tal (https://www.cbioportal.org). In addition, a group of 
95  patients with UCEC, known as the CPTAC cohort, 
was chosen as a control cohort of and also derived from 

cbioportal website. Additionally, ctDNA mutation profile 
from 44 western EC patients were derived from MSKCC 
cohort through cbioportal website [17]. Genomic testing 
of UCEC_TCGA and CPTAC samples was performed 
using whole exome sequencing, while MSKCC_ctDNA 
samples underwent analysis using the MSK-IMPACT 
assay, which encompasses 468 genes. The coverage of 
genes of the current study can be found in supplementary 
Table 1.

Identifying the molecular subtypes of ARID1Awildtype EC 
patients
In our analysis, we employed the similarity network 
fusion technique, utilizing the R package “CancerSub-
types” with default parameters, to perform unsupervised 
clustering on the transcriptomic and proteomic data 
within the CPTAC cohort [18]. The resulting similar-
ity matrix was then utilized as input for unsupervised 
clustering using the R package “ConsensusClusterPlus” 
[19]. Lastly, we employed the random forest algorithm to 
identify genes associated with the different subtypes or 
clusters.

TCGA subtype classification
The four subtypes of endometrial cancer, including 
POLE, MSI, CNV-high, and CNV-low were adapted from 
the cbioportal website.

Statistical analysis
SPSS, GraphPad Prism 9 software, and R language sta-
tistical package were performed to statistical analyses. 
Overall survival (OS) curves were constructed using the 
Kaplan–Meier method, and the log-rank test was per-
formed. The Chi-Square test and Fisher’s exact test were 
used to analyze the difference in gene prevalence between 
different groups. Difference was considered significant if 
the two-tailed p-value was less than 0.05.

Results
Patient characteristics
A total of 158 patients were enrolled in this cohort, with 
a median age at diagnosis of 56 (range 25–80 years), and 
EEC (84.81%) was the most common histological type. 
Among the enrolled patients, 74 (46.84%) were subjected 
to genetic testing using the 20-gene panel, while the 
remaining 84 patients (53.16%) underwent testing using 
the expanded panel of 499 genes, as presented in Table 1 
(Table 1).

Genomic landscape of chinese EC patients
All samples underwent deep targeted sequencing of all 
exons and selected introns of at least 20 selected EC-
related genes, and 85.4% (135/158) of them were identi-
fied with at least one somatic alteration. The gene with 

https://github.com/etal/cnvkit
http://exac.broadinstitute.org
http://exac.broadinstitute.org
http://www.1000genomes.org
https://evs.gs.washington.edu/EVS
https://evs.gs.washington.edu/EVS
https://www.cbioportal.org
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the highest prevalence of alterations was PTEN (53.2%, 
84/158), following by PIK3CA (38.7%, 61/158), TP53 
(32.3%, 51/158), KRAS (17.1%, 27/158), ATM (13.9%, 
22/158), and POLE (12.7%, 20/158) (Fig. 1A). in the sub-
set of samples (n = 84) that underwent testing using the 
expanded panel testing, 82 patients harbored at least one 
identified genomic alteration. The most prevalent altera-
tions were TP53 (40.5%, 34/84), PTEN (36.9%, 31/84), 
PIK3CA (34.5%, 29/84), ARID1A (27.4%, 23/84), MTOR 
(13.1%, 11/84), and CTNNB1 (11.9%, 10/84) (Fig. 1B). In 
our cohort, no significantly mutually-exclusive altered 
genes were identified. However, the common co-altered 
genes pairs included PIK3CA and PTEN, PTEN and 
MSH6, PIK3CA and POLE.

The distribution of genomic alterations in PTEN, 
POLE, TP53 and PIK3CA were shown in Supplemen-
tary Fig. 1. PTEN is one of the most frequently mutated 
genes in our cohort and more than half of EC patients 
harbored alteration in it. The alteration of PTEN dis-
tributed relatively throughout the whole protein, most 
of which are actionable/driver variants (75.7%, 106/140), 
including R130Q/G/P, K267fs, T319fs. Similarly, POLE 
alterations were dispersed in exon 9–48, including three 
of V411L and two of P286R. Notably, TP53 alterations 
were predominantly enriched in P53 DNA-binding 
domain. Among PIK3CA alterations, a significant pro-
portion were located in exon 2 (23/93), 10 (16/93), and 21 
(32/93), including hotspot alterations such as E545G/K 
and H1047R.

Signal pathway analysis
Next, we conducted signal pathway analyses to exam-
ine the alterations present in Chinese EC patients who 
underwent genomic testing using the expanded panel. 
The analysis revealed that the alterations were most 
enriched in the following pathways: PI3K (69.0%), cell 
cycle (56.0%), RAS/RAF/MAPK (46.4%), Epigenetic 
modifiers/ Chromatin remodelers signaling pathway 
(40.5%) and DNA damage repair (DDR, 30.1%) (Fig. 2A). 
Furthermore, 9.52% of Chinese EC patients had multiple 
DDR alterations, while 21.43% had only one DDR altera-
tion (Fig. 2B). Among the patients with DDR alterations, 
the most common were homologous recombination 
repair (HR) and damage sensor (DS), followed by base 
excision repair (BER), mismatch repair (MMR), Fan-
coni anemia (FA), and nucleotide excision repair (NER)
(Fig.  2B). Moreover, we discovered that patients with 
DDR pathway alterations exhibited a higher frequency 
of additional alterations, particularly in genes including 
MTOR, CTNNB1, ATRX, FAT1, and KMT2B (P < 0.05, 
Supplementary Fig. 2).

Germline variants
Among Chinese EC patients in our cohort, a total of 
ten individuals (11.0%) were identified with pathogenic 
or likely pathogenic germline mutations in seven genes 
(Table  2). Notably, these alterations were primarily 
enriched in in the DDR pathway. Specifically, six patients 
were identified with pathogenic or likely pathogenic 
germline in MMR genes (MLH1, MSH2, or MSH6), with 
one patient having a co-occurring alteration in MSH2 
and RAD50. Additionally, two patients had BRCA2 

Table 1 Clinical characteristics of 158 Chinese patients with endometrial carcinoma
Characteristics NO. (%) NO. of patients took the 20-

genes panel testing
NO. of 
patients took 
the expanded 
panel testing

Total patients 158 (100%) 74 (46.84%) 84 (53.16%)
Median age (range) 56 (25–80) 56 (25–78) 54 (32–80)
Histologic subtypes

endometrioid 134 (84.81%) 70 (44.30%) 64 (40.51%)
carcinosarcoma 15 (9.49%) 2 (1.27%) 13 (8.23%)
serous 5 (3.16%) 1 (0.63%) 4 (2.53%)
clear cell 2 (1.27%) 1 (0.63%) 1 (0.63%)
undifferentiated carcinomas 1 (0.63%) 0 (0%) 1 (0.63%)
Endometrioid & clear cell 1 (0.63%) 0 (0%) 1 (0.63%)

Sample type
Tissue 121 (76.58%) 65 (41.14%) 56 (35.44%)
Blood 37 (23.42%) 9 (5.70%) 28 (17.72%)

Stage
I 6 (3.80%) 4 (2.53%) 2 (1.27%)
II 109 (68.99%) 57 (36.08%) 52 (32.91%)
III 11 (6.96%) 3 (1.90%) 8 (5.06%)
IV 32 (20.25%) 10 (6.33%) 22 (13.92%)
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Fig. 1 Somatic mutation landscape of Chinese patients with endometrial carcinoma. (A) Mutation landscape of 20 genes that all patients have tested 
(n = 158). (B) Mutation landscape of EC patients took the expanded panel testing (n = 84)
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Fig. 2 Signaling pathways related to Chinese patients with endometrial carcinoma. A, The prevalence of oncogenic and total alterations in specific signal 
pathways. B, The prevalence of altered pathways for DDR. DDR: DNA damage repair; HR: homologous recombination repair, DS: damage sensor, BER: base 
excision repair, MMR: mismatch repair, FA: Fanconi anemia, NER: nucleotide excision repair
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mutations, one patient had a BARD1 mutation, and one 
patient had a STK11 mutation.

Differences in the prevalence of genetic alterations 
between chinese and western cohorts
Since we collected ctDNA samples in current study, it 
is important to consider that directly comparing the 
genomic feature regardless of sample type may lead to 
distorted outcomes. Therefore, we initially compared 
the prevalence of 20 EC genes between Chinese EC 
patients with tumor samples and TCGA-UCEC cohort. 
The result revealed a generally similar genomic profile 
among those 20 selected genes, with slight difference 
observed in AKT1, MET and PMS2 (Fig. 3A). Addition-
ally, when comparing the findings from tumor samples 
that underwent testing using the expanded panel testing 
to the TCGA-UCEC cohort, a higher altered frequency 
of PIK3R1 and CTCF was identified in the TCGA cohort 
(Fig.  3B). We further compared the ge etic findings 
between our cohort and CPTAC cohort to assess the dif-
ferences. The results revealed that all the aforementioned 
differences were diminished, only with the exception in 
PIK3R1 (Supplementary Fig. 3). Furthermore, when com-
paring the genetic changes in ctDNA samples, we found 
a significantly higher prevalence of PTEN, PIK3CA and 
KRAS in MSKCC cohort (Fig. 3C). However, it is impor-
tant to note that we observed similar genomic differences 
between local tumors and ctDNA samples (Supple-
mentary Fig.  4). Considering the limited sample size of 
ctDNA in both our and the MSKCC cohort, we did not 

attribute these findings solely to the genomic difference 
in liquid samples between Chinese and Western cohorts.

Clinically actionable alterations
In our cohort, we identified a total of 110 EC patients 
(69.6%) with actionable alterations (Fig.  4; Table  3). 
Among these patients, 51 individuals underwent testing 
with the expanded panel, while 59 patients were tested 
using the 20-gene panel, representing 60.7% (51/84) and 
79.7% (59/74) of patients, respectively. We categorized 
all actionable alterations into four levels based on the 
OncoKB knowledge base. The vast majority of altera-
tions fell into level 3 or 4, with only one exception being 
ERBB2 amplification, which was classified as level 2. Fur-
thermore, we observed that the prevalence of EC patients 
with actionable alterations was higher in the Western 
cohort compared to our cohort (84.3% vs. 69.6%, as 
shown in Fig.  4). This difference can be mainly attrib-
uted to the differences in PTEN and PIK3CA prevalence, 
which arise from the involvement of ctDNA samples in 
our cohort.

Identifying the molecular subtypes of ARID1A wildtype EC 
patients
Alteration in ARID1A is prevalent in both Chinese and 
western EC patients, and previous studies have associ-
ated it with a favorable prognosis in EC [20]. While it was 
initially recognized as a member of SWI/SNF chromatin 
remodeling complex, recent evidence also suggests its 
involvement in PI3K [21] and DDR [22] pathways. Given 
that, we utilized transcriptomic and proteomic data 
from the CPTAC cohort to investigate whether there 
existed molecular heterogeneity in ARID1A-wildtype 
EC patients. Through our analysis, we identified two dis-
tinct molecular clusters of ARID1A-wildtype EC based 
on these data (Fig.  5A). Subsequently, employing a ran-
dom forest machine learning algorithm, we successfully 
identified ten mRNAs and ten proteins that exhibited the 
most prominent differences between these two clusters at 
the mRNA and protein levels, respectively (Fig. 5B&C). o 
validate the established molecular signatures associated 
with ARID1A-wildtype subtypes, we applied them to the 
TCGA cohort. In the TCGA cohort, we again identified 
two clusters within the ARID1A-wildtype EC group, and 
patients in cluster 2 displayed inferior overall survival 
compared to those in cluster (Fig.  5D). Furthermore, 
both of these clusters had worse prognoses than EC 
patients with ARID1A alterations (Fig. 5E). Interestingly, 
when we applied the same cluster signature derived from 
the CPTAC cohort to cluster EC patients in the TCGA 
cohort, irrespective of their ARID1A status, patients 
within cluster 2 also exhibited significantly shorter over-
all survival (Fig. 5F).

Table 2 Pathogenic or likely pathogenic germline variants in 
Chinese EC patients
Pa-
tients 
No.

Gene Mutation 
Type

Nucleotide Change AA Change

#1 BRCA2 nonsyn-
onymous

c.8168 A > G p.Asp2723Gly

#2 BARD1 frameshift-
insertion

c.1350_1351insT p.Gly451fs

#3 MLH1 splice c.677 + 1G > A c.677 + 1G > A
#4 MSH2 stopgain c.1216 C > T p.Arg406Ter

RAD50 frameshift-
deletion

c.80_83delTCTT p.Phe27fs

#5 MSH6 frameshift-
insertion

c.3261dupC p.Phe1088fs

#6 MLH1 nonsyn-
onymous

c.350 C > T p.Thr117Met

#7 MLH1 frameshift-
deletion

c.274_283delGCCAGTATTT p.Ala92fs

#8 STK11 frameshift-
insertion

c.842dupC p.Leu282fs

#9 MLH1 frameshift-
deletion

c.526delA p.Ile176fs

#10 BRCA2 frameshift-
deletion

c.5164_5165delAG p.Ser1722fs
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Genomic and tumor microenvironment feature related to 
the molecular subtypes of ARID1A wildtype EC patients
To investigate the molecular and immunological char-
acteristics of the two clusters, we conducted an analyisis 
of the genomic classification in both CPTAC and TCGA 

cohorts. Our findings demonstrated significant genomic 
differences between cluster 2 and cluster 1, as well as the 
ARID1A mutant groups. Specifically, cluster 2 exhib-
ited a higher frequency of TP53 alterations but a lower 
prevalence of PTEN and PIK3CA alterations. Moreover, 

Fig. 3 Differences in the prevalence of altered genes between Chinese and Western endometrial carcinoma cohorts. A, Comparison of the prevalence 
of 20 genes between tumor samples in Chinese cohort and the TCGA cohort. B, Comparison of the prevalence of top 20 genes tested in the expanded 
panel between tumor samples in Chinese cohort and the TCGA cohort. C, Comparison of the prevalence of genes between ctDNA samples in Chinese 
cohort and the MSKCC cohort. ctDNA: Circulating tumor DNA; * p < 0.05; **p < 0.01
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Table 3 Actionable alterations identified in Chinese EC cohort
OncoKB level of 
evidence

Altered 
genes

Mutational type No of 
patients

Percentage 
(%)

NO. of patients 
took 20-genes 
panel testing

Percent-
age (%)

NO. of patients 
took expanded 
panel testing

Per-
cent-
age 
(%)

Total 110 69.6 59 79.7 51 60.7
2 ERBB2 amplification 1 0.6 0 0.0 1 1.2
3 AKT1 Oncogenic 6 3.8 2 2.7 4 4.8
3 ATM Oncogenic 6 3.8 5 6.8 1 1.2
3 BRCA2 Oncogenic 1 1.2 NA NA 1 1.2
3 EGFR Oncogenic 1 0.6 1 1.4 0 0.08
3 ERBB2 Oncogenic 6 3.8 3 4.1 3 3.8
3 FLT3 Oncogenic 1 1.2 NA NA 1 1.2
3 IDH1 Oncogenic 1 1.2 NA NA 1 1.2
3 PIK3CA amplification 1 0.6 0 0.00 1 1.2
3 PIK3CA Oncogenic 56 35.4 31 41.9 25 29.8
3 RAD51B Oncogenic 1 1.2 NA NA 1 1.2
3 TSC1 Oncogenic 1 1.2 NA NA 1 1.2
4 AKT1 Oncogenic 1 1.2 1 1.4 0 0.0
4 BRAF Oncogenic 2 1.3 1 1.4 1 1.2
4 CDKN2A Oncogenic 3 3.6 NA NA 3 3.6
4 EGFR Oncogenic 1 0.6 1 1.4 0 0.0
4 ESR1 Oncogenic 2 2.4 NA NA 2 2.4
4 KDM6A Oncogenic 1 1.2 NA NA 1 1.2
4 KRAS Oncogenic 27 17.1 19 25.7 8 9.5
4 MTOR Oncogenic 3 3.6 NA NA 3 3.6
4 NRAS Oncogenic 1 0.6 1 1.4 0 0.0
4 PTCH1 Oncogenic 5 5.6 NA NA 5 6.0
4 PTEN Oncogenic 76 48.1 45 60.8 31 36.9

Fig. 4 Comparison of actionable variants of endometrial carcinoma patients between the Chinese cohort and the Western cohort
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Fig. 5 Identification the molecular subtypes of ARID1A-wt endometrial carcinoma patients. A, Consensus matrix of unsupervised clustering based on the 
integrative multi-omics data and identify the best cluster number with k = 2 in the CPTAC cohort. B, The silhouette width of unsupervised clustering based 
on SNF method in integrated omics data when k = 2. C, The most discriminative signatures of mRNA and protein selected by random forest algorithm. D. 
Kaplan-Meyer plot comparing patients within cluster 1 and cluster 2 from TCGA cohort. E. Kaplan-Meyer plot comparing patients within cluster 1, cluster 
2 of ARID1A-wt subset and ARID1A-mt subset. F. Kaplan-Meyer plot comparing patients with high and low cluster-signature without considering their 
ARID1A status. Wt: wildtype; mt: mutated
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cluster 2 displayed higher immune, stromal, and ESTI-
MATE scores (Fig. 6A). These genomic differences were 
consistently overserved in the TCGA cohort (Fig.  6B). 
Moreover, we observed that cluster 2 was enriched with 
patients who were older and at more advanced stages. 
Notably, cluster 2 exclusively belonged to the CN-high 
subtype, which was consistent with the higher prevalence 
of TP53 alteration in this group (Fig. 6C). However, there 
was no significant difference in the TMB level between 
the two clusters, both of which were significantly lower 
than that of patients with ARID1A alterations (Fig. 6D). 
Additionally, we found that cluster 2 was characterized 
by significantly higher levels of macrophages, hypoxia, 
and stromal score (Fig. 6E). The analysis of macrophages, 
regardless of their polarization status, and activated den-
dritic cells using XCELL and CIBERSORT also indicated 
higher levels in cluster 2 (Fig. 6F).

Discussion
While Western EC patients have been extensively stud-
ied, there is still a lack of comprehensive characteriza-
tion of the genomic traits in Chinese EC patients. To 
address this gap, we conducted genetic analysis on 158 
samples obtained from Chinese EC patients using NGS 
technology. The obtained data was then compared with 
existing data from Western cohorts. The molecular clas-
sification of EC endometrial cancer has been found to be 
correlated with several genes, such as POLE, TP53, and 
MMR genes. Furthermore, the remaining genes included 
in the 20-gene panel have been identified as being associ-
ated with the treatment and prognosis of EC endometrial 
cancer [2, 4, 5, 23–25]. Thus, the 20 genes were selected 
for comprehensive analysis, and 85.4% of patients were 
proved to have at least one alteration in the 20 genes. 
By integrating the testing results from two panels, we 
observed that PTEN, PIK3CA, and TP53 were the most 
commonly altered genes in Chinese EC patients. How-
ever, the prevalence of PTEN and PIK3CA alterations 
in our cohort was significantly lower compared to the 
TCGA-UCEC cohort. It is worth noting that a previous 
study involving 115 Chinese EC patients also reported 
PTEN (53.9%) and PIK3CA (46.1%) as the most fre-
quently altered genes [26]. However, the prevalence 
of TP53 was 7.8% that lower than our cohort (27.8%), 
which may be related to the difference in the pathologi-
cal composition. Additionally, co-occurring in PTEN and 
PIK3CA was identified in our cohort, which is consistent 
with previous reports [26, 27].

Several frequently altered signaling pathways have been 
identified and proven to have roles in EC, as evidenced 
by studies such as TCGA and others [4, 5]. Alterations 
in the PI3K pathway are particularly prevalent in EC, 
occuring in 80–95% of EC cases [5, 28, 29]. In our cohort, 
which consisted of 84 samples tested using the expanded 

panel, we found that 69.0% of patients harbored PI3K 
pathway alterations, which is slightly lower than the find-
ings reported in previous studies. The DDR pathway has 
gained increasing attention in cancer therapy due to the 
promising therapeutic effects of DDR pathway-targeting 
drugs. Therefore, genetic and genomic analysis of the 
DDR pathway has become a focal point of researc [30]. 
In our cohort, we identified DDR pathway alterations 
in 30.1% (26/84) of patients, with approximately half of 
these alterations occurring in the HR pathway. Further-
more, we observed that alterations in MTOR, CTNNB1, 
ATRX, FAT1, and KMT2B were more frequently observed 
in patients with DDR pathway alterations, suggesting an 
association between the mutation status of these genes 
and DDR pathway alterations.

Previous research has primarily focused on the asso-
ciation between germline variants and an increased risk 
of developing EC, particularly in relation to MMR and 
Lynch syndrome [24, 25]. However, the prevalence of 
pathogenic or likely pathogenic (P/LP) germline variants 
in Chinese EC patients remains unclear. In our study, we 
identified that 11% of Chinese EC patients carried P/LP 
germline variants, some of which were rarely reported 
before. Notably, we identified one Chinese EC patient 
with a deleterious germline variant in the STK11 gene, a 
known tumor suppressor gene associated with the AMPK 
and mTOR pathway. Pathogenic variants in this gene 
can lead to Peutz-Jeghers Syndrome, which increases 
the risk of developing hamartomatous polyps in various 
organs such as the digestive tract, breast, testicles, ova-
ries, lung, cervix, and uterus [31]. Another Chinese EC 
cohort also reported that 12.66% (10/79) of EC patients 
had deleterious germline variants, although these were 
not observed in 36 endometrial intraepithelial neopla-
sia patients [32]. The prevalence of deleterious germline 
variants in unselected Chinese EC patients is compara-
ble to that in Western patients. In a study by Kari et al., 
9.2% (35/381) of unselected Western EC patients were 
found to have P/LP variants, predominantly in genes 
involved in MMR (22/358) and HR pathways (8/358) 
[33]. Although EC is commonly associated with Lynch 
syndrome, our findings, along with previous studies, sug-
gest the importance of conducting germline testing using 
expanded panels. Identifying germline variants is crucial 
not only for understanding the underlying causes of car-
cinogenesis and assessing the cancer risk for relatives but 
also for evaluating the patient’s treatment and prognosis. 
For example, germline BRCA1/2 variants are not only 
associated with increasing risk for serous/serous-like EC 
[34], but they also confer sensitivity to PARP inhibitors, 
which have been widely approved in other cancer types. 
Additionally, germline BRCA1/2 variants are also related 
to a distinct clinicopathologic entity that associated with 
unfavorable clinical outcomes [35].
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Fig. 6 The molecular and tumor microenvironment feature related to ARID1A-wt clusters. A, Heatmap illustrated the clinical and molecular character-
istics among cluster 1 and 2 and ARID1A-mt in endometrial carcinoma patients from CPTAC cohort. B, Heatmap illustrated the clinical and molecular 
characteristics among cluster 1 and 2 and ARID1A-mt in endometrial carcinoma patients from TCGA cohort. C, The distribution of TCGA molecular classifi-
cation subtypes among cluster 1 and 2 and ARID1A-mt group. D, Difference in the tumor mutation burden (TMB) among cluster 1 and 2 and ARID1A-mt 
group. E, Distribution of tumor immunology related signatures among cluster 1 and 2 and ARID1A-mt group in CPTAC cohort, including Macrophages, 
MDSC, hypoxia signature, EMT signature, Pan F TBRs, and Stromal score. F, Difference in the abundance of tumor-infiltrated immune cells among cluster 
1 and 2 and ARID1A-mt group in CPTAC cohort analyzed by XCELL (top panel) and CIBERSOFT (bottom panel)
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The treatment of solid tumors based on matching 
actionable alterations to targeted therapies has resulted 
in significant improvements in outcomes of patients with 
advanced cancers, which has been comprehensively dem-
onstrated by multiple umbrella and or basket trails [36]. 
In this study, 69.6% of patients with EC were identified 
with actionable alterations, although this proportion was 
lower compared to the Western cohort. Among these 
alterations, ERBB2 amplification was identified as the 
only actionable alteration with level 2, suggesting poten-
tial benefit from Carboplatin-Paclitaxel-Trastuzumab 
therapy [37]. However, in our current study, we only 
identified one patient with significant ERBB2 amplifica-
tion, which appears to be lower than the results reported 
in other datasets or previous studies [38]. Several factors 
may contribute to this discrepancy: (1) ERBB2 amplifi-
cation is more commonly observed in serous EC, which 
was less prevalent in our cohort. (2) The standard meth-
ods for detecting ERBB2 (HER2) amplification, such as 
immunohistochemistry (IHC) and fluorescence in situ 
hybridization (FISH), may yield different results com-
pared to NGS [39]. (3) Notably, 23.42% of patients in our 
study underwent genetic testing using ctDNA, which 
may have influenced the incidence of HER2 amplifi-
cation [40]. (4) Furthermore, the difference in ethnic 
backgrounds between our cohort and Western cohorts 
may also contribute to this discrepancy. Apart from the 
actionable alterations enriched in the PI3K pathway, the 
majority of remaining alterations were observed in the 
DDR pathway. Although limited evidence supports the 
efficacy of PARP inhibitors in HR-deficient EC patients 
[41–44], the comprehensive approved indications and 
mechanism of PARP inhibitors justify their application in 
EC patients as well.

In 2013, TCGA introduced a classification system for 
endometrial cancer by identifying four molecular sub-
types, which were found to be linked to the survival 
outcomes of EC patients [5]. Subsequently, other clas-
sification systems such as Proactive Molecular Risk 
Classifier for Endometrial Cancer (ProMisE) and Trans-
PORTEC have been propose [23, 45, 46]. However, fur-
ther research is still needed to determine whether more 
precise biomarkers or classification systems exist that 
can not only improve prognosis classification but also 
guide the selection of appropriate therapeutic regimens. 
ARID1A, a tumor suppressor gene involved in chromatin 
remodeling, is frequently detected in EC [47, 48]. Among 
the case tested using expanded panel, ARID1A alterations 
were detected in 27.4% of patients. Genomic alteration in 
ARID1A have been found to be correlated with its RNA 
and protein expression level in EC [49]. ARID1A-mutated 
EC exhibit decreased PgR transcription levels, which are 
associated with changes in the PgR enhancer region dur-
ing early tumor development. This mutation has been 

implicated in the malignant transformation from atypi-
cal hyperplasia to EC [50, 51]. Considering that ARID1A 
alteration has been extensively associated with improved 
prognosis and enhanced efficacy in immunotherap [52], 
investigation the molecular heterogeneity in ARID1A-
wildtype EC patients becames even more critical. The 
identified cluster 2, which was characterized by enrich-
ment of CN-high/TP53-altered patients, exhibited the 
worst outcomes compared to cluster 1 and the ARID1A-
mutated group. Notably, cluster 2 had significantly lower 
prevalence of PIK3CA and PTEN alterations, indicating 
a lack of changes in the PI3K signaling pathway. How-
ever, cluster 2 demonstrated distinct tumor immunol-
ogy, including higher immune and stromal scores and 
increased presence of macrophages. Tumor-associated 
macrophages have been widely associated with poor 
prognosis, angiogenesis, and loss of PgR in EC [53, 54].

Our study had certain limitations. Firstly, to present a 
more comprehensive genomic landscape of Chinese EC, 
it would be necessary to improve this study by expand-
ing the sample sizes. Simultaneously, approximately 46% 
of the patients included in this study underwent genetic 
testing using the 20-gene panel. While this panel encom-
passes the most common and crucial oncogenes/tumor 
suppressor genes associated with EC and allows for 
molecular classification, it is important to acknowledge 
that the limited gene spectrum may restrict our under-
standing of the complete genetic profile beyond these 20 
genes. Despite ctDNA being widely considered as a sur-
rogate for tumor tissue in genetic profiling, it is impor-
tant to acknowledge the potential discordance between 
findings from these two sample types. In our current 
study, we did not perform genomic testing using ctDNA 
and tumor tissue samples from the same individuals. 
Due to the shortage of transcriptomic and survival data 
in our cohort, we were unable to validate the identified 
ARID1A-wt subtypes. Thus, further validation in a local 
cohort using prospective clinical samples and data is 
warranted.

Conclusion
In summary, our study identified the genomic profile of 
Chinese patients with EC, providing valuable insights for 
potential therapy selection in EC patients. Additionally, 
we discovered the molecular heterogeneity in ARID1A-
wildtype EC patients, which revealed unique genomic 
and immunological features. These findings contribute to 
a better understanding of EC and have implications for 
personalized treatment approaches.
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