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Abstract
Background  Multiple myeloma (MM) is a fatal malignant tumor in hematology. Mitophagy plays vital roles in the 
pathogenesis and drug sensitivity of MM.

Methods  We acquired transcriptomic expression data and clinical index of MM patients from NCI public database, 
and 36 genes involved in mitophagy from the gene set enrichment analysis (GSEA) database. Least absolute 
shrinkage and selection operator (LASSO) Cox regression analysis was conducted to construct a risk score prognostic 
model. Kaplan–Meier survival analysis and receiver operation characteristic curves (ROC) were conducted to 
identify the efficiency of prognosis and diagnosis. ESTIMATE algorithm and immune-related single-sample gene set 
enrichment analysis (ssGSEA) was performed to uncover the level of immune infiltration. QRT-PCR was performed to 
verify gene expression in clinical samples of MM patients. The sensitivity to chemotherapy drugs was evaluated upon 
the database of the genomics of drug sensitivity in cancer (GDSC).

Results  Fifty mitophagy-related genes were differently expressed in two independent cohorts. Ten out of these 
genes were identified to be related to MM overall survival (OS) rate. A prognostic risk signature model was built 
upon on these genes: VDAC1, PINK1, VPS13C, ATG13, and HUWE1, which predicted the survival of MM accurately and 
stably both in training and validation cohorts. MM patients suffered more adverse prognosis showed more higher 
risk core. In addition, the risk score was considered as an independent prognostic element for OS of MM patients by 
multivariate cox regression analysis. Functional pathway enrichment analysis of differentially expressed genes (DEGs) 
based on risk score showed terms of cell cycle, immune response, mTOR pathway, and MYC targets were obviously 
enriched. Furthermore, MM patients with higher risk score were observed lower immune scores and lower immune 
infiltration levels. The results of qRT-PCR verified VDAC1, PINK1, and HUWE1 were dysregulated in new diagnosed MM 
patients. Finally, further analysis indicated MM patients showed more susceptive to bortezomib, lenalidomide and 
rapamycin in high-risk group.
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Introduction
Multiple myeloma (MM) is a fatal hematologic can-
cer featured with abnormal propagation of monoclonal 
plasma cells in bone marrow [1]. Over the past decades, 
many effective treatments, such as bortezomib (inject-
able proteasome inhibitor), lenalidomide (oral immuno-
modulatory drug), chimeric antigen receptor-engineered 
T cells, and autologous stem cell transplantation [2–5], 
improve the outcome of MM patients. However, the 
medical need of MM remains unmet as a result of the 
significant heterogeneity [6]. Various factors are involved 
in MM progress, mainly including genetic abnormalities 
[7], changes in bone marrow microenvironment (BM-
ME) [8], and epigenetic alterations [9]. Studies confirmed 
that immune cells in BM-ME and the dysregulation of 
genes involved in immune checkpoint are related to the 
immune infiltration level of BM-ME [10, 11]. The pro-
tection from BM-ME and high genetic instability guard 
MM cells against chemotherapies, or receptor-targeting 
drugs, which virtually leads to resistance and relapse [12].

Mitochondria is not only a crucial house of producing 
energy via oxidative phosphorylation, but also a center of 
producing cellular metabolites [13]. Mitophagy is a pro-
cess of lysosome-dependent mitochondrial autophagy, 
which protects cells against proapoptotic proteins, poi-
sonous reactive oxygen species (ROS), and the unavail-
ing hydrolytic action of adenosine triphosphate (ATP), 
induced by the depolarization of mitochondrial mem-
brane or the mitochondrial DNA (mtDNA) changes [14, 
15]. Accumulating evidences have recently confirmed 
that mitophagy is a double-edged sword in cancer devel-
opment. On one hand, the decrease of mitophagy pro-
motes the cancer progression [16]. On the other hand, 
the increased mitophagy facilitates cancer cells prolif-
eration and progression by defending cancer cells from 
apoptosis [17]. Nonetheless, roles of mitochondrial dys-
function in the immune microenvironment and predic-
tion of outcome in MM remain indistinct.

In our study, we performed the least absolute shrink-
age and selection operator (LASSO) Cox regression 
analysis to build a five-mitophagy-related-gene prog-
nostic risk signature model. The risk model revealed a 

great predicted value of actual survival probabilities. In 
addition, enrichment analysis identified the alteration 
of immune checkpoint and immune microenvironment 
based on the risk score. Finally, drug sensitivity analysis 
predicted latent drugs for treating MM.

Materials and methods
Data acquisition
MM transcriptomic expression data and clinical features 
were acquired from the NCI Gene Expression Omnibus 
database (GEO). The raw data was normalized and log2 
transformed. All detailed information of GEO dataset 
were shown in Supplementary Table 1. The overall design 
of this study was shown in Supplementary Fig. 1. Among 
them, GSE6477 and GSE13591 were applied to appraisal 
differentially expressed genes (DEGs). GSE9782 was 
used as the training set to establish the prognostic risk 
score model, and GSE24080 and GSE4204 were utilized 
as validation cohorts. GSE24080 was applied to perform 
univariate analysis and multivariate analysis for overall 
survival (OS) rate and construct the nomogram model. 
GSE6477 and GSE47552 were applied to evaluate the 
performance of risk score for MM diagnosis.

Establishment of the prognostic risk model
First, univariate cox regression analysis was applied to 
obtain the OS-related genes with p < 0.05, and ten genes 
(SLC25A4, VDAC1, RNF41, SLC25A5, PINK1, SQSTM1, 
VPS13C, ATG13, HUWE1, and OPTN) were signifi-
cantly correlated with MM OS time. Next, we performed 
LASSO Cox regression to optimize the prognostic model 
by further compressing the genes and constructing the 
prognostic model by “glmnet” package (version 4.1-1), 
and five genes finally came into the risk score formula 
(VDAC1, PINK1, VPS13C, ATG13, and HUWE1). More-
over, MM patients were divided into two groups upon the 
optimal cutoff of the risk score with “Survminer” package 
(version 0.4.9). Receiver operating characteristic (ROC) 
curve was applied to estimate the prognostic value of risk 
score model in MM patients.

Conclusion  Our research provided a neoteric prognostic model of MM based on mitophagy genes. The immune 
infiltration level based on risk score paved a better understanding of the participation of mitophagy in MM.

Highlights
	• The study reported a mitophagy-related genes signature in multiple myeloma.
	• The mitophagy-related genes signature had ideal prognostic independence in multiple myeloma.
	• A nomogram to predict the overall survival of multiple myeloma was built by combining the five-gene 

signature, LDH and ISS stage.
	• Immune infiltration was related to the mitophagy-related risk signature.

Keywords  Mitophagy, Multiple myeloma, Risk signature, Nomogram, Immune infiltration, Prognosis
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Construction of the nomogram
To assess the prediction value of risk score in MM, we 
performed univariate and multivariate cox regression 
analysis. Variables with p < 0.10 was supposed to the mul-
tivariate cox regression analysis, and p < 0.05 was con-
sidered as remarkable independent prognostic factors. 
Then, we used “rms” package (version 6.2-0) to construct 
the nomogram independent prognostic model. Finally, 
we assessed the predictive value of nomogram by ROC 
curve and calibration curve.

Functional pathway enrichment analysis
We used the online website Metascape (http://metascape.
org/gp/index.html) to analyze gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway [18–20] of DEGs based on risk score group. 
We executed Gene set enrichment analysis (GSEA) by 
GSEA software (version 4.1.0). The absolute value of NES 
value > 1, p value < 0.05, and false discovery rate (FDR) 
value < 0.25 showed significance.

Estimation of immune infiltration
We computed the immune score, stromal score, 
tumor purity, and ESTIMATE score for each sample in 
GSE24080 by ESTIMATE algorithm [21]. According to 
the previous study [22], single sample GSEA (ssGSEA) 
was conducted to evaluate the abundance of infiltrating 
cells by “GSVA” package (version 1.38.2).

Prediction of drug sensitivity
To achieve precise treatment upon mitophagy-related 
signature and identified potential drugs for MM, we uti-
lized the Genomics of drugs sensitivity in cancer (GDSC, 
https://www.cancerrxgene.org/) to predict the chemo-
therapeutic response [23]. R package “pRROphetic” was 
implemented to evaluate the half-maximal inhibitory 
concentration (IC50) by ridge regression [24]. The fore-
cast precision was determined through 10-fold cross-val-
idation using the GDSC training set. Additional methods 
are described in supplementary methods.

Statistical analysis
At least three dependent experiments were performed 
in qRT-PCR and values were presented as mean ± SD. 
We used unpaired Student’s t-test and Mann-Whitney 
U test to judge the otherness in two groups. More than 
two groups, we used One-way ANOVA (for parametric 
data) and Kruskal-Wallis (for non-parametric data) test 
to contrast significance. ROC curve was performed to 
assess the diagnosis value of risk score and the prognos-
tic value of nomogram model in MM. The Kaplan-Meier 
method with a two-sided log-rank test was performed to 
evaluate the OS of MM patients. SPSS 21 software (SPSS, 
Chicago, USA) and GraphPad Prism 8 were used for 

statistical analysis. P value lower than 0.05 was defined 
markedly different.

Results
Identification of 15 mitophagy-related genes differentially 
expressed in MM
We acquired a total of 36 mitophagy-related genes from 
GSEA GOBP database (supplementary Table  2). The 
datasets of GSE13591 (including 5 normal plasma cells 
(NPC) and 133 MM patients) and GSE6477 (includ-
ing 15 NPC and 73 MM patients) were used to analyze 
the genes involved in mitophagy which were differen-
tially expressed in MM. We found 19 genes and 21 genes 
were differentially expressed in MM patients compared 
to human healthy donors in GSE6477 and GSE13591, 
respectively (Fig. 1A and B). We observed that SLC25A4, 
PHB2, CERS1, VPS13C, HUWE1, VDAC1, and SLC25A5 
were significantly upregulated, while OGT, ATG13, 
PINK1, and OPTN were significantly downregulated 
in MM patients (supplementary Fig.  2A and 2B). Then, 
venn plot was used to identify 15 mitophagy-related 
genes overlapped in the two datasets (Fig. 1C). To ulteri-
orly probe the relationship among 15 mitophagy-related 
genes, we performed PPI network analysis (Fig. 1D). We 
found PINK1, SQSTM1 and VDAC1 were hub genes. 
Besides, we conducted correlation analysis to ascertain 
the relationship among these genes (Fig. 1E). The corre-
lation between VDAC1 and SLC25A5 was significantly 
positive (r = 0.678), whereas the correlation between 
SQSTM1 and PHB2 was significantly negative (r = 
-0.416). Furthermore, we used cBioPortal, an online data-
base, and found no frequent mutation of 15 mitophagy-
related genes in 211 MM samples (Fig. 1F) [25].

Establishment of prognostic risk model upon on 
mitophagy-related genes
We chose GSE9782, which includes 264 MM patients 
with survival time, to screen the OS-related mitophagy-
related genes. We found the low expression of ATG13 
(p < 0.0001), HUWE1 (p < 0.0001), OPTN (p < 0.0001), 
PINK1 (p < 0.0001), SQSTM1 (p = 0.001) and VPS13C 
(p = 0.029) was notably related to adverse OS rate, while 
the high expression of SLC25A5 (p = 0.004), VDAC1 
(p < 0.0001), RNF41 (p = 0.039), and SLC25A4 (p = 0.009) 
was notably related to poor OS (Fig. 2A). Then, we exe-
cuted LASSO cox regression analysis to establish a prog-
nostic model in the training cohort GSE9782 (Fig.  2B 
C). Five mitophagy-related genes, including VDAC1, 
PINK1, VPS13C, ATG13 and HUWE1, were involved 
in the risk model. We evaluated the total risk score of 
every patient with formula as follows: (5.476831e-04*the 
expression of VDAC1) + (-4.209033e-03* the expres-
sion of PINK1) + (-1.629760e-03* the expression of 
VPS13C) + (-2.450343e-03* the expression of ATG13) + 

http://metascape.org/gp/index.html
http://metascape.org/gp/index.html
https://www.cancerrxgene.org/
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Fig. 1  Identification of 15 mitophagy-related genes differentially expressed in MM. (A). 19 mitophagy-related genes were differentially expressed in 
GSE6477. (B). 21 mitophagy-related genes were differentially expressed in GSE13591. (C). The veen plot of overlapped mitophagy-related genes. (D). 
The PPI network of the 15 mitophagy-related genes. (E). The correlation of 15 mitophagy-related genes in GSE6477. (F). The mutant frequency of 15 
mitophagy-related genes in 211 multiple myeloma samples, including chromosome translocation and hyper-diploid
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Fig. 2  Construction of prognostic risk model based on mitophagy-related genes. (A). Forest plot of the univariate cox regression in GSE9782. (B). The 
LASSO Cox analysis identified mitophagy-related genes in the training cohort. (C). Partial likelihood deviance of different numbers of variables. One-
thousand- fold cross-validation was applied for tuning penalty parameter selection. (D). Kaplan-Meier survival analysis in training cohort based on the 
risk score. (E). ROC curve for the prognostic risk signature. LASSO: least absolute shrinkage and selection operator; ROC: receiver operating characteristic
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(-7.849962e-05* the expression of HUWE1). On the bias 
of the cutoff risk score, 264 MM patients were separated 
into low- and high-risk group. Kaplan-Meier survival 
analysis found that MM patients had poorer outcome 
observably in high-risk group than that in low-risk score 
(p < 0.0001) (Fig. 2D). ROC curve suggested that the AUC 
values were 0.6807 (95% confidence  interval (CI): 0.6147 
to 0.7467, p < 0.0001) and 0.7205 (95%CI: 0.6471 to 
0.7940, p < 0.0001) for survival rate of 1- year and 2-year, 
respectively (Fig. 2E). Next, the total risk score was cal-
culated in other two independent cohorts for validation. 
MM patients had poorer OS with high-risk score than 
those with low-risk score in the GSE24080 (p = 0.0002) 
and GSE4204 (p < 0.0001) (supplementary Fig.  3A). 
The AUC values were 0.6236 (95%CI: 0.5064 to 0.7408, 
p = 0.0484), 0.6432 (95%CI: 0.5589 to 0.7275, p = 0.0028), 
and 0.6085 (95%CI: 0.5355 to 0.6015, p = 0.0038) for sur-
vival rate of 1-, 2-, and 3-year in GSE24080, respectively 
(supplementary Fig.  3B). Parallel values were 0.5739 
(95%CI: 0.5180 to 0.6297, p < 0.0001), 0.5894 (95%CI: 
0.5416 to 0.6373, p = 0.0003), and 0.6195 (95%CI: 0.5680 
to 0.6710, p < 0.0001) for survival rate of 1-, 2- and 3-year 
in GSE4204, respectively (supplementary Fig. 3B).

The mitophagy-related risk score was an independent 
prognostic element in MM
We applied GSE24080 database to performed univariate 
and multivariate cox regression analysis. We observed 
lactate dehydrogenase (LDH) (hazard ratio (HR), 2.134; 
95% CI, 1.39–3.277; p = 0.001), international stag-
ing system (ISS) stage (HR, 1.83; 95% CI, 1.414–2.369; 
p < 0.0001), and risk score (HR, 1.601; 95% CI, 1.059–
2.422; p = 0.026) were the independent prognostic ele-
ments for MM survival (Table 1). In order to visualize the 
prognosis prediction, we further constructed a nomo-
gram model with the above independent prognostic 
features (Fig.  3A). Calibration curves are typically used 
to assess the agreement between predicted probabili-
ties and observed event rates or frequencies in the real 
world, with the 45° line representing the best prediction 
scenario. Calibration ROC and curves were applied to 

estimate the precision and efficacy of the prognostic risk 
model. Decision curve analysis (DCA) is usually used to 
evaluate the clinical utility of different predictive models 
[26]. We observed that the precision of the total points 
in nomogram for 1- year survival was 0.8240 (95%CI: 
0.7570 to 0.8911, P < 0.0001), 2- year survival 0.7729 
(95%CI: 0.6912 to 0.8545, P < 0.0001), and 3- year survival 
0.6653 (95%CI: 0.5933 to 0.7372, P < 0.0001), respectively 
(Fig.  3B). The calibration curves and DCA revealed a 
great predicted value of actual survival probabilities for 
1-year, 3-year, and 5-year, respectively base on the nomo-
gram model (Fig. 3C and D).

The development of MM includes 4 steps: monoclonal 
gammopathy of unknown significance (MGUS), smolder-
ing multiple myeloma (SMM), multiple myeloma, and 
plasma cell leukemia (PCL) or refractory and/or relapse 
MM (RRMM). The results found that MM patients and 
RRMM patients had more dramatically higher risk score 
than that in normal people (Fig.  3E F). Besides, ROC 
curve suggested that the value of risk score was able to 
distinguish MM from healthy donor (AUC = 0.8073, 
95%CI: 0.6962 to 0.9184, P = 0.0002), MGUS 
(AUC = 0.8599, 95%CI: 0.7622 to 0.9516, P < 0.0001), and 
SMM (AUC = 0.7135, 95%CI: 0.5939 to 0.8330, P = 0.0018) 
(Fig. 3G).

The mitophagy-related risk signature was related to 
clinical characteristics of MM
Next, we used the database of GSE24080 to estimate 
the relation between the risk score and clinical charac-
teristics (Table  2). The results showed that the value of 
risk score was related to LDH (p = 0.03), albumin (ALB) 
(p = 0.025), hemoglobin (HGB) (p = 0.02), beta-2 micro-
globulin (B2M) (p = 0.037), ISS stage (p = 0.022), the per-
centage of plasma cells in bone marrow biopsy (BMPC) 
(p = 0.018), and cytogenetic abnormalities (p < 0.0001). 
Cytogenetic abnormalities has been regarded as a poor 
prognostic factor for MM [27]. Therefore, we choose 
GSE136337 as the validation dataset, which consists with 
several cytogenetic information. We observed that MM 
patients with cytogenetic abnormalities, including del13q 

Table 1  Univariate analysis and Multivariate analysis for OS in GSE24080
variables univariate analysis multivariate analysis

HR (95%CI) p value beta SE Wald HR (95%CI) p value
Age, years 0.953(0.593–1.531) 0.842
Gender 1.103 (0.733–1.660) 0.638
Race 1.145(0.639–2.052) 0.649
LDH(U/l) 2.564 (1.685–3.903) < 0.0001 0.758 0.219 12.021 2.134 (1.39–3.277) 0.001
ALB(g/l) 0.533(0.339–0.838) 0.006 -0.181 0.246 0.537 0.835 (0.515–1.353) 0.464
HGB(g/dl) 0.546(0.310–0.961) 0.036 0.163 0.314 0.268 1.177 (0.636–2.179) 0.605
ISS stage 1.984(1.582–2.487) < 0.0001 0.604 0.132 21.046 1.83 (1.414–2.369) < 0.0001
Risk score 1.823(1.212–2.744) 0.004 0.471 0.211 4.976 1.601(1.059–2.422) 0.026
Bold values indicate statistically significant p values less than 0.05
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(p < 0.0001), del1p32 (p < 0.0001), del1p (p < 0.0001), del1q 
(p < 0.0001), myc_8q24 (p = 0.001), x1qplus (p < 0.0001), 
and hyperdiploid (p < 0.0001) had higher risk score 
(Table 3). But we don’t find the relationship between risk 
score and t (4;14), t (14;20), and t (14;16), because the 

number limitation of MM patients with these cytoge-
netic abnormalities. Further, we analyzed the gene levels 
of five mitophagy-related genes in the risk score formula. 
We observed MM patients with cytogenetic abnormali-
ties had higher VDAC1 expression and lower PINK1 

Fig. 3  The mitophagy-related risk score was an independent prognostic factor in MM. (A). Nomogram predicting 1-, 3-, and 5-year survival for MM pa-
tients based on mitophagy-related genes risk score. To use this nomogram, the specific point for each variable of the patient lies on each variable axis. 
Draw a vertical line upward to determine the point at which each variable accepts; the sum of these points is located on the Total Points axis, and draw a 
vertical line down to the survival axis to determine the probability of 1-, 3- and 5- year overall survival. LDH: lactate dehydrogenase; ISS: international stag-
ing system. (B). ROC curve for the nomogram prognosis system. (C). DCA curve for the nomogram prognosis system. The x-axis represents the threshold 
probability, while the y-axis stands for the net benefits. (D). Calibration plot of the nomogram for 1-year, 3-year, and 5-year OS. The risk score in normal 
donors and MM patients with different stages in GSE6477 (E) and GSE47552 (F). (G). ROC curve for MM with different myeloma stages. DCA: decision 
curve analysis * p < 0.05, ** p < 0.01, *** p < 0.001
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expression (supplementary Table  3). These results indi-
cated mitophagy-related risk signature was associated 
with clinical characteristics of MM, especially cytoge-
netic abnormalities.

To further assess the applicability of the risk signa-
ture model for different MM conditions, we performed 
Kaplan–Meier survival analysis. The risk score showed 
stabilized predictive value in term of ISS stage (ISS I/
II, p = 0.0052, ISS III, p = 0.0079, Fig.  4A and B), gender 
(male, p = 0.0075; female, p = 0.0016, Fig.  4C and D), the 
condition of cytogenetic (no cytogenetic abnormali-
ties, p = 0.022, with cytogenetic abnormalities, p = 0.027, 
Fig. 4E F). Among these, MM patients had the shorter OS 
in higher-risk score group. However, this phenomenon 

was found in young people (p = 0.00096, Fig. 4G), but not 
in older people (p = 0.06, Fig. 4H). In addition, higher risk 
score was related to more adverse OS in MM patients 
received various treatment, including bortezomib 
(p = 0.017, Fig. 4I), thalidomide (p = 0.0013, Fig. 4J), dexa-
methasone (DEX, p < 0.0001, Fig.  4K), and PS341 (pro-
teasome inhibitor, p < 0.0001, Fig.  4L). Taken together, 
the prognostic model satisfied the personalized medical 
needs of MM.

Table 2  The correlation of prognostic risk signature and clinical 
characteristics
Clinical characteristics Number Risk score, 

mean ± SD
P value

Gender 0.265
male 195 -0.0765 ± 0.00019
female 118 -0.0769 ± 0.00023
Age
< 65 236 -0.0767 ± 0.00016 0.959
≥ 65 77 -0.0767 ± 0.00032
Race 0.290
White 270 -0.0766 ± 0.00016
others 43 -0.0771 ± 0.00038
LDH(U/L)
< 150 156 -0.0770 ± 0.00019 0.03
≥ 150 157 -0.0763 ± 0.00022
ALB(g/L)
< 3.5 57 -0.0760 ± 0.00037 0.025
≥ 3.5 256 -0.0768 ± 0.00016
HGB(g/Dl)
< 9 26 -0.0755 ± 0.00068 0.02
≥ 9 287 -0.0768 ± 0.00015
B2M(mg/l) 0.037
< 2.9
≥ 2.9

158
155

-0.0770 ± 0.00019
-0.0764 ± 0.00022

ISS stage
I 194 -0.0768 ± 0.00017 0.022
II 59 -0.0770 ± 0.00038
III 60 -0.0759 ± 0.00034
BMPC, % 0.018
< 46 157 -0.0771 ± 0.00020
≥ 46 156 -0.0762 ± 0.00021
Cytogenetic 
abnormalities

< 0.0001

Yes 117 -0.0759 ± 0.00024
No 196 -0.0771 ± 0.00018
Bone lesions
Yes
No

210
103

-0.0765 ± 0.00018
-0.0769 ± 0.00025

0.243

46% was the media value of BMPC

The bold values indicate statistically different (p < 0.05)

Table 3  Impact of risk-score on the most common cytogenetic 
abnormalities of multiple myeloma (GSE136337)
Cytogenetic 
abnormalities

Number Risk score, 
mean ± SD

P value

del13q < 0.0001
False 349 -0.0574 ± 0.0026
Ture 77 -0.0561 ± 0.0025
del11q
False 418 -0.0572 ± 0.0026 0.273
Ture 8 -0.0562 ± 0.0019
del17p 0.181
False 422 -0.0572 ± 0.0026
Ture 4 -0.0555 ± 0.0023
del16q
False 412 -0.0572 ± 0.0026 0.093
Ture 14 -0.0560 ± 0.0024
del1p32
False 341 -0.0574 ± 0.0026 < 0.0001
Ture 85 -0.0527 ± 0.0026
del1p
False 336 -0.0574 ± 0.0026 < 0.0001
Ture 90 -0.0563 ± 0.0026
del1q < 0.0001
False
Ture

339
87

-0.0574 ± 0.0026
-0.0563 ± 0.0026

amp1q
False 422 -0.0572 ± 0.0026 0.314
Ture 4 -0.0559 ± 0.0039
myc_8q24 0.001
False 406 -0.0573 ± 0.0026
Ture 20 -0.0554 ± 0.0025
x1qplus < 0.0001
False 324 -0.0575 ± 0.0026
Ture 102 -0.0562 ± 0.0024
T (11,14)
False
Ture

404
22

-0.0572 ± 0.0026
-0.0574 ± 0.0030

0.704

hyperdiploid < 0.0001
False 341 -0.0575 ± 0.0026
Ture 85 -0.0561 ± 0.0024
Bold values indicate statistically significant p values less than 0.05
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Gene expression and functional pathway enrichment 
analysis of mitophagy-related risk signature in MM
To further explore the underlying mechanisms of 
mitophagy-related genes in MM, we used limma pack-
age to get DEGs in GSE24080 based on the risk score. A 
total of 83 increased genes and 80 decreased genes were 
discerned (supplementary Fig.  4A and supplementary 
Table  4). Enrichment analysis of DEGs uncovered that 
upregulated genes were markedly enriched in mitotic 
cell cycle, ATPase activity, and ATP binding in GO term 

(supplementary Fig. 4B), and p53 signaling pathway, cell 
cycle, Hippo signaling pathway, FoxO signaling pathway, 
and TGF-beta signaling pathway in KEGG (supplemen-
tary Fig. 4C). Downregulated genes were overtly enriched 
in term of immune response, cytokine production, T cell 
receptor binding, and Toll-like receptor binding in GO 
term (Fig. 5A), and Hematopoietic cell lineage, cell adhe-
sion molecules, and Th17 cell differentiation in KEGG 
(Fig. 5B). Moreover, GSEA revealed that high-risk group 
significantly enriched tumorigenesis and mitochondrial 

Fig. 4  Survival analysis in different subgroup. Kaplan–Meier survival analysis of MM patients grouped by ISS stage I/II/III (A, B), male and female (C, D), no 
cytogenetic abnormalities and with cytogenetic abnormalities (E, F), age < 65 and ≥ 65 (G, H), bortezomib treatment and thalidomide treatment (I, J) in 
GSE24080. Kaplan–Meier survival analysis of MM patients stratified by dexamethasone treatment and PS341 treatment (K, L) in GSE9782.
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Fig. 5  Enrichment analysis of mitophagy-related risk signature. Gene ontology and KEGG pathway enrichment analysis of DEGs in GSE24080 dataset 
grouped by risk score. (A). The significantly enriched gene ontology biological process (GOBP) of downregulated DEGs. (B). The significantly enriched 
KEGG pathway of downregulated DEGs. (C). GSEA analysis results of KEGG gene set, HALLMARK gene set, and GOBP gene set. NES, normalized enrichment 
score; FDR, false discovery rate
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terms, including cell cycle (NES=-2.23, p < 0.0001, 
FDR = 0.012), p53 signaling pathway (NES=-1.62, 
p = 0.008, FDR = 0.076) in KEGG gene set, MYC targets 
(NES=-2.48, p < 0.0001, FDR = 0.0005), G2M checkpoint 
(NES=-2.25, p < 0.0001, FDR = 0.001), E2F target (NES=-
2.17, p < 0.0001, FDR = 0.003), and mTORC1 signaling 
(NES=-1.92, p = 0.014, FDR = 0.013) in HALLMARK gene 
set, and ribosome biogenesis (NES=-2.51, p < 0.0001, 
FDR = 0.004), and mitochondrial gene expression (NES=-
2.30, p = 0.002, FDR = 0.004) in GOBO gene set (Fig.  5C 
and supplementary Fig. 4D).

Immune infiltration was related to the mitophagy-related 
risk signature
Due to the significantly enrichment of immune response 
in downregulated DEGs in MM patients, ESTIMATE was 
performed to assess the different immune infiltration lev-
els of MM patients in different risk group. First, Kaplan-
Meier analysis revealed that low stromal score, immune 
score and ESTIMATE score were associated with adverse 
OS, while high tumor purity was associated with poor OS 
(Fig.  6A). In addition, MM patients had lower levels of 
stromal score, immune score and ESTIMATE score in the 
high-risk group, and higher levels of tumor purity in both 
training cohort and validation cohort (Fig.  6B C). Fur-
thermore, we conducted ssGSEA to probe the disparate 
immune cell subsets based on the risk score. The results 
found 19 of 28 immune cells were notably dysregulated in 
high-risk group (Fig. 6D). Activated B cell, central mem-
ory CD4 T cell, activated dendritic cell, central memory 
CD8 T cell, CD56 bright killer cell, effector memory CD8 
T cell, immature B cell, nature killer cell, nature killer T 
cell, and type 17 T helper cell, participated in anti-tumor 
immune response, were all decreased in high-risk group. 
Besides, the levels of immature dendritic cell, regulatory 
T cell, MDSC, macrophage and mast cell, belonging to 
immunosuppressive cells, were also decreased in MM 
patients with high-risk score.

Moreover, we explored the relation between risk score 
and immune checkpoint, which was regarded as poten-
tial therapy targets for MM [28]. Intriguingly, the results 
showed that risk score was connected with immune 
checkpoint negatively, including IDO1, CD276, CD86, 
PD-L1, and PD-L2, while positively related to CD279 
(Fig.  7A). Taken together, the prognostic risk score was 
connected with tumor immune infiltration levels and 
genes involved in immune checkpoint. Therefore, our 
research verified the immune checkpoint inhibitors, 
including PD-L1, IDO1, CD276, CD86 had potential clin-
ical values for MM patients.

Validation for mitophagy-related genes in MM samples
To validate these results of bioinformatic analysis, we 
collected the mononuclear cells of NDMM patients and 

healthy donors in bone marrow. Then, the qRT-PCR was 
executed. We observed the expression levels of VDAC1 
were markedly upregulated in MM patients than that in 
healthy donors (P = 0.0056, Fig. 7B), while the expression 
levels of PINK1 and HUWE1 were downregulated in MM 
patients (P = 0.001, P = 0.019, Fig.  7C and D). Although, 
the expression level of VPS13C was lower and ATG13 
was higher in MM patients than these in controls, no evi-
dent differences were observed (P = 0.14, P = 0.838, Fig. 7E 
F), maybe for the reason of insufficient sample size.

Prediction of possible drugs for MM upon risk score 
signature
To further identified potential drugs for MM, we 
explored the estimated half-maximal inhibitory concen-
tration (IC50) between the two group on the bias of the 
Genomics of Drug Sensitivity in Cancer (GDSC). We 
found decreased IC50 of 16 drugs in MM patients with 
high-risk score, including bortezomib and lenalidomide, 
which are widely used in MM therapy (Fig.  8). Besides, 
the estimated IC50 of ABT.263 (bcl-2 inhibitor), ABT. 888 
(PARP inhibitor), AICAR (AMPK activator), ATRA (all-
trans retinoic acid), dasatinib (tyrosine kinase inhibitor), 
AZD8055 (mTOR inhibitor), erlotinib (EGFR inhibitor), 
etoposide, MG.132 (proteasome inhibitor), parthenolide 
(HDAC inhibitor), rapamycin (mTORC1 complex inhibi-
tor), and thapsigargin (ATPase inhibitor) were also lower 
in high-risk score group (Fig.  8), which might provide 
novel insights into MM treatment. To sum up, the risk 
score can be considered as an index to choose appreciate 
therapeutic targets for MM precisely.

Discussion
As the second most common hematological malignancy, 
MM remains incurable because of drug resistance and 
relapse [29]. There is no excellent survival prediction for 
MM so far. Mitophagy is a vital cellular progress, which 
results in degradation of dysfunctional mitochondria. 
Several proteins have been reported involved in mitoph-
agy, including PINK1, Parkin, OPTN, ATG13, and p62/
SQSTM1, and FUNDC1, etc. [30]. Up to now, increasing 
researches have revealed that mitophagy acts essential 
part in the development and drug sensitivity of various 
cancers, especially in MM. It has been reported that Par-
kin/PARK2 carried mutation in glioma [31], lung cancer 
[32], and breast cancer [33]. In addition, the expression 
of thioredoxin was notably increased in MM cells, which 
resistant to bortezomib. Increased thioredoxin increased 
resistance to bortezomib in MM via mitophagy inac-
tivation [34]. However, as far as we known, there is no 
research focus on the potential relationship between 
mitophagy-related genes and MM prognosis.

Herein, we constructed a five-mitophagy-related risk 
signature for MM. The prognostic model worked well in 
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Fig. 6  Immune infiltration was related to the mitophagy-related risk signature. (A). Kaplan-Meier survival analysis upon stromal score, immune score, 
ESTIMATE score, and tumor purity. (B). The distribution of stromal score, immune score, ESTIMATE score, and tumor purity upon risk score in GSE24080. (C). 
The distribution of stromal score, immune score, ESTIMATE score, and tumor purity upon risk score in GSE9782. (D). The heatmap of the comparison in 28 
immune-related gene sets upon risk score in GSE24080. * p < 0.05, ** p < 0.01, *** p < 0.001
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both training and validation cohort via ROC curve and 
Kaplan-Meier survival analysis. Further enrichment anal-
ysis displayed that the DEGs between high- and low-risk 
groups were observably enriched in term of cell cycle, 
ATP-binding, and tumor-related pathways. Immune 

infiltration analysis had manifested that MM patients in 
high-risk score group suffered a notably decreased condi-
tion of antitumor immune activity. Finally, drug sensitiv-
ity analysis provided potential strategies for treating MM.

Fig. 7  Validations for mitophagy-related genes in clinical MM samples. (A). Correlation analysis between risk score and immune checkpoint for tumor-
targeted treatment. The mRNA expression of VDAC1 (B), PINK1 (C), HUWE1 (D), VPS13C (E), and ATG13 (F) by qRT-PCR in primary bone marrow mono-
nuclear cells from NDMM and normal donors. Data represent the mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001
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Fig. 8  Prediction of potential drugs for MM based on risk score signature.  The distribution of the IC50 of various drugs upon risk score in GSE24080.
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In our study, the mitophagy-related risk signature 
consists of VDAC1, PINK1, VPS13C, ATG13, and 
HUWE1, which can accurately predict MM progno-
sis. MM patients in high-risk score group suffered more 
adverse OS. Our findings are consistent with previous 
studies. VDAC1(voltage-dependent anion channel 1), a 
main factor in the outer mitochondrial membrane, was 
upregulated in multiple cancers, including lung cancer 
[35], breast tumor [36], cervical tumor [37], and liver 
cancer [38]. Overexpressed VDAC1 was a prognostic 
element and was related to immune infiltrates in breast 
cancer [36]. Besides, VDAC1 involved in bromodomain 
inhibitor resistance in breast cancer [39]. VDAC1 was 
upregulated in mesothelioma patients. The expression 
levels of VDAC1 were positive related to disease stage 
and high expression of VDAC1 had correlation with 
shorter survival rates. Loss of VDAC1 could inhibit cell 
propagation in mesothelioma cancer cells [40]. PINK1 
(PTEN-induced kinase 1)/Parkin was a classical axis to 
regulate mitophagy in mammalian cells [41]. Previous 
researches uncovered that PINK1 and Parkin decreased 
in colorectal cancer [42]. Loss of PINK1 restrained 
mitophagy, facilitated the Warburg effect, and pro-
moted macrophages polarization in gastric cancer [43]. 
Besides, another study found PINK1 was reduced in 
MM and regulated the MOB1B-mediated Hippo‐YAP/
TAZ pathway leading to MM migration and homing [44]. 
Matrine, a natural alkaloid, accelerated the apoptosis of 
liver cancer cells by intercepting the PINK1/Parkin path-
ways and restraining mitophagy [45]. Consistent with 
our research, Li et al. identified an autophagy-related 
signature for MM prognosis, which contained PINK1, 
EIF2AK2, KIF5B, MYC, NRG2, and VEGFA [46]. These 
finding revealed the important role of PINK1 in MM. 
Recent study revealed that VPS13C (vacuolar protein 
sorting 13 homolog C) was descended and associated 
with poor prognosis in skin cutaneous melanoma [47]. 
ATG13 (autophagy related 13) is a member of autophagy 
initiation complex. ULK1 could active autophagy via 
phosphorylating ATG13 to inhibit the progress of breast 
cancer [48]. Zhou et al. reported that estrogen receptor α 
(ERα) could bind the promoter of ATG13 leading to the 
increasing of mitophagy. Erα inhibitor oxabicycloheptene 
sulfonate could reduce the expression of ATG13, leading 
to restrain the viability of breast cancer cells [49]. Niu et 
al. reveled that chemotherapy drug licochalcone A could 
active the upstream of autophagy ULK1/ATG13 com-
plex, inducing hepatocellular carcinoma cells apoptosis 
by inducing autophagy [50]. Previous studied demon-
strated HUWE1 played disparate role in different tumors, 
as an oncogene in liver cancer, lung cancer, colon adeno-
carcinoma, and stomach adenocarcinoma, whereas an 
antioncogene in skin tumors, and thyroid cancer [51]. 
The reason for the opposite function of HUWE1 in 

tumor may be the different tumor microenvironment and 
genetic backgrounds. The function and mechanism of 
these five mitophagy-related genes in various tumors had 
been overwhelmingly illustrated. However, the further 
study is urgently needed to be conducted in MM.

GSEA results indicated oncogene-related gene set, 
including MYC targets, E2F target, and mTORC1 signal-
ing was significantly associated with high-risk group. Our 
findings were in line with the lower rapamycin IC50 in the 
high-risk group by subsequently drug sensitivity analysis, 
revealing the potential role of mTOR inhibitors in MM 
therapy. In fact, there is a cross-talk between mTOR sig-
naling pathway and ubiquitin proteasome system [52]. 
The combination of these drugs offers multiple possi-
bilities for treating MM. A clinical trial aims to RRMM 
(NCT00483262) uncovered the synergistic effect of bort-
ezomib and mTOR inhibitor. In this clinical trial, 14 of 43 
MM patients obtained partial response or better [53].

The results of ESTIMATE and ssGSEA disclosed that 
MM patients with high-risk score suffered lower levels 
of stromal score, immune score and ESTIMATE score, 
whereas higher levels of tumor purity. Besides, cell pop-
ulations participated in anti-tumor immune response, 
such as, immature B cell, central memory CD4 T cell, 
type 17 T helper cell, central memory CD8 T cell, CD56 
bright killer cell, effector memory CD8 T cell, nature 
killer cell, and nature killer T cell, were all markedly 
reduced in high-risk score group. Research has confirmed 
the essentials of mitochondrial dynamics in immune cells 
[54]. Paul et al. revealed the elevation of mitophagy facili-
tated anti-tumor immunity in intestinal epithelial cells 
by activated CD8 T cell through cross-dressing of den-
dritic cells [55]. Moreover, the activation of anti-tumor 
immune cells demands energy. The lessen antitumor 
activity of immune cells may be associated with mitoph-
agy dysfunction [56]. In addition, the levels of immature 
dendritic cell, regulatory T cell, MDSC, macrophage and 
mast cell, belong to immunosuppressive cells, were also 
decreased in high-risk score group. A study revealed that 
macrophages was as a harmful prognostic index in innate 
immunity [57]. To sum up, the results indicated the tight 
correlation between mitophagy-related risk score and 
immunosuppression, which may explain the reason of 
poor prognosis in MM patients with high risk.

New strategies for the treatment of tumors focus on 
immune checkpoint inhibitors. We ulteriorly probed 
the correlation between risk score and immune check-
point. These results disclosed that risk score had negative 
association with immune checkpoint, including IDO1, 
CD276, CD86, PD-L1, and PD-L2, which indicated inhib-
itors targeting checkpoints, such as PD-L1 may be less 
valid in MM patients in high-risk score group. However, 
a clinical trial has been reported that RRMM patients 
with extramedullary disease obtained benefit from the 
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combination of PD-L1 inhibitor avelumab with radio-
therapy [58]. Therefore, these findings suggested that 
mitophagy status and sensibility to immune checkpoints 
may be heterogeneous between primary and recurrent 
MM patients.

However, there are still some limitations in our study. 
First, the expression of five-mitophagy-genes were veri-
fied only in mRNA level, and the expression at protein 
level should be further clarified. Second, the nomogram 
model was not be applied in validation cohort, due to the 
lack of clinical information in the two independent data-
sets. Third, the function of the five-mitophagy-genes in 
MM has not yet to be cleared. Therefore, further experi-
ments in vitro and in vivo need to be conducted.

Conclusions
In conclusion, we constructed a five-mitophagy-genes 
(VDAC1, PINK1, VPS13C, ATG13, and HUWE1) prog-
nostic risk model, which as an independent element for 
MM OS, could estimate the survival of MM accurately 
and stably both in training and validation cohorts. The 
molecular landscape characteristics upon the risk score, 
including the regulatory pathways, immune infiltration 
level, and potential drug targets, improved our cogni-
tion for MM, which provide novel insights into MM 
treatment.
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