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Abstract 

Background  The epithelial-mesenchymal transition (EMT) plays an indispensable role in the development and pro-
gression of Endometrial cancer (EC). Nevertheless, little evidence is reported to uncover the functionality and applica-
tion of EMT-related molecules in the prognosis of EC. This study aims to develop novel molecular markers for progno-
sis prediction in patients with EC.

Methods  RNA sequencing profiles of EC patients obtained from The Cancer Genome Atlas (TCGA) database were 
used to screen differential expression genes (DEGs) between tumors and normal tissues. The Cox regression model 
with the LASSO method was utilized to identify survival-related DEGs and to establish a prognostic signature whose 
performance was evaluated by Kaplan–Meier curve, receiver operating characteristic (ROC) and calibration curve. 
Eventually, functional enrichment analysis and cellular experiments were performed to reveal the roles of prognosis-
related genes in EC progression.

Results  A total of 540 EMT-related DEGs in EC were screened, and subsequently a four-gene risk signature com-
prising SIRT2, SIX1, CDKN2A and PGR was established to predict overall survival of EC. This risk signature could serve 
as a meaningfully independent indicator for EC prognosis via multivariate Cox regression (HR = 2.002, 95%CI = 1.433–
2.798; P < 0.001). The nomogram integrating the risk signature and clinical characteristics exhibited robust validity 
and performance at predicting EC overall survival indicated by ROC and calibration curve. Functional enrichment 
analysis revealed that the EMT-related genes risk signature was associated with extracellular matrix organization, 
mesenchymal development and cellular component morphogenesis, suggesting its possible relevance to epithelial-
mesenchymal transition and cancer progression. Functionally, we demonstrated that the silencing of SIX1, SIRT2 
and CDKN2A expression could accelerate the migratory and invasive capacities of tumor cells, whereas the downregu-
lation of PGR dramatically inhibited cancer cells migration and invasion.

Conclusions  Altogether, a novel four-EMT-related genes signature was a potential biomarker for EC prognosis. These 
findings might help to ameliorate the individualized prognostication and therapeutic treatment of EC patients.
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Introduction
Endometrial cancer (EC), one of the most common 
gynecological malignancies, has an increasing incidence 
and disease-associated mortality worldwide and in China 
over the past decade [1, 2]. The histological grading of 
endometrial cancer is mainly based on the range of firm-
ness in the tumor, and the grading criteria are as follows: 
Grade 1, solid growth pattern ≤ 5%; Grade 2, solid growth 
pattern 6% ~ 50%; Grade 3, solid growth pattern > 50%. In 
addition, depending on the area of the nucleus, the final 
tumor grade can be increased by one [3]. According to 
the pathogenesis and histological characteristics, endo-
metrial cancer can be commonly divided into estrogen-
dependent (type I) and estrogen-independent (type II) 
[4]. The type I EC is relevant to unopposed estrogen 
stimulation, comprising low-grade cells that are more 
common and have a favorable prognosis, whereas the 
type II EC is not estrogen driven, comprising high-grade 
cells that are less common and have an unfavorable out-
come. Most of the type I EC were endometrioid adeno-
carcinoma, and a few were mucinous adenocarcinoma, 
and the type II EC include serous carcinoma, clear cell 
carcinoma and carcinosarcoma [4].

EC is commonly diagnosed at an early stage as it pre-
sents with symptoms in its initial phases [5]. 67.5% of 
women with EC were diagnosed with localized disease 
with 5-year survival rate of 94.9%. However, a large pro-
portion of EC patients diagnosed with metastatic state, 
the 5-year survival rate plummets to 18.4%, which dispro-
portionately adds to the overall mortality rate [6]. Despite 
being an increasingly prevalent malignancy, progress 
towards improving the survival rate of women affected by 
EC has been limited over the years [7]. Therefore, discov-
ering molecular biomarkers linked to EC metastasis and 
prognosis becomes a critical need for effective disease 
management.

The transformation of epithelial cells to mesenchy-
mal cells has convincingly been known to enhance cell 
invasiveness, making epithelial-mesenchymal transition 
(EMT) a key process in the development and progression 
of malignant tumors [8]. EMT is the dynamic process of 
transforming malignant epithelial cells into mesenchy-
mal cells. During this process, mesenchymal markers 
such as N-cadherin [9] and vimentin [10] are upregulated 
while epithelial markers like E-cadherin [9]) are down-
regulated. EMT is found to be highly associated with 
poorer prognosis in patient groups with multiple can-
cers, including breast [11], lung [12], head and neck [13], 
or ovarian cancer [14]. EMT-related signaling pathways 
have thus become an attractive therapeutic target [15], 
particularly inextricably linked to the progression of EC 
[16]. In fact, recent studies have found that EMT-related 
molecular markers are significantly relevant to poor 

clinical outcomes in patients with EC [17]. As a result, 
EMT-related genes may be capable of serving as predic-
tors of clinical prognosis for patients with EC.

In the current study, through mining EC High through-
put sequencing data from The Cancer Genome Atlas 
(TCGA) database, we aim to construct a risk signature 
based on EMT-related genes to predict the survival of EC 
patients and to analyze the biological function of EMT-
related genes.

Materials and methods
EC Datasets and EMT‑Related Genes
By searching for the keywords “Epithelial-to-mesen-
chymal transition” or “EMT” in the GeneCards (https://​
www.​genec​ards.​org/; access to 2022–4-28) which is com-
prehensive, authoritative compendium for searchable 
human gene annotations, genes associated with EMT 
were screened by Category with “Protein Coding” and 
relevance score > 5.0 for inclusion and there were 701 
candidate genes in the follow-up study. Gene expres-
sion profiles and clinical information of EC patients of 
TCGA database were downloaded from the UCSC Xena 
public platform (http://​xena.​ucsc.​edu/). The RNA-seq 
data was normalized by log2(x + 1). There were includ-
ing 543 EC malignant tumor samples and 35 normal 
samples for comparison of gene expression differences. 
After excluding cases without complete survival time 
and status information, 542 EC patients were included 
for subsequent survival analysis (shown in Table S1). Six 
datasets including GSE56087, GSE106191, GSE17025, 
GSE115810, GSE36389 and GSE63678 were collected 
from the GEO database (http://​www.​ncbi.​nlm.​nih.​gov/​
geo/) for comparisons of gene expression between can-
cer and normal tissues. The basic information of six GEO 
datasets was showed in Table S2.

Establishment of genes risk signature
Differentially expressed genes (DEGs) between cancer 
and normal tissues were generated using nonparametric 
Wilcoxon rank-sum test and corrected with the Benja-
mini–Hochberg procedure. Genes with an adjusted 
P < 0.05 were considered as differentially expressed genes. 
Univariate Cox regression analysis was applied to identify 
candidate prognostic genes. LASSO-Cox regression anal-
ysis was performed to filter and select genes associated 
with survival based on the best value of lambda. Subse-
quently, the stepwise multivariate Cox regression analysis 
was used to further select candidate genes. A risk signa-
ture was established according to the stepwise Cox 
regression coefficient multiplied by its gene expression. 
The risk score formula was constructed as follows: risk 

score = 
N

i=1

(Expi ∗ Coei)(N: the number of selected EMT-
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related genes;  Expi:the expression value of each EMT-
related gene;Coei:multivariate Cox regression 
coefficient).

Patients with EC were assigned to the high-risk group 
(N = 271) and the low-risk group (N = 271) according to 
the median risk scores. Kaplan–Meier curves were used 
to evaluate the correlation between genes expression and 
overall survival (OS), as well as progression-free interval 
(PFI) and disease-free interval (DFI), tested by Log-Rank 
test. If the median survival time (MST) between groups 
could not be calculated, the mean survival time was used 
instead. A nomogram was constructed to investigate the 
probability of 1-, 3-, 5- and 10-year OS of EC. The cali-
bration curve was plotted to assess whether the predict 
probability was in agreement with actual rate in the 
nomogram.

Functional enrichment analysis
The GENIE3 algorithm of R package was used to con-
struct a gene regulatory network, which was visualized 
by Cytoscape 3.7.1. The top 200 hub genes were obtained 
with Maximal Clique Centrality (MCC) algorithm by 
CytoHubba, a plug-in of Cytoscape. The Gene ontology 
(GO) analysis was initially carried out using R cluster-
Profiler. Then GO and Kyoto encyclopedia of genes and 
genomes (KEGG) pathway enrichment analyses [18] were 
also validated via Metascape (http://​metas​cape.​org). GO 
terms and KEGG pathways with BH-corrected P < 0.05 
were considered as significant.

Tissue specimens
Forty-two paired EC and their adjacent non-cancer tis-
sues from EC patients who provided informed writ-
ten consent, were obtained from Affiliated Hospitals of 
Guangzhou Medical University. The study was approved 
by the Ethics Committee of Guangzhou Medical Uni-
versity. The clinicopathological characteristics for these 
patients were presented in Table S3.

Cell culture
Human EC cell lines Ishikawa and HEC-1-B were pur-
chased from Biospecies (Guangzhou, China). The Ishi-
kawa and HEC-1-B cells were cultured using RPMI-1640 
medium (No.C11875500BT, Thermo Fisher scientific, 
Beijing, China). The growth culture medium was sup-
plemented with 10% fetal bovine serum (No.10099141C, 
Life Technologies, Auckland, New Zealand) and peni-
cillin–streptomycin (No. 15140122, Life Technologies, 
Grand Island, USA) in the moist incubator at 37 °C with 
5% CO2.

Cell transfection
Small interfering RNAs (siRNAs) were designed, syn-
thesized and obtained from GenePharma Co, Ltd. 
(No. A10001, Suzhou, China). The siRNA sequences 
are shown in Table S4. The introduction of plasmids 
was accomplished by GP-transfect-Mate (No. G04008, 
GenePharma, Suzhou, China) as demanded, and cells 
were harvested 24 h after transfection.

Quantitative real‑time PCR
Total RNA was extracted from endometrial cancer cells 
with the help of TRIzol reagent (No.15596018, Life 
Technologies, Carlsbad, USA), and then reverse tran-
scribed into cDNA utilizing PrimeScript RT reagent 
Kit with gDNA Eraser kit (No. RR047A, Takara, Dalian, 
China). The qPCR reactions were conducted with SYBR 
Premix Ex Taq II (No. RR820A, Takara, Dalian, China) 
on StepOne Plus Real Time PCR System (Life Tech-
nologies, Carlsbad, USA). The qRT-PCR thermal pro-
file started with an initial denaturation at 95 °C for 30 s, 
followed by 40 cycles at 95 °C for 5 s and 60 °C for 30 s. 
Applying the 2−△△Ct method, relative gene expression 
was analyzed. β-actin was performed as an internal ref-
erence to normalize the expression levels of each gene. 
Primers are shown in Table S5.

Transwell assay
Transwell (No.3422, Corning, Kennebunk, USA) and 
Matrigel invasion chambers (No.354480, Corning, Ken-
nebunk, USA) were applied to detect cell migration 
and invasion. Non-serum medium containing trans-
fected cells (1 × 105/well) was added to the upper insert, 
whereas 20% serum-contained medium was added into 
the lower insert. After incubation at 37 °C for 24 h, cells 
remained in upper chambers were scrubbed off by the 
cotton swab, and migrated cells on the bottom surface 
were fixed with 4% PFA and stained with 0.1% crystal 
violet. Stained cells were captured utilizing the optical 
microscope and Image-Pro Express software. The area 
occupied by the cells in the figure was obtained using 
the ImageJ.

Wound healing assay
A monolayer of cells was cultured in 96-well ImageLock 
plates (No.4379, Essen BioScience, Ann Arbor, USA). 
The wound space was created by WoundMaker (Essen 
BioScience, Ann Arbor, USA). After being washed with 
PBS, the cells were incubated with 10% serum-contained 
medium and permitted to migrate for 48 h. Micrographs 
were taken and wound space were measured every six 

http://metascape.org
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hours using IncuCyte ZOOM Live-Cell Analysis System 
(Essen BioScience, Ann Arbor, USA).

Immunohistochemistry (IHC)
In order to explore the protein expression levels of prog-
nostic genes in EC, immunohistochemical figures of 
SIRT2, SIX1, CDKN2A and PGR in EC and normal endo-
metrium tissues were obtained from The Human Pro-
tein Atlas (https://​www.​prote​inatl​as.​org/). SIX1, SIRT2, 
CDKN2A and PGR were incubated with antibodies 
HPA001893, HPA011165, CAB000093 and HPA004751, 
respectively.

Western blot
Western blot analysis was performed as previously 
described [19]. Total protein in cells or tissues was 
extracted by RIPA solution (GenePharma) and the pro-
tein concentration was measured by BCA Protein Assay 
Kit (Beyotime). Then, equal amounts of protein sam-
ples were loaded into each well and separated by 10% 
SDS-PAGE and then transferred onto a PVDF mem-
brane (Millipore, Billerica, MA, USA). Next, the mem-
brane was cultivated with primary antibodies against 
SIRT2 (#AF5256, 1: 1000, Affinity Biosciences, China), 
SIX1 (#DF4129, 1:1000, Affinity Biosciences, China), 
CDKN2A (#AF5484, 1:500, Affinity Biosciences, China), 
PGR (#AF6106, 1: 1000, Affinity Biosciences, China) and 
GAPDH (ab181603, 1:1 000, abcam) at 4  °C overnight. 
The membrane was washed with PBST for three times. 
Then the membrane was incubated with the horserad-
ish peroxidase (HRP)-conjugated secondary antibodies 
(ab6721, 1:1000, abcam). The bands were visualized using 
a chemiluminescence detection kit (Beyotime).

Statistical analysis
Continuous variables were shown as mean ± standard 
deviation (SD) and categorical variables were expressed 
as counts (percentages). To calculate the false discovery 
rate (FDR) for the LASSO-Cox results, the empirical 
extension of the lasso penalty method was execute pro-
posed by previous evidence [20]. Before meta-analysis, 
the genes expression values from the TCGA and 6 differ-
ent GEO datasets were normalized with “scale” function 
and performed batch effect corrections with “ComBat” 
function using “sva” R package. Meta-analysis was per-
formed with “meta” in R software. In the heterogeneity 
test, if the P value ≥ 0.05 and I2 ≤ 50%, the fixed effect 
model will be employed; whereas if the P value < 0.05 
and I2 > 50%, then a random effect model will be utilized. 
All statistical analyses were performed using R. software 
version 4.0.2 and P < 0.05 was considered as statistically 
significant.

Results
Four EMT‑related genes were selected in EC
Based on the inclusion criteria, 701 EMT-related genes 
were searched in the GeneCards. Among them, there 
were 700 candidate genes which had gene expression in 
the TCGA EC samples. A total of 540 DEGs with 181 up-
regulated genes and 359 down-regulated EMT-related 
genes were screened from the TCGA database (Fig. 1 A). 
Next, univariate Cox regression analysis was performed. 
There were 278 EMT-related genes significantly associ-
ated with EC survival (Fig. 1 B). The details are shown in 
Table S6. Subsequently, these 278 EC prognosis-related 
genes were filtered by LASSO Cox regression analysis.

The optimal parameters consisting of nine prognos-
tic genes (i.e., SIRT2, PGR, SPDEF, SIX1, NTS, ERBB2, 
CDKN2A, MSX1, ALK) as well as their corresponding 
coefficients were identified (Fig. 1 C and D), which cor-
responded to a false discovery rate (FDR) value of less 
than 0.05. The results of stepwise Cox regression analysis 
were used to further calculate the relationship between 
the 9 EMT-related genes and overall survival, and finally 
4 EMT-related genes (SIRT2, SIX1, CDKN2A and PGR) 
were identified. SIRT2, SIX1 and CDKN2A were risk fac-
tors for poor prognosis of EC (HR > 1), meanwhile PGR 
was a protective factor (HR < 1) (Fig.  1 E). The above 
results were further validated according to Kaplan–Meier 
survival curves, and four genes were significantly associ-
ated with overall survival in EC (Fig. 2). When compared 
with those with low expression levels, EC patients with 
gene high expression had shorter mean survival time (For 
SIRT2: 33.6 months vs. 42.6 months, P = 0.0043; for SIX1: 
36.1 months vs. 40.1 months, P = 0.00016; for CDKN2A: 
33.3  months vs. 42.9  months, P < 0.0001). On the con-
trary, patients with high PGR expression had longer 
mean survival time than those with low expression levels 
(39.5 months vs. 36.7 months, P = 0.00079).

Furthermore, the associations between 4 EMT-related 
genes and progression-free interval (PFI), as well as dis-
ease-free interval (DFI), were also analyzed. As shown 
in Supplementary Figures S2 and S3, the expression of 
SIRT2, SIX1 and CDKN2A was negatively correlated with 
PFI, and PGR was positively associated with PFI. How-
ever, no remarkable association was found for these 4 
genes with DFI.

Investigating the gene expression patterns in stages of 
EC may provide a deeper understanding of the underly-
ing molecular mechanisms associated with disease pro-
gression, we then further analyzed the associations of 
540 DEGs with EC progression, and found that among 
these EMT-related DEGs, there were 11 genes (including 
FGF10, FAP, CD82, CDK6, NRP2, EGR1, EDNRA, FZD7, 
KIT, JUN and HSPA1A) significantly associated with EC 
stage (shown in Fig S1, all P < 0.05). However, for the four 

https://www.proteinatlas.org/
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candidates, there were no notable relationships of SIRT2, 
SIX1, CDKN2A and PGR with EC stage (all P > 0.05).

Four EMT‑related genes expression in EC tissues
Compared with normal tissues, the expression of 
CDKN2A and SIX1 was significantly upregulated 

(P < 0.001), and oppositely the PGR and SIRT2 expres-
sion was significantly downregulated in EC tissues in 
the TCGA dataset (P < 0.001, Fig. 3A). The GEO datasets 
and the EC tissue specimens collected from the hospi-
tal for this study served as external validation. A total 
of six GEO datasets were included in the meta-analysis 

A

B

C

D

E

Fig. 1  Screening EMT-related genes used for constructing the risk signature for EC. A The circle shows that these 540 EMT-related genes are 
differentially expressed between cancer and normal tissues. The inner layer presents the genes expression in cancer tissues, and the outer layer 
shows the genes expression in normal tissues. B The circle represents 278 EMT-related genes significantly associated with EC survival. C The most 
appropriate log (Lambda) value in the LASSO model. D The LASSO coefficient profiles of the EMT-related prognostic genes. E Multivariate Cox 
regression analysis was performed and four EMT-related genes (SIRT2, SIX1, CDKN2A and PGR) were selected to construct the risk signature. Blue 
square: HR < 1; red square: HR > 1; green bar: HR (95%CI)
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based on the inclusion criteria. SIX1 expression in tumor 
tissues was significantly higher than normal tissues in 
GSE17025, GSE36389, GSE11580, GSE11580 and the 
current study datasets. SIRT2 expression in tumor tissues 
was significantly higher than normal tissues in GSE11580 
datasets. CDKN2A expression in tumor tissues was sig-
nificantly higher than normal tissues in GSE17025, 
GSE36389 and GSE11580 datasets. PGR expression in 
tumor tissues was significantly lower than normal tissues 
in GSE17025, GSE106191 and the current study datasets 
(Fig.  3A). Meta-analysis demonstrated that the P-values 
of SIX1 and CDKN2A were less than 0.01 using a ran-
dom-effects model, suggesting that their expression in 
EC was significantly higher than normal tissues, while the 
opposite was observed for SIRT2 (Fig. 3B).

To access the protein expression of the genes in the 
tissues, we used The Human Protein Atlas to obtain 
the immunohistochemistry figures for each gene. From 
Fig. 3C, we could distinctly notice that compared to nor-
mal endometrial tissues, SIX1 and CDKN2A proteins 
were significantly up-regulated and PGR protein was 
significantly down-regulated in cancer tissues. However, 

SIRT2 protein was not detected in both cancer and nor-
mal tissues.

To further confirm the aforementioned findings, we 
examined the protein levels of the four EMT-related 
genes in 42 pairs of EC tissues. Our results revealed a sig-
nificant increase in CDKN2A and SIX1 protein expres-
sion in EC tissues compared to their corresponding 
paracancer tissues. Conversely, PGR protein expression 
was significantly decreased in the EC tissues. Unfortu-
nately, SIRT2 expression did not show any significant var-
iation between normal and cancerous tissues (Fig. 3D).

Four EMT genes‑based risk score model construction 
and assessment
Based on the stepwise Cox regression model, a prog-
nostic risk score formula for EC was established. Risk 
score = (SIRT2 × 0.2879) + (PGR × -0.1125) + (SIX1 × 
0.1228) + (CDKN2A × 0.1001). This formula was used 
to calculate the risk score for each patient. The prog-
nostic value of the risk score was assessed by univari-
ate and multivariate Cox regression analysis. Figure  4A 
demonstrates the ability of the risk score to serve as an 

Fig. 2  Kaplan–Meier survival curves for the four EMT-related genes in EC
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independent prognostic indicator for EC (HR = 2.718, 
95% confidence interval [CI] = 2.036–3.629. P < 0.001; 
HR = 2.002, 95% CI = 1.433–2.798, P < 0.001. respec-
tively). Total 542 Patients with EC were divided into 
high-risk group (N = 271) and low-risk group (N = 271) 
based on the median risk scores. Kaplan–Meier curves 
showed that patients with high-risk scores had worse OS 
than the low-risk group (33.7  months vs. 42.5  months, 
P < 0.0001; Fig.  4B). Homoplastically, while compared 
to low-risk group, the patients with high-risk scores 
had shorter Mean survival time (for PFI: 30.1  months 
vs. 38.9  months, P < 0.0001; for DFI: 34.8  months vs. 
39.7 months, P = 0.011; shown in Fig. S4).

To validated these findings, we further performed 
survival analyses using Kaplan–Meier Plotter (https://​
kmplot.​com/​analy​sis/​index.​php?p=​backg​round) with 
the same genes. The results also showed that the patients 

with high-risk score had worse OS when compared 
to those with low-risk score (Fig.  4C). In addition, the 
ROC curves were employed to appraise the predictive 
efficiency of this risk signature for EC. The AUCs (area 
under the ROC curve) of risk signature were derived as 
0.651, 0.727, 0.784, and 0.723 for years 1-year, 3-year, 
5-year, and 10-year, respectively (Fig.  4D). The Risk 
scores and survival status of each patient were depicted 
in Fig. S5. As shown in Fig.  4E, the number of patient 
deaths was found to rise (Spearman r = 0.271, P < 0.001), 
and the survival time was decreased with increasing risk 
scores (Spearman r = -0.167, P < 0.001), and the expres-
sion of SIRT2, SIX1 and CDKN2A was increased, whereas 
the expression of PGR was decreased in high-risk group 
compared to those in low-risk group (Fig. 4F).

A B

C
D

Fig. 3  SIRT2, SIX1, CDKN2A and PGR expression in EC tissues. A Four EMT-related genes expression in TCGA dataset, current study and 6 GEO 
datasets. The gene expression was normalized by “scale” function in R. B Comparisons of four EMT-related genes expression between EC and normal 
tissues evaluated by forest-plot based on data from TCGA dataset, current study and 6 GEO datasets. Rhombus indicates the average standardized 
mean difference (SMD) with 95% confidence intervals. C Four EMT-related genes expression in EC tissue samples and corresponding non-cancer 
tissue samples from The Human Protein Atlas. D Four EMT-related genes expression in 42 paired EC tissue samples. Representative expression levels 
of these Four EMT-related genes in several EC patients. N, normal tissues; T, tumor tissue. ** means P < 0.01; ns means P > 0.05

https://kmplot.com/analysis/index.php?p=background
https://kmplot.com/analysis/index.php?p=background
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Construction of the nomogram
A nomogram was constructed for visualizing survival 
prediction based on the multivariate Cox regression 
model. By integrating risk scores and clinical character-
istics, including age, grade, and stage, the nomogram was 
implemented to predict 1-year, 3-year, 5-year, and 10-year 
OS of patients with EC. As shown in Fig.  5A, to utilize 
the nomogram, one has to locate the patient’s value for 
each predictor variable on the corresponding point scale, 
and draw a vertical line to the top point axis. The total 
points for all predictor variables are then located on the 
total point axis, and a final vertical line is drawn to the 
bottom outcome axis to obtain the estimated probabil-
ity of the survival outcome. The AUCs for 1-year, 3-year, 
5-year, and 10-year OS of the nomogram were 0.708, 
0.743, 0.793, and 0.744 (Fig.  5B). The calibration curve 

suggested a favorable consistency between the predicted 
OS and the actual OS (Fig. 5C).

Co‑expression network and enrichment analysis
To further investigate the potential mechanisms of the 
four EMT-related genes in EC progression, we fore-
casted the gene regulatory network using GENIE3 and 
screened the top 200 co-expressed genes in the net-
work via the MCC algorithm and visualized them by 
Cytoscape software (Fig.  6). As shown in Fig.  7A, co-
expressed genes were enriched to the classification 
associated with extracellular matrix organization and 
mesenchymal development using R “clusterProfiler” 
package. To validate and enhance the exploration of the 
potential functions of the genes, we also performed GO 
and KEGG enrichment analysis via Metascape database. 
As shown in Fig.  7B and C, GO analysis revealed that 

Fig. 4  Characteristics of the four-gene risk signature and assessment. A Univariate and multivariate analysis of the risk signature and clinical factors. 
B Survival curves for high-risk and low-risk groups classified by the risk signature. C Survival analyses of risk score and EC overall survival using 
Kaplan–Meier Plotter. D ROC curves for the 1-, 3-, 5, and 10-year survival according to the four-gene risk signature. E Distribution of the risk score 
and survival status for each case. F The expression profiles of the four EMT-related genes between the high-risk group and low-risk group. Z-score 
was used to standardize the gene expression of each gene in each sample by “scale” function in R



Page 9 of 16Yu et al. BMC Cancer          (2023) 23:879 	

genes were similarly enriched to extracellular matrix, 
cellular component morphogenesis related functions, 
while KEGG analysis indicated that genes were enriched 
to cell adhesion molecules, extracellular matrix receptor 
interaction related pathways. Additionally, we utilized 
STRING database (https://​string-​db.​org/) to construct 
co-expression networks of the 4 EMT-related genes and 
conducted functional enrichment analysis using only the 
known interactions as input. The results revealed that 
the enriched pathways were still associated with EMT-
related biological functions and signal pathways, such as 
mesenchymal cell development, mesenchymal cell differ-
entiation, and adhesion (shown in Fig S6). Furthermore, 
we obtained a list of statistically significant co-expressed 
genes for each of the four EMT-related genes from 

cBioportal (https://​www.​cbiop​ortal.​org/) filtering with 
|Spearman correlation|> 0.3 and q-value < 0.05. We then 
constructed an alternative network containing only these 
co-expressed genes using Cytoscape software (Fig S7) 
and performed enrichment analyses using this network. 
We found that the alternative network is also enriched 
for several EMT-related pathways and processes (Fig S8).

The above results imply that four EMT-related genes 
are truly involved in EMT process, which can cause EC 
metastasis and influence cancer prognosis. Therefore, 
cellular experiments were performed in order to further 
explore the connection between the four EMT-related 
genes and cancer metastasis.

Fig. 5  Nomogram for predicting the survival rate of EC patient and its effectiveness evaluation by using TCGA dataset. A A nomogram 
was constructed based on the risk score, age, grade, and stage for predicting survival of EC patient. The total points were calculated by drawing 
a vertical line from variable values to the axis labelled “Points” which can predict 1-, 3-, 5, and 10-year of overall survival (OS). The green line 
represents the point of each variable on the nomogram at a specified value, and the red line indicates 95%CI for the point. B ROC curves 
for evaluating the efficiency of the nomogram. C Calibration plot of observed and predicted survival probabilities at 1-, 3-, 5, and 10-year 
for the nomogram

https://string-db.org/
https://www.cbioportal.org/
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SIX1, SIRT2, CDKN2A and PGR could affect cell metastasis
To verify whether four EMT-related genes (SIX1, SIRT2, 
CDKN2A and PGR) are associated with tumor metasta-
sis, we performed transwell migration assays, transwell 
invasion assays and wound healing assays to investigate 
their relationship. The siRNAs of the four genes were 
introduced into two cell lines, HEC-1-B and Ishikawa, 
respectively (Fig.  8A and B). In wound healing assay, 
cell migration rate was significantly decreased when 
the genes SIX1 and SIRT2 were silenced, but silencing 
CDKN2A had a statistically significant negative effect 
on HEC-1-B cells only. In the case of PGR, there was no 
statistically significant difference in the migration rate of 
both cells (Fig.  8C and D). Similarly, we demonstrated 

that silencing of SIX1, SIRT2 and CDKN2A substantially 
diminished the ability of EC cells to cross the chambers. 
Regrettably, there was a boost in the ability of cancer cells 
to cross the chambers after silencing PGR, but it was not 
significant (Fig.  8E). These results were consistent with 
invasion assays in HEC-1-B. Nevertheless, all four genes 
had a significant effect on the invasive ability of Ishikawa 
cells (Fig.  8F). Taken together, these results suggest a 
role of the four genes in migration and invasion tumoral 
properties of EC cells, reflecting their ability to influence 
cancer prognosis.
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Fig. 6  Construction of EMT-related genes regulatory network. The top 200 hub genes were obtained with MCC algorithm by CytoHubba
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A

B

C

Fig. 7  Functional enrichment analysis of the four EMT-related gene risk signature. A Circos plot visualize the top 10 GO enrichment analysis 
of co-expressed genes using clusterProfiler. B Bar graph for top 10 GO enrichment analysis via Metascape. C Bar graph for top 10 KEGG pathway 
analysis via Metascape
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Discussion
The prognosis for patients with early-stage EC is rela-
tively positive. However, with metastasis being the lead-
ing cause of death [21], the prognosis for patients with 
advanced stages is extremely poor [22]. Therefore, it is 
urgent to discover biomarkers associated with metastasis 
and prognosis in EC. In this study, we constructed a sur-
vival prediction model for EC using gene expression data 
and clinical information. We identified four EMT-related 
genes, SIX1, SIRT2, CDKN2A and PGR, that are closely 

associated with EC prognosis and have a profound role 
in influencing the metastatic ability of EC cells. Our find-
ings may provide a unique perspective on the progression 
of EC.

Advances in cancer biomarker research are impossi-
ble without technological developments. In recent years, 
groundbreaking advances in genomic analysis meth-
ods, such as next-generation sequencing (NGS), have 
greatly improved the sensitivity and high-throughput 
capabilities of genomic technologies [23, 24]. This has 

Fig. 8  Four EMT-related genes affect EC cell metastasis. A-B Validation of silencing efficiency of four EMT-related genes in HEC-1-B and Ishikawa 
cell lines. C Migration detected by wound healing assays in HEC-1-B cell line. D Migration detected by wound healing assays in Ishikawa cell line. 
E Migration detected by transwell migration assay in HEC-1-B and Ishikawa cell lines. F Invasion detected by transwell invasion assay in HEC-1-B 
and Ishikawa cell lines. The means of two independent samples were compared for a statistically significant difference by the unpaired t-test. 
(*P < 0.05, **P < 0.01, ***P < 0.001, ns: no significant)
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allowed researchers to extract genetic, transcriptomic, 
epigenomic, metabolomic, and proteomic datasets from 
patient cohorts. These datasets can be used as risk or 
prognostic factors to identify potential cancer biomark-
ers. Comparative statistical analysis of large multi-omics 
datasets can identify risk factors, allowing early detec-
tion of disease and timely intervention for better out-
comes [25, 26]. In past studies, important insights into 
the molecular landscape of EC have been revealed. These 
insights were driven by the identification of biomarkers 
that predict disease prognosis and drug targets. Several 
studies based on TCGA data have found multiple genes 
associated with EC tumor prognosis and treatment. For 
example, POLE mutant tumors had significantly bet-
ter progression-free survival, while tumors with high 
copy number had the worst prognosis [27]. PI3K inhibi-
tion has been successful in advanced EC, and although 
some limitations remain, alterations in the PI3K /mTOR 
pathway can be observed in patients [28]. A large num-
ber of molecular biomarkers of EC have been shown to 
correlate with clinical outcomes and to be reproducible 
[27, 29]. This reveals that molecular biomarker research 
in EC has important prospects for development. It has 
far-reaching implications for clinical patients, as it can be 
used to tailor treatment approaches to improve prognosis 
and achieve precision medicine. Therefore, it is expected 
that molecular biomarkers will be discovered that are 
closely related to the prognosis of EC patients.

In this study, we comprehensively analyzed the gene 
expression profiles and corresponding clinical informa-
tion of EC patients in the TCGA database. We screened 
four independent EMT-related prognostic factors for EC: 
SIX1, SIRT2, CDKN2A and PGR. These four genes have 
been reported in various cancers. Some studies have 
shown that sine oculis homeobox 1 (SIX1) is a key tran-
scription factor in tumorigenesis and has an important 
role in tumorigenesis [30]. For example, SIX1 predicts 
poor prognosis and promotes progression of non-small 
lung cancers by activating the Notch signaling pathway 
[31]. SIX1 is also involved in the regulatory axis of Circu-
lar RNA and microRNAs to promote cancer proliferation, 
migration and invasion [32]. In particular, it has been 
found to be associated with the EMT process in gyneco-
logical tumors [30]. A few studies have confirmed the 
association of SIX1 as a malignant factor with endome-
trial carcinogenesis and development, which echoes the 
results of the present study [33, 34]. Sirtuin 2 (SIRT2) is 
a histone deacetylase that depends on nicotinamide ade-
nine dinucleotide (NAD +) [35]. The role played by SIRT2 
in cancer is still controversial. SIRT2 can play a pro-can-
cer role in gastric cancer [36], but can act as a protective 
factor in colorectal [37, 38] and cervical cancers [39]. A 
study has shown that SIRT2 is highly expressed in EC and 

can promote cancer proliferation and metastasis by reg-
ulating the RAS/ERK pathway [40]. However, it has also 
been said that SIRT2 is at low expression in EC compared 
to non-tumorigenic endometrium [41]. In our study, 
we found that there was no notably difference of SIRT2 
expression both in mRNA and protein level in EC tissues. 
This may be due to the relatively small sample size, which 
may limit the generalizability and statistical power of this 
finding. However, ectopic expression of SIRT2 could pro-
mote EC cells metastasis, which was in agreement with 
previous studies [42]. Based on the controversial roles of 
SIRT2 in EC risk and progression, we speculate that the 
downregulation of SIRT2 may be an adaptive strategy of 
tumor cells to evade immune surveillance and thus pro-
mote cell proliferation and metastasis [43]. Nevertheless, 
the precise regulatory mechanisms of SIRT2 still need to 
be further verified in independent investigations.

Cyclin dependent kinase inhibitor 2A (CDKN2A), 
also known as P16, is a tumor suppressor gene that can 
induce cancer cell senescence. Enhancing P16 activity by 
chemotherapy drugs is a valuable therapeutic strategy for 
cancer treatment [44]. A large number of studies have 
shown that CDKN2A is involved in poor prognosis in a 
variety of cancers, including hepatocellular carcinoma 
[45], cervical cancer [46], ovarian cancer [47] and EC 
[48]. However, the exact mechanism by which CDKN2A 
causes poor prognosis in cancer is still unclear. Proges-
terone receptor (PGR) is ligand-dependent transcription 
factors that belongs to the nuclear receptor superfamily. 
It has been reported to be involved in the growth, devel-
opment and function of female reproductive tract tissues 
[49]. PGR exhibits high polymorphic, with multiple SNPs 
having been identified [50]. As a result, it is widely uti-
lized as a biomarker in both breast cancer [51] and EC 
[52–54]. Despite the fact that most patients with EC 
exhibit decreased expression of progesterone receptors, 
there have only been a few mechanistic experiments tar-
geting PGR and cancer cells [54].

Our survival analysis indicated that SIX1, SIRT2, and 
CDKN2A have a harmful role in EC prognosis, whereas 
the opposite is true for PGR. Afterward, we constructed a 
risk signature based on the these four EMT-related genes 
to explore the relationship between EC and risk score. 
Kaplan–Meier curve and Cox regression analysis showed 
that patients in the high-risk group had a significantly 
worse survival. ROC curves validated the reliability of 
determining risk scores of EC patients by four independ-
ent prognostic factors. We also constructed a nomogram 
integrating risk score and several clinical characteristics 
that could predict EC clinical outcomes well. By predict-
ing the prognostic risk scores, our 4-gene signature may 
also provide a basis for risk stratification of EC patients, 
which may inform the selection of different treatment 
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strategies according to the patient’s risk level. To explore 
the underlying mechanisms of the 4 EMT-related genes, 
we constructed co-expression networks using several 
strategies and performed functional enrichment analy-
sis. We found that the co-expressed genes of the four 
EMT-related genes were mainly present with the func-
tion of extracellular matrix tissue and pathway of mesen-
chymal development. This suggests that these four genes 
are indeed associated with EMT and may be involved 
in mechanisms related to metastasis. We initially veri-
fied the effect of these four genes on the metastasis abil-
ity of EC cells through cellular experiments. This makes 
our model more convincing. Combined with previous 
reported evidence [55], our findings suggest that these 
four genes may be involved in the ecological adaptation 
of EC cells to the tumor microenvironment and mac-
roenvironment, and may affect their survival and dis-
semination. We believe that our study not only provides a 
novel prognostic biomarker for EC patients, but also con-
tributes to the understanding of cancer and EMT from 
an ecological perspective.

This study utilized a large dataset from TCGA database 
for bioinformatic analysis, and the meaningful results were 
further validated in our independent samples and series of 
functional experiments, increasing the credibility of the 
study results. In addition, the nomogram integrating the 
risk signature and clinical characteristics exhibited robust 
validity and performance at predicting EC overall survival, 
which may provide a useful tool for clinicians. Besides, in 
order to further prove the predictive performance of the 
ROC curve in our model, we compare three recently pub-
lished articles on the signatures of the prognostic model in 
EC [56, 57]. Based on the same TCGA patient cohort, we 
found that in this model, the AUC of 5 years-OS for our 
signatures is 0.793, which is significantly higher than that 
of other existing EMT-related signatures. Meanwhile, there 
may be some possible limitations in this study. Firstly, this 
study is based on retrospective data analysis, which may be 
subject to selection bias and confounding factors. Further 
validation in independent cohorts is necessary to confirm 
the reliability of the risk signature. Secondly, in our analy-
sis, we used a f a Benjamini–Hochberg adjusted p-value 
of 0.05 to identify significant DEGs. A more stringent fil-
tering criteria, such as a higher fold-change or a lower P 
value threshold, would generate a shorter list of DEGs, but 
may also exclude genes that could be biologically relevant. 
Our finding showing a concomitant deregulation of almost 
80% of the EMT-related genes suggests a complex regula-
tory network rather than a single molecular mechanism 
driving EMT. Thirdly, our nomogram does not include 
treatment information, which may affect the survival of 
EC patients. The TCGA data contains 31 different thera-
peutic approaches, which makes it difficult to analyze the 

effect of each treatment on survival. Moreover, some treat-
ments may be confounded by other factors such as disease 
stage, tumor grade, or patient comorbidities. Therefore, 
we decided to focus on developing a nomogram based 
on clinical and molecular features that are readily avail-
able at diagnosis and can provide a general prognosis for 
EC patients. However, we acknowledge that incorporat-
ing treatment information into our nomogram would be 
valuable for predicting treatment outcomes and optimiz-
ing treatment choices. Future studies should collect more 
standardized and detailed treatment data for EC patients 
and incorporate them into prognostic models. Lastly, 
while the cellular assays provided preliminary evidence 
regarding the functional role of the identified genes in EC 
progression, further investigations are needed to elucidate 
the biological mechanisms underlying their prognostic 
value and potential therapeutic applications.

Conclusions
In conclusion, our study identified a novel four-gene EMT-
related signature that could serve as a potential biomarker for 
EC prognosis. The finding that a large proportion of EMT-
related genes are differentially expressed in EC highlights the 
complexity of the regulatory networks involved in EMT and 
cancer progression. Further studies are needed to validate 
and extend our findings and to explore the functional roles 
and mechanisms of the DEGs identified in this study.
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