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Abstract
Background  We aimed to develop machine learning models for prediction of molecular subgroups (low-risk group 
and intermediate/high-risk group) and molecular marker (KIAA1549-BRAF fusion) of pediatric low-grade gliomas 
(PLGGs) based on radiomic features extracted from multiparametric MRI.

Methods  61 patients with PLGGs were included in this retrospective study, which were divided into a training set 
and an internal validation set at a ratio of 2:1 based on the molecular subgroups or the molecular marker. The patients 
were classified into low-risk and intermediate/high-risk groups, BRAF fusion positive and negative groups, respectively. 
We extracted 5929 radiomic features from multiparametric MRI. Thereafter, we removed redundant features, trained 
random forest models on the training set for predicting the molecular subgroups or the molecular marker, and 
validated their performance on the internal validation set. The performance of the prediction model was verified by 
3-fold cross-validation.

Results  We constructed the classification model differentiating low-risk PLGGs from intermediate/high-risk PLGGs 
using 4 relevant features, with an AUC of 0.833 and an accuracy of 76.2% in the internal validation set. In the 
prediction model for predicting KIAA1549-BRAF fusion using 4 relevant features, an AUC of 0.818 and an accuracy of 
81.0% were achieved in the internal validation set.
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Background
Pediatric low-grade gliomas (PLGGs) are the most com-
mon pediatric brain tumors, accounting for more than 
30% of central nervous system (CNS) tumors in children 
[1]. According to the 2016 World Health Organization 
(WHO) classification of CNS tumors, PLGGs comprise 
a histologically heterogenous group of Grade I and II 
tumors, including pilocytic astrocytoma (PA, Grade 
I), diffuse astrocytoma (AII, Grade II), oligodendrogli-
oma (OII, Grade II), oligoastrocytoma (OAII, Grade II), 
pleomorphic xanthoastrocytoma (PXA, Grade II), dys-
embryoplastic neuroepithelial tumor (Grade I), neuro-
nal-glial tumor (Grades I and II) and several others [2]. 
In clinical practice, PLGGs are generally regarded as a 
single group of tumors with relatively quiescent biologi-
cal behavior and favorable prognosis [1–3]. Neverthe-
less, recurrence or progression still occurs in about 30% 
of PLGGs [1, 2, 4]. Postoperative adjuvant therapies for 
PLGGs include radiation therapy and systematic chemo-
therapy, which may cause long-term morbidity and toxic-
ity [1].

Compared to adult low-grade gliomas, PLGGs have dif-
ferent features in molecular pathology [2]. Most PLGGs 
possess alterations in RAS/MAPK pathway, in which 
BRAF is a vital component [2, 5, 6]. In our previous study 
using a large set of 289 PLGGs to investigate biomarkers 
of molecular pathology and their clinical significance, the 
KIAA1549-BRAF fusion, MYB amplification, CDKN2A 
deletion, BRAFV600E, H3F3A, TERT promoter mutations, 
and ATRX loss were identified in PLGGs [2]. Emphati-
cally, the combination of the previous molecular markers 
has successfully categorized PLGGs into four molecular 
risk groups (low-risk, intermediate-I, intermediate-II, 
and high-risk) with distinct survivals [2]. These findings 
highlight the importance of molecular stratification in 
evaluation and management of PLGGs.

Non-invasive prediction of molecular biomarkers or 
groups of gliomas is challenging [7]. Recent progress on 
artificial intelligence (AI) algorithms has considerably 
promoted automatically quantifying radiologic patterns, 
and several clinically relevant molecular biomarkers or 
groups have been identified by leveraging on AI algo-
rithms in adult gliomas [8–11]. Recently, Wagner MW 
et al. developed and validated a radiomic signature that 
is predictive of the BRAF status of PLGGs [12]. How-
ever, there is a lack of study investigating the relation-
ship between radiological features and risk groups of 

PLGGs defined by multiple molecular markers utilizing 
AI algorithms.

In the current study, radiomic features from multipara-
metric MRI, including T1-weighted, T1-weighted gado-
linium contrast-enhanced, T2-weighted, fluid attenuated 
inversion recovery, and apparent diffusion coefficient 
images (T1, T1c, T2, FLAIR, and ADC), were extracted 
from 61 PLGG patients to construct models for pre-
diction of molecular subgroups (low-risk group and 
intermediate/high-risk group) and molecular marker 
(KIAA1549-BRAF fusion) by leveraging machine learn-
ing algorithms. We aim to demonstrate that MRI patterns 
are significantly associated with key molecular biomarker 
and are able to predict molecular subgroups of PLGGs.

Methods
Patient enrollment
This study was a part of the registered clinical trial “MR 
Based Prediction of Molecular Pathology in Glioma 
Using Artificial Intelligence” (ClinicalTrials.gov ID: 
NCT04217018). The overview of the radiomic pipe-
line is illustrated in Fig.  1. This retrospective study was 
approved by the Human Scientific Ethics Committee of 
the First Affiliated Hospital of Zhengzhou University (No. 
2019-KY-176), and the requirement for written informed 
consent was waived. 102 pediatric patients (Age<18) were 
diagnosed to have harbored primary PLGGs at the First 
Affiliated Hospital of Zhengzhou University (FAHZZU) 
between January 2011 and December 2016. The inclusion 
criteria for this study were: (1) newly diagnosed histologi-
cally confirmed PLGGs; (2) pretreatment MR imaging 
including T1, T1c, T2, FLAIR, and ADC; (3) MR images 
with sufficient image quality. After the patient enrollment 
process (Fig. 2), 61 patients were included in this study.

MR imaging acquisition
All local MR images in FAHZZU were acquired on 1.5 T 
or 3.0 T clinical MR scanners, including Siemens, Phil-
ips, and GE Healthcare. The brain imaging protocol 
included the following sequences: (a) axial T1 before and 
after intravenous administration of a 0.1 mmol/kg dose of 
gadolinium-based contrast agent (T1c); (b) axial T2; (c) 
axial FLAIR; (d) diffusion-weighted imaging (DWI) and 
the corresponding ADC maps generated with the soft-
ware incorporated into the MRI unit. Detailed informa-
tion about the MR machines and imaging parameters are 

Conclusions  The current study demonstrates that MRI radiomics is able to predict molecular subgroups of PLGGs 
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available in Supplementary Material and Supplementary 
Table 1.

Detection of molecular pathology of PLGGs
Formalin-fixed paraffin embedded (FFPE) tissues were 
available in 102 cases. PCR and Sanger sequencing were 
performed to detect TERT promoter, H3F3A, BRAF, 
FGFR1, and IDH1/2 mutations. KIAA1549-BRAF fusion, 
MYB amplification, and CDKN2A deletion were exam-
ined by Fluorescence in situ hybridization (FISH) analy-
sis. Expression for ATRX and p53 proteins was evaluated 
by immunohistochemistry (IHC). Detailed protocols for 
the above molecular pathology were described by our 
previous research [2]. The molecular subgroups (low-
risk and intermediate/high-risk) of PLGGs were assigned 
according to the integrative analysis of the above molecu-
lar markers [2]. Specifically, low-risk PLGGs were defined 
as patients with BRAF fusion or MYB amplification. 
Intermediate/high-risk PLGGs were defined as patients 
with BRAFV600E, and/or CDKN2A deletion, or TERTp 
mutation, or H3F3A mutation, or ATRX loss, or without 
alteration in any of the aboved biomarkers.

Image preprocessing and lesion segmentation
Image preprocessing pipeline was carried out to nor-
malize the intensity and geometry using an open-source 
tool ITK (https://itk.org/). First, N4ITK-based bias field 
distortion correction was performed. Then, all voxels 

were isotropically resampled into 1 × 1 × 1 mm3 with tri-
linear interpolation. The multiparametric MR images 
were co-registered to the corresponding axial resampled 
T1c with mutual information similarity metric, generat-
ing the registered images rT1, rT1c, rT2, rFLAIR, and 
rADC. Histogram matching was performed to normalize 
the intensity distribution. The volumes of interest (VOIs) 
were drawn manually slice-by-slice via the ITK-SNAP 
software (www.itksnap.org) by an experienced radiolo-
gist (J.Y. with 11 years’ experience) and consisted of the 
whole tumor regions (defined as the areas of abnormal 
signal on rFLAIR images). To assess the manual delinea-
tion-induced feature reproducibility, the VOI delineation 
process was repeated on 29 patients by another neuro-
surgeon (Z.Y.Z. with 11 years’ experience).

High-throughput radiomic features extraction
All radiomic features were extracted using Pyradiomics 
extractor. To fully characterize the intra-tumor heteroge-
neity, three groups of features were extracted, including 
(1) shape features; (2) intensity features; and (3) texture 
features. Before feature extraction, fixed bin width of 25 
was used for intensity discretization. The texture features 
were extracted using five different methods, including 
the gray-level co-occurrence matrix (GLCM), gray-level 
run length matrix (GLRLM), gray-level size zone matrix 
(GLSZM), gray-level dependence matrix (GLDM), and 
neighborhood gray-tone difference matrix (NGTDM). 

Fig. 1  Overview of the radiomic pipeline. The pipeline consisted of tumor delineation, image preprocessing, radiomic feature extraction, feature selec-
tion, model building, and model evaluation
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Two filters [wavelet transform, Laplacian of Gaussian 
(LoG) with four sigma levels (2.0, 3.0, 4.0, and 5.0)] were 
enabled in extracting intensity features and texture fea-
tures from both the original images and the transformed 
images. Finally, 5929 quantitative features (14 volume 
and shape features, 1170 intensity features, and 4745 tex-
ture features) were extracted from multiparametric MRI 
(rT1, rT1c, rT2, rFLAIR, and rADC) for each patient. 
The extracted features were summarized in Supplemen-
tary Table 2. The YAML file for feature extraction can be 
found in Supplementary Material.

Feature selection
Before feature selection, the stability of the extracted 
features was evaluated by interobserver reproducibility 
of the two image readers. We calculated the intraclass 
correlation coefficient (ICC) values between the same 
feature extracted from the two VOIs of 29 patients. The 
features with ICC value ≥ 0.90 were considered as highly 
reproducible features against the manual delineation and 
were retained for subsequent analysis while the others 
were discarded. Subsequently, all patients were randomly 

divided into three equal sets to realize 3-fold cross-val-
idation. Two of these sets were fixed as the training set 
and the other was fixed as the internal validation set, 
which was repeated three times. Once the sample was 
split, we applied z-score normalization to the features 
in the training set. Then, the feature distribution in the 
training set was used to normalize the features in the 
internal validation set.

Feature selection was performed for the training set in 
the following two steps. First, the correlation coefficients 
between each pair of the remaining features were calcu-
lated in their own training set to minimize the feature 
redundancy. For a feature pair with correlation coeffi-
cients greater than 0.75, the feature with better univari-
ate predictive power (smaller Mann–Whitney U test P 
value) was retained, while the other was removed. Sec-
ond, based on the remaining robust and non-redundant 
feature subset, a random forest-based wrapper feature 
selection algorithm Boruta [13] was used to further select 
the optimal and relevant features in training set. Boruta 
searched for relevant features iteratively by comparing 
the importance of original features with the importance 

Fig. 2  The patient selection process in this study
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of artificially added random ones and progressively 
removing irrelevant features. After evaluating all possible 
feature combinations in the training set, the optimal fea-
tures for the prediction model were selected.

Machine learning classification
Based on the selected features, the radiomic models were 
built using a random forest algorithm for predicting the 
molecular subgroups (low-risk group and intermedi-
ate/high-risk group) and molecular marker (KIAA1549-
BRAF fusion), respectively. An R package caret was used 
for random forest model building. In the random forest 
algorithm, the decision tree was constructed adopting 
the classification and regression tree (CART) method to 
classify the molecular subgroups and molecular marker, 
where the Gini index was used as importance measure 
[14]. After assessing a set of numbers ranging from 50 to 
800, the number of trees in the random forest algorithm 

was set to 500. Here a 3-fold cross-validation was applied 
during model building. The data was partitioned into 3 
folds, then 2 folds were used to train the model and the 
remaining fold was reserved for testing the model [15], 
and this process was repeated until the construction and 
evaluation of model was completed. Finally, the model of 
the best performance fold group of the 3-fold cross-vali-
dation scheme was chosen and validated.

Statistical analysis
The enrolled patients were randomly divided into a train-
ing set and an internal validation set at a ratio of 2:1, 
where the distribution of clinical information was bal-
anced. The differences in sex, age, molecular subgroups, 
and molecular marker between the training and internal 
validation sets were assessed by using the Wilcoxon test 
or Chi-square test. The classification performance was 
assessed in terms of the area under the receiver operat-
ing characteristic (ROC) curve (AUC), accuracy (ACC), 
sensitivity (SEN), specificity (SPE), and precision. We 
repeated the model using 3-fold cross-validation to 
achieve the best diagnostic performance and deter-
mine the final predictive model. The statistical analysis 
employed R studio software (R-4.0.5).

Results
Patient characteristics
Clinical and molecular characteristics of the 102 PLGGs 
surgically treated in FAHZZU were described in Supple-
mentary Table  3. The models of optimal performance 
(risk group: fold 3; BRAF fusion: fold 3) in the cross-val-
idation scheme were chosen. Patient characteristics of 
the training (n = 40) and internal validation sets (n = 21) 
were summarized in Table  1. There were no significant 
differences in the clinical and molecular characteristics 
between the training set and the internal validation set 
(P = 0.08-1.00).

Feature selection
After the ICC repeatability test and Boruta algorithm, 
four all-relevant texture features were selected for the 
classification of molecular subgroups. Meanwhile, four 
all-relevant features were selected for the prediction of 
BRAF gene fusion, including three texture features and 
one intensity feature. The feature selection results were 
summarized in Table  2. To evaluate the univariate con-
tribution of these features to the prediction of molecular 
subgroups and BRAF fusion, we calculated the Gini index 
as the importance value (Fig. 3). A larger value indicates 
greater importance in predicting a specific subgroup. 
In addition, the meanings of these selected features are 
described in Supplementary Table 4.

Table 1   A summary of the clinical and molecular characteristics 
of patients (low-risk group and intermediate/high-risk group and 
BRAF fusion status) in PLGGs.

Characteristic Training 
set

Internal 
validation 
set

P 
Value

Risk group Sex 0.33
  Male 20 

(50.00%)
14 

(66.67%)
  Female 20 

(50.00%)
7 (33.33%)

Age (year)
  Mean ± SD 9.43 ± 4.93 9.81 ± 4.92
  < 10 24 

(60.00%)
11 

(52.38%)
0.76

  ≥ 10 16 
(40.00%)

10 
(47.62%)

Risk group 1.00
  Intermediate/High 16 

(40.00%)
9 (42.86%)

  Low 24 
(60.00%)

12 
(57.14%)

BRAF fusion Sex 0.08
  Male 26 

(65.00%)
8 (38.10%)

  Female 14 
(35.00%)

13 
(61.90%)

Age (year)
  Mean ± SD 9.38 ± 5.11 9.90 ± 4.54 1.00
  < 10 23 

(57.50%)
12 

(57.14%)
  ≥ 10 17 

(42.50%)
9 (42.86%)

KIAA1549-BRAF fusion 0.91
  Yes 23 

(57.50%)
11 

(52.38%)
  No 17 

(42.50%)
10 

(47.62%)
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Prediction of molecular subgroups and BRAF fusion
The ROC curves with a 3-fold cross-validation scheme to 
predict molecular subgroups and BRAF fusion are shown 
in Fig.  4. By means of the optimal hyperparameters 
obtained from fold 3, the ROC curves of the two predic-
tion models in both training and internal validation sets 
are calculated and displayed in Fig. 5. The performance of 
the prediction models is summarized in Table 3.

For the classification model of differentiating low-risk 
PLGGs from intermediate/high-risk PLGGs, the inter-
nal validation set yields an AUC of 0.833 (95% CI: 0.624-
1.000). The ACC, SEN, SPE, and precision were 0.762 
(95% CI: 0.550–0.900), 0.714 (95% CI: 0.571–0.905), 
0.889 (95% CI: 0.667-1.000), and 0.900 (95% CI: 0.700-
1.000), respectively.

For the prediction model of KIAA1549-BRAF fusion, 
the internal validation set yields an AUC of 0.818 (95% 
CI: 0.613-1.000). The ACC, SEN, SPE, and precision were 

0.810 (95% CI: 0.666–0.952), 0.900 (95% CI: 0.700-1.000), 
0.727 (95% CI: 0.455-1.000), and 0.750 (95% CI: 0.588-
1.000), respectively.

Discussion
As the most frequent brain tumors in children, PLGGs 
comprise a group of gliomas with heterogeneous histo-
logical types and different tumor locations [16, 17]. In the 
past decades, novel biological insights into the genetic 
background of PLGGs have been acquired by extensive 
investigations [5, 6, 18–21]. Unlike adult low-grade glio-
mas that are characterized by robust molecular altera-
tions such as IDH mutations, 1p/19q codeletion, and 
TERT promoter mutations [22–24], PLGGs harbor their 
own molecular alterations distinct from adult counter-
parts [3]. It was revealed that nearly all PLGGs converge 
on the alterations of the MAPK pathway, with these alter-
ations 100% existing in pediatric pilocytic astrocytoma [5, 
6]. The most common molecular alteration in the MAPK 
axis is KIAA1549-BRAF fusion, which is caused by tan-
dem duplication and rearrangement between BRAF and 
KIAA1549 at chromosome 7q34 [2]. The BRAF gene is 
also the most common point mutation target in PLGGs, 
the majority being V600E hotspot mutation [19, 20]. 
Several studies have demonstrated that KIAA1549-
BRAF fusion predicts better survivals in patients with 
PLGGs [2, 25], while BRAFV600E point mutation is asso-
ciated with inferior prognosis [26]. Aside from predic-
tive values, BRAF gene alterations are also targets for 
novel drugs used in preliminary clinical trials for PLGGs. 
BRAF inhibitor such as dabrafenib has shown a positive 
response rate in a multicenter phase I study including 
patients with PLGGs [27]. Zhang J et al. reported 25% of 
diffuse cerebral gliomas in children carried abnormali-
ties in MYB and MYBL1 using whole genome sequencing 
[6]. Our previous study has identified MYB amplification 
in 10.6% PLGGs and revealed this genetic alteration was 

Table 2  A summary of the selected all-relevant features
Selected 
features

Type Sequence Transform

Risk 
group

ClusterShade texture ADC log.
sigma.5.0.mm.3D

Depen-
denceEntropy

texture ADC wavelet.LLH

Depen-
denceEntropy

texture FLAIR log.
sigma.2.0.mm.3D

GrayLevelVari-
ance

texture T1 log.
sigma.5.0.mm.3D

BRAF fu-
sion

Depen-
denceEntropy

texture ADC wavelet.LLH

Minimum intensity T1c original
GrayLevelNo-
nUniformity

texture T1c wavelet.LLL

ClusterPromi-
nence

texture T1 log.
sigma.5.0.mm.3D

ADC: apparent diffusion coefficient; FLAIR: fluid attenuated inversion recovery; 
T1c: T1-weighted gadolinium contrast-enhanced; T1: T1-weighted

Fig. 3  The Gini index of the selected features
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associated with significantly longer survivals of PLGGs. 
Therefore, the presence of either KIAA1549-BRAF fusion 
or MYB amplification categorizes a low-risk subset of 
PLGGs with a favorable prognosis [2].

Due to the limited number of intermediate (n = 23) and 
high-risk (n = 2) groups in the current set, we combined 
these two risk groups into one risk group (intermediate/
high-risk group). Compared to the intermediate/high-
risk group, the low-risk group of PLGGs confers an excel-
lent survival with no mortality and rare tumor recurrence 
until the follow-up time point [2]. Therefore, identifying 
this group of PLGGs is of considerable significance since 
it has the potential to aid clinical decision-making such 
as the selection of molecular targeted therapies or cur-
tailment of postoperative adjuvant therapies. However, 
the assignment of PLGGs risk groups requires the detec-
tion of multiple molecular biomarkers (BRAF fusion, 
MYB amplification, BRAFV600E mutation, CDKN2A dele-
tion, TERTp mutation, H3F3A mutation, and ATRX loss), 
which are not all available in a vast number of medical 
centers with constrained resources. In addition, post-
operative rather than the preoperative assignment of 
risk groups of PLGGs will inevitably lose the chance to 
guide personalized surgical resection strategies for these 
tumors. For instance, in low-risk group of PLGGs, it 
may be wise to perform palliative resection to preserve 
neurological function, rather than pursuing total tumor 
resection, since this group of PLGGs presents quiescent 
biological behavior.

Radiomics is an emerging research realm that investi-
gates the relationship between radiographic features and 
tumor genotype, which serves as a promising approach 

to discriminate surrogate biomarkers with an accurate 
reflection of tumor genomics [7]. Radiographic data 
from MRI of CNS tumors are also extensively investi-
gated by radiomic strategies by leveraging AI algorithms, 
and adult gliomas are the most frequently studied CNS 
tumors [7]. Specifically, machine learning or deep learn-
ing algorithms trained on preoperative MRI were dem-
onstrated to predict molecular biomarkers such as IDH 
mutations, 1p/19q codeletion, and TERT promoter muta-
tions, or molecular subgroups based on IDH mutations 
and 1p/19q codeletion in adult gliomas with remarkable 
sensitivity and specificity [8–11]. A previous study has 
revealed radiomics-based prediction of BRAF status in 
PLGGs appears feasible [12]. However, whether radiomic 
features could accurately reflect the risk group of PLGGs 
remains unexplored. Our results demonstrated preopera-
tive MRI patterns were able to predict either molecular 
biomarker (BRAF fusion) or risk group based on multiple 
molecular biomarkers, and yielded a satisfying perfor-
mance, with AUC of 0.818 and 0.833, respectively.

It is worth noting that, identifying accurate and repro-
ducible radiomic features of tumors is an essential step 
before translating into clinical application. As described 
in the previous literature, we employed a two-reader 
manual delineation approach by calculating the ICC 
between the same feature extracted from two VOIs to 
assess the feature reproducibility [28–30]. With the 
advancement of computing power, the use of semi-auto-
matic or automatic approach has also provided suffi-
ciently reliable tumor segmentation and feature stability 
[12, 31, 32].

Fig. 4  The ROC curves of the radiomic models with a 3-fold cross-validation scheme for classification of low-risk group and intermediate/high-risk group 
(A), and prediction of BRAF fusion (B)
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Table 3  A summary of the subgroup-specific classification performance of the radiomic models
Molecular subgroups Data Sets AUC (95% CI) ACC (%) (95% CI) SEN (%) (95% CI) SPE (%) (95% CI) Precision (95% 

CI)
Low-risk vs. 
intermediate/
high-risk

Training 0.878 (0.766, 0.989) 0.825 (0.700, 0.925) 0.792 (0.625, 0.917) 0.875 (0.688, 1.000) 0.909 (0.783, 1.000)
Internal 
validation 

0.833 (0.624, 1.000) 0.762 (0.550, 0.900) 0.714 (0.571, 0.905) 0.889 (0.667, 1.000) 0.900 (0.700, 1.000)

BRAF fusion positive
vs. negative

Training 0.885 (0.770, 1.000) 0.850 (0.725, 0.950) 0.882 (0.706, 1.000) 0.826 (0.652, 0.957) 0.800 (0.650, 0.941)
Internal 
validation

0.818 (0.613, 1.000) 0.810 (0.666, 0.952) 0.900 (0.700, 1.000) 0.727 (0.455, 1.000) 0.750 (0.588, 1.000)

AUC: area under the curve; ACC: accuracy; SEN: sensitivity; SPE: specificity; CI: confidence interval

Fig. 5  The ROC curves in both training and internal validation sets using the optimal hyperparameters obtained by 3-fold cross-validation
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To our knowledge, no prior study has investigated 
radiomic features of PLGGs using DWI. Our results indi-
cate that the GLCM or GLDM texture features of ADC 
maps contribute to assess either molecular alteration or 
risk stratification in PLGGs. Likewise, it was reported 
that texture features and ADC parameters were impor-
tant imaging markers to discriminate molecular subtypes 
in adult diffuse gliomas [9, 33–35]. For instance, Kihira S 
et al. found that addition of GLCM texture features from 
diffusion images to conventional MRI features could 
improve the diagnostic performance in determination of 
MGMT methylation status in gliomas [35]. Meanwhile, 
in our previous study, the results showed that the GLCM 
texture features from ADC maps played an important 
role in predicting IDH mutation and TERT promoter 
mutation of gliomas, while GLDM texture features from 
ADC maps were important for 1p/19q codeletion [9]. 
These phenomena may partly be explained by, that ADC 
values of brain tumors are inversely related to cellularity 
[36], and that texture features quantify local image pat-
terns reflecting subtle intratumoral heterogeneity [33]. In 
addition, features from the conventional MR sequences 
were also revealed to play a role in the prediction model 
for BRAF status or risk stratification of PLGGs. This may 
explain why in the internal validation set, we archived 
a higher AUC (mean AUC = 0.805) than the AUC 
(0.75) reported by the previous study using only FLAIR 
sequence for model development [12]. It is reasonable to 
infer that a radiomic signature with features from mul-
tiparametric MRI is more effective and reliable than a 
single sequence.

Several limitations need to be pointed out in the cur-
rent study. The first limitation is the relatively small 
sample size of the set, which hampers us to divide the 
intermediate-risk group from high-risk group for devel-
oping prediction model. Multi-institutional studies with 
larger sample size are necessary to further validate our 
findings. Second, advanced MR sequences such as diffu-
sion tensor imaging (DTI), perfusion-weighted imaging 
(PWI), and diffusion kurtosis imaging (DKI) are welcome 
to further excavate the potential of MRI for predicting 
genotypes of PLGGs. Third, extensive integrative analysis 
on high through-put sequencing with paired MRI data, 
as well as in vivo imaging studies are required to clarify 
the elusive mechanisms on the relationship between 
radiomic patterns and genotypes of PLGGs. Lastly, man-
ual tumor segmentation is a time-consuming and costly 
task. In future, we will employ semi-automated or auto-
mated segmentation algorithms to achieve accurate and 
repeatable tumor segmentation.

Conclusions
Our findings suggest that radiomic patterns are sig-
nificantly associated with molecular biomarker (BRAF 
fusion) and able to predict molecular subgroups of 
PLGGs with a satisfying performance. Investigations 
with larger sample size are welcomed to further unravel 
the relationship between radiomics and molecular bio-
markers/subgroups of PLGGs.
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