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Abstract
Background  The interferon-induced protein known as guanylate-binding protein 2 (GBP2) has been linked to 
multiple different cancer types as an oncogenic gene. Although the role of GBP2 in cancer has been preliminarily 
explored, it is unclear how this protein interacts with tumor immunity in gastric cancer.

Methods  The expression, prognostic value, immune-correlations of GBP2 in gastric cancer was explored in multiple 
public and in-house cohorts. In addition, the pan-cancer analysis was performed to investigate the immunological 
role of GBP2 based on The Cancer Genome Atlas (TCGA) dataset, and the predictive value of GBP2 for immunotherapy 
was also examined in multiple public cohorts.

Results  GBP2 was highly expressed in tumor tissues and associated with poor prognosis in gastric cancer. In addition, 
GBP2 was associated with the immune-hot phenotype. To be more specific, GBP2 was positively related to immuno-
modulators, tumor-infiltrating immune cells (TIICs), immunotherapy biomarkers, and even well immunotherapeutic 
response. In addition to gastric cancer, GBP2 was expected to be an indicator of high immunogenicity in most cancer 
types. Importantly, GBP2 could predict the immunotherapeutic responses in at least four different cancer types, 
including melanoma, urothelial carcinoma, non-small cell lung cancer, and breast cancer.

Conclusions  To sum up, GBP2 expression is a promising pan-cancer biomarker for estimating the immunological 
characteristics of tumors and may be utilized to detect immuno-hot tumors in gastric cancer.
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Background
The tumor immune microenvironment (TIME) is a 
dynamic network structure with high heterogeneity, 
consisting of diverse immune cells, fibroblast cells, vas-
cular endothelial cells, together with extracellular matrix 
(ECM) and numerous cytokines [1]. It plays a role as 
huge as solid malignant tissues during tumor progres-
sion [2]. TIME participate broadly in the acquisition and 
maintenance of the earmarks of cancer, such as sustain-
ing proliferative signaling, resisting tumor cell death, 
inducing angiogenesis, activating invasion and metasta-
sis, etc., which offers a therapeutic target in cancer [3, 4]. 
The targets include but are not limited to non-cancerous 
cells and components presented in the tumor. Impor-
tantly, TIME determines the efficacy of multiple treat-
ments, including immunotherapy, chemotherapy, and 
radiotherapy [1, 5].

Cancer immunotherapy-developed on the basis 
of tumor escape mechanism reactivates anti-tumor 
response by manipulating the immune system and 
restrains the pathways leading to escape [6]. As a part 
of cancer immunotherapies, immune checkpoint block-
ade (ICB) has come to the foreground in recent years, 
including cytotoxic T lymphocyte-associated protein 4 
(CTLA-4) inhibitor, programmed death protein 1 (PD-
1) inhibitor, and programmed cell death 1 ligand 1 (PD-
L1) inhibitor, which are widely applied to the treatment 
of renal cell carcinoma, lung cancer, and gastric cancer, 
etc. [7]. Although ICB has been deemed to revolutionize 
tumor treatability, several problems are still needed to 
be addressed, such as lack of persistence in a minority of 
patients and severe toxic responses [8]. Therefore, novel 
immune hallmarks are needed to be found to comple-
ment cancer immunotherapy in order to make it more 
effective and reliable.

Guanylate-binding proteins (GBPs), assembled by 
interferon (IFN)-induced GTPases, serve as a major 
nexus in cell-autonomous immunity against micro-
bial pathogens, inflammation and cancer [9]. Abnormal 
expression of GBPs is usually observed in various tumors 
and play significant roles in oncogenesis and tumor pro-
gression [10–12]. Remarkably, Godoy et al. found that 
GBP2 was overexpressed in breast cancer and signifi-
cantly associated with better prognosis, and also indi-
cated efficient T cell response [13]. Wang et al. discovered 
that high GBP2 expression in proficient-mismatch-repair 
or microsatellite stability (pMMR/MSS) colorectal can-
cer patients may have better efficacy of anti-PD-1 ther-
apy [14]. However, it still remains unclear whether GBP2 
could act as biomarker in other cancers.

In the current, we first analyzed the expression and 
immuno-correlations of GBP2 in gastric cancer and 
expand its immuno-related role in pan-cancer. GBP2 was 
upregulated in tumor tissues but associated with well 

prognosis. In addition, GBP2 was positively correlated 
with activated TIME features and well immunotherapeu-
tic responses. Furthermore, pan-cancer analysis revealed 
that GBP2 was associated with activated TIME features 
in most cancer types. Overall, this study summarized 
the immuno-correlations of GBP2 in gastric cancer and 
pan-cancer, and GBP2 could be a novel biomarker for 
the predication of immunotherapeutic efficacy in most 
cancers.

Methods
Acquisition of public data
The pan-cancer (TOIL RSEM tpm) and gastric can-
cer (IlluminaHiSeq) RNA-sequencing (RNA-seq) data 
as well as clinical annotations of The Cancer Genome 
Atlas (TCGA) dataset were obtained from the UCSC 
Xena website (https://xenabrowser.net/datapages/). The 
abbreviations for various cancer types are exhibited in 
Supplementary Table S1. Four public datasets comprising 
RNA-seq data from patients receiving immunotherapy 
were downloaded from the Gene Expression Omnibus 
(GEO, http://www.ncbi.nlm.nih.gov/geo/) or the Tumor 
Immune Dysfunction and Exclusion (TIDE, http://tide.
dfci.harvard.edu/) databases, including PRJEB25780 (a 
prospective phase 2 clinical trial of patients with gastric 
cancer who are treated with pembrolizumab as salvage 
treatment) [15], PRJEB23709 (a retrospective cohort 
of melanoma patients treated with anti-PD-1 mono-
therapy or combined anti-PD-1 and anti-CTLA-4) [16], 
GSE176307 (a retrospective cohort of urothelial cancer 
patients treated with at least one dose of anti-PD-1 or 
anti-PD-L1 monotherapy) [17], GSE126044 (a retrospec-
tive cohort of non-small cell lung cancer patients treated 
with either nivolumab or pembrolizumab) [18], and 
MEDI4736 (a single arm neoadjuvant clinical trial of tri-
ple negative breast cancer patients receiving durvalumab 
concurrent with weekly nab-paclitaxel ×12 weeks fol-
lowed by durvalumab plus dose dense doxorubicin/
cyclophosphamide ×4 weeks) [19] cohorts.

Enrichment analysis of GBP2 in gastric cancer
To identify GBP2-related functions in gastric cancer, we 
first extracted correlated genes with GBP2 in the TCGA 
dataset using the LinkedOmics tool [20]. Then, the top 50 
positively and negatively correlated genes were submitted 
for enrichment analysis. Briefly, The h.all.v7.4.symbols.
gmt was downloaded from the Molecular Signatures 
Database (http://www.gsea-msigdb.org/gsea/downloads.
jsp) [21] and used for enrichment analysis in the term of 
Hallmark gene sets. The latest gene annotation of KEGG 
pathway was obtained (https://www.kegg.jp/kegg/rest/
keggapi.html) and was used as background [22–24]. 
Then, the enrichment analysis was performed using the 
R package clusterprofiler (version 3.14.3) to obtain the 

https://xenabrowser.net/datapages/
http://www.ncbi.nlm.nih.gov/geo/
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
http://www.gsea-msigdb.org/gsea/downloads.jsp
http://www.gsea-msigdb.org/gsea/downloads.jsp
https://www.kegg.jp/kegg/rest/keggapi.html
https://www.kegg.jp/kegg/rest/keggapi.html


Page 3 of 11Wang et al. BMC Cancer          (2023) 23:925 

results of gene set enrichment in the term of KEGG anal-
ysis. The minimum gene set was set to 5, the maximum 
gene was set to 5000 and one thousand resamplings was 
set. P value < 0.05 was considered statistically significant.

Immunological correlation of GBP2 in gastric cancer
The immunological characteristics of TIME in gastric 
cancer contained immunomodulators, tumor purity, 
infiltration levels of tumor-infiltrating immune cells 
(TIICs), and the expression of immune checkpoints 
[25]. Firstly, we studied the expression of 150 immuno-
modulators, including MHC, receptors, chemokines, 
immunoinhibitors, and immunostimulators [26]. In 
addition, the correlations between GBP2 and immune 
checkpoints levels were evaluated. Moreover, the TIMER 
algorithm [27] was used to estimate TIICs abundance 
and the correlation between GBP2 and TIICs was also 
assessed. To investigate the associations between GBP2 
and anti-tumor immunity in gastric cancer, the correla-
tions between GBP2 and immunological characteristics 
of TIME were assessed.

Correlation between GBP2 and immunotherapeutic 
response
According to a previous report, immunophenoscore 
(IPS) was calculated to predict therapeutic response to 
immunotherapy [28]. The IPS values of gastric cancer 
patients were obtained from the Cancer Immunome 
Atlas (TCIA) website (http://tcia.at/home/). In addition, 
the correlation between GBP2 and four mismatch repair 
(MMR) genes (MLH1, MSH2, MSH6, and PMS2) were 
also assessed [29].

Pan-cancer analysis of immunological correlation of GBP2
To evaluate the pan-cancer immunological correlation of 
GBP2, we collected pan-cancer expression of 150 immu-
nomodulators, including MHC, receptors, chemokines, 
immunoinhibitors, and immunostimulators. Then, the 
correlations between GBP2 and tumor purity as well as 
TIICs abundance were also assessed. The pan-cancer 
analysis was conducted using the Sangerbox tool [30].

Clinical samples
The gastric cancer tissue microarray (TMA, Cat. HSt-
mA180Su19) was purchased from Outdo BioTech 
(Shanghai, China). A total of 94 tumor samples and 86 
para-tumor samples were contained in this research. The 
clinic-pathological and follow-up data were provided by 
Outdo BioTech as well. Ethical approval for the use of 
TMAs was granted by the Clinical Research Ethics Com-
mittee in Outdo Biotech.

Immunohistochemistry (IHC) staining and semi-
quantitative scoring
IHC staining was conducted on the above sections 
according to the standardized procedures. Sections were 
retrieved by EDTA. The primary antibodies used were 
as follows: antiGBP2 (1:3000 dilution, Cat. 11854-1-AP, 
ProteinTech), antiPD-L1 (Ready-to-use, Cat. GT2280, 
GeneTech), antiPD-1 (Ready-to-use, Cat. GT2281, Gene-
Tech), antiCD8 (Ready-to-use, Cat. GT2112, GeneTech), 
antiMLH1 (Ready-to-use, Cat. GT2304, GeneTech), 
antiMSH2 (Ready-to-use, Cat. GT2310, GeneTech), 
antiMSH6 (Ready-to-use, Cat. GT2195, GeneTech), 
and antiPMS2 (Ready-to-use, Cat. GT2149, GeneTech). 
Staining was visualized with DAB and hematoxylin coun-
terstain, and stained sections were captured using Aperio 
Digital Pathology Slide Scanners. For semi-quantitative 
analysis, the stained sections were independently evalu-
ated by two pathologists. GBP2 and PD-L1 were assessed 
by according to the evaluation standard on a 12-point 
scale by calculating the immunoreactivity score (IRS) 
[31]. CD8 and PD-1 were assessed by estimating the per-
centage of cells with strong intensity of membrane stain-
ing in the stromal cells.

Statistical analysis
All statistical analyses were conducted using SPSS 
26.0 software or R language. All data are presented as 
means ± SDs. The difference between the two groups was 
analyzed by parametric Student’s t-test or non-paramet-
ric Mann Whitney test. Survival analysis was performed 
by log-rank test. Correlation analysis between two vari-
ables was analyzed by Pearson test. All statistical tests 
were two-sided, and P value < 0.05 was considered sta-
tistically significant and labeled with *P < 0.05; **P < 0.01; 
***P < 0.001.

Results
Expression and prognostic value of GBP2 in gastric cancer
First of all, we examined the expression of GBP2 in 
gastric cancer. In the GEPIA database, GBP2 was sig-
nificantly upregulated in tumor tissues compared with 
para-tumor tissues (Figure S1A). To further confirm 
the above finding, we also conducted IHC statin in gas-
tric cancer TMA. The results showed that GBP2 protein 
was located in cytoplasm and highly expressed in tumor 
tissues (Fig.  1A-B). Then, the prognostic value of GBP2 
was also checked in public and in-house cohorts. The 
results showed that patients with high GBP2 expression 
exhibited poorer prognosis compared with those with 
low expression in the Kaplan-Meier plotter (Figure S1B). 
In addition, in the in-house cohort, GBP2 expression 
was also associated with unfavorable clinical outcome 
(Fig.  1C). Overall, GBP2 is significantly upregulated in 
gastric cancer and correlated with poor prognosis.

http://tcia.at/home/
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Enrichment analysis of GBP2 in gastric cancer
To obtain comprehensive insights into the biological 
functions of GBP2 in gastric cancer, the Linked Omics 
was used to seek the genes co-expressed with GBP2 in 
TCGA cohort. Genes significantly associated with GBP2 
were exhibited in Figure ​Figure 2  A. The top 50 sig-
nificant genes positively and negatively associated with 
GBP2 were shown in the heat map (Fig.  2B-C). In the 
term of KEGG analysis, the positively correlated genes 
were enriched in cell adhesion molecules, influenza A, 
Th17 cell differentiation, and so on, the negatively posi-
tively correlated genes were enriched in metabolic path-
ways, cholesterol metabolism, steroid biosynthesis, and 
so on (Fig. 2D-E). In the term of Hallmark analysis, the 
positively correlated genes were enriched in interferon-γ 
response, allograft rejection, interferon-α response, and 
so on, the negatively positively correlated genes were 
enriched in G2M_checkpoint, E2F_targets, MTORC1_
signaling, and so on (Fig.  2F-G). Taken together, GBP2 

is positively associated with immune response in gastric 
cancer.

GBP2 was related to an inflamed tumor microenvironment 
in gastric cancer
Considering that GBP2 was associated with multiple 
immune-related processes, we next explored the precise 
immunological role of GBP2 in gastric cancer. A majority 
of chemokines, receptors, major histocompatibility com-
plex (MHC) molecules, immunoinhibitors, and immuno-
stimulators were notably correlated with GBP2 in gastric 
cancer (Fig. 3A). The expression of GBP2 was positively 
related to the infiltration levels of most immune cells 
estimated by the TIMER algorithm, especially CD8+ T 
cells, dendritic cells, and neutrophils (Fig.  3B). In addi-
tion, the expressions of immunotherapy biomarkers, 
such as PD-L1, PD-L2, IFN-γ, CD8A, SECTM1, and 
IFITM3 [32, 33], were also positively correlated with 
GBP2 expression (Fig.  3C). Moreover, GBP2 was posi-
tively related to IPS score as well (Fig. 3D-G). To sum up, 

Fig. 1  Expression and prognostic value of GBP2 in gastric cancer. (A) Representative images revealing GBP2 expression in tumor and para-tumor tissues 
using IHC staining. Magnification, 200×. (B) Semi-quantitative analysis of expression levels of GBP2 in tumor and para-tumor tissues. (C) Kaplan-Meier 
analysis showing overall survival (OS) of patients with low or high GBP2 expression in gastric cancer
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all findings suggest that GBP2 is related to an inflamed 
TIME in gastric cancer, and may be a potential biomarker 
for immunotherapy.

GBP2 predicted immunotherapeutic responses in gastric 
cancer
To further validate the immune-correlation of GBP2 in 
gastric cancer. An immunotherapy cohort was used. Sim-
ilar to the findings in the TCGA cohort, GBP2 was posi-
tively associated with most chemokines, receptors, major 
histocompatibility complex (MHC) molecules, immuno-
inhibitors, and immunostimulators (Fig. 4A). In addition, 
GBP2 was positively correlated with CD8+ T cells, den-
dritic cells, and neutrophils, but not obviously correlated 
with B cells, CD4+ T cells and macrophages (Fig. 4B-D, 
Figure S2A-C). Moreover, GBP2 was also positively 
related to the expressions of immunotherapy biomarkers 

(Fig.  4E). Furthermore, GBP2 was negatively correlated 
with four MMR gene expressions (Figure S3). More 
immediately, GBP2 was overexpressed in gastric can-
cer tumors with the well immunotherapeutic response 
(Fig. 4F). To validate the correlation between GBP2 and 
established immunotherapy biomarkers, we conducted 
the IHC analysis on the in-house cohort. The results 
showed GBP2 protein expression was positively corre-
lated with PD-L1 expression, CD8+ cell abundance, and 
PD1+ cell abundance (Fig. 5A-D). Moreover, we detected 
MMR proteins using paraffin samples and checked the 
association between GBP2 and MMR status. The results 
showed that GBP2 was significantly highly expressed in 
dMMR samples (Fig.  5E-G). Totally, GBP2 is positively 
correlated with immunotherapeutic biomarkers and 
responses in gastric cancer.

Fig. 2  Co-expressed genes and enrichment analysis of GBP2 in gastric cancer. (A) The global GBP2 highly associated genes identified by Pearson test 
in gastric cancer cohort. (B) Heat maps showing top 50 genes positively associated with gastric cancer in HCC. (C) Heat maps showing top 50 genes 
negatively associated with gastric cancer in HCC. (D) Enrichment analysis of the positively correlated genes in the term of KEGG analysis. (E) Enrichment 
analysis of the negatively correlated genes in the term of KEGG analysis. (F) Enrichment analysis of the positively correlated genes in the term of Hallmark 
analysis. (G) Enrichment analysis of the negatively correlated genes in the term of Hallmark analysis
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Pan-cancer analysis of the immune-correlation of GBP2
Our results showed that GBP2 could detect immuno-
hot tumors in gastric cancer and was connected to an 
inflamed TIME. GBP2’s immunological function in rela-
tion to other cancer types was unclear, nevertheless. The 
relationships between GBP2 and chemokines, recep-
tors, MHC, immunoinhibitors, and immunostimulators 
were then examined. GBP2 was favorably linked with the 
expression levels of various immunomodulators, with 
the exception of a few cancer types (Fig. 6A). Moreover, 
in most cancer types, GBP2 was favorably connected 
with TIIC levels but negatively correlated with tumor 
purity (Fig.  6B-C). Also, in the cohorts of GSE126044 
(non-small cell lung cancer), GSE176307 (urothelial 

carcinoma), PRJEB23709 (melanoma), and MEDI4736 
(breast cancer), GBP2 was substantially expressed in 
tumors with good immunotherapeutic response (Fig. 6D-
G). In addition, high GBP2 was associated with favorable 
prognosis in the term of both overall survival and pro-
gression-free survival (PFS) in the PRJEB23709 cohort 
(Figure S4A-B). Together, the information points to 
GBP2 as an immunotherapy pan-cancer biomarker, with 
the exception of a few tumor types.

Discussion
Gastric cancer is the most common digestive malignant 
tumor in the world, with an incidence of 1,000,000 new 
cases one year. The mortality of gastric cancer goes high 

Fig. 3  The correlations between GBP2 expression and TIME features in gastric cancer. (A) Correlations between GBP2 and immunomodulators expres-
sion, including chemokines, receptors, MHCs, immunoinhibitors, and immunostimulators. (B) Correlations between GBP2 and TIICs levels estimated by 
the TIMER tool. (C) Correlations between GBP2 and immunotherapy biomarkers, including PD-L1, PD-L2, IFNG, CD8A, SECTM1, and IFITM3. (D-G) Correla-
tions between GBP2 and four IPS scores
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due to patients often being diagnosed at late stage, rank-
ing third among causes of cancer-related death world-
wide [34]. Endoscopic resection is the mainly treatment 
for early gastric cancer, while surgical resection and adju-
vant chemotherapy are also main measures to treat gas-
tric cancer with advanced stages [35].

With increasing discovery in molecular mechanisms of 
gastric cancer, immune escape is considered as one of the 
significant features of gastric cancer. Thus, immunother-
apy now steps into the spotlight as part of comprehensive 
therapy [34]. The histological classification of gastric can-
cer is traditionally based on hallmarks of the epithelial 
tumor. However, other histological features exist in TIME 
as well, for example, tumor infiltrating lymphocytes or 

tumor-stroma ratio. These features will act as latent clini-
cal prognostic factors in the future [36–38]. At present, 
the first-line biological agents for the treatment of gastric 
cancer include the HER2 antibodies, the anti-PD1 anti-
bodies nivolumab and pembrolizumab, the anti-PD-L1 
antibodies atezolizumab, avelumab and durvalumab [39]. 
It is hypothesized that immunotherapy combined with 
chemotherapy can improve the prognosis of gastric can-
cer. Cytotoxic chemotherapy may reconstruct TIME and 
promote immune-mediated anti-tumor effects, mean-
while PD-1 blockade together with the restoration of 
anti-tumor T cell response also enhance immunogenicity 
[40, 41].

Fig. 4  The value of GBP2 in predicting immunotherapeutic responses in gastric cancer. (A) Correlations between GBP2 and immunomodulators expres-
sion, including chemokines, receptors, MHCs, immunoinhibitors, and immunostimulators. (B-D) Correlations between GBP2 and neutrophils, CD8+ T 
cells, & dendritic cells estimated by the TIMER tool. (E) Correlations between GBP2 and immunotherapy biomarkers, including PD-L1, PD-L2, IFNG, CD8A, 
SECTM1, and IFITM3. (F) Expression of GBP2 in tumors with different immunotherapeutic responses
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Fig. 5  Validation of GBP2 and TIME features in gastric cancer. (A) Representative images revealing PDL1, CD8, and PD1 in tumor tissues with low and high 
GBP2 expression using IHC staining. Magnification, 200×. (B) Correlation between GBP2 and PDL1 expression. (C) Correlation between GBP2 and CD8+ 
cell levels. (D) Correlation between GBP2 and PD1+ cell levels. (E) Representative images revealing tumors with dMMR and pMMR status using IHC stain-
ing. Magnification, 200×. (F) Representative images revealing GBP2 expression in tumors with dMMR and pMMR status using IHC staining. Magnification, 
200×. (G) Semi-quantitative analysis of expression levels of GBP2 in tumors with dMMR and pMMR status
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The GBPs, originally isolated and identified from 
mouse cells, belong to the dynamin superfamily of large 
GTPases, which is mainly known for its multiple func-
tions against invading microorganisms and pathogens. 
The GBP family is predominantly stimulated by IFN-γ, 
but other inflammatory cytokines such as IL-1α, IL-1β 
and TNF-α can also induce its expression in epithelial 
cells [42, 43]. The GBP family was discovered to be con-
cerned in various signaling cascades [44]. Both p50 and 
NF-κB can enhance the promoter activity of GBP5. IAV 
infection induced GBP5 expression through NF-κB/p50 
signaling, and GBP5 also stimulated IFNs, for exam-
ple IFN-β and IFN-γ, and other downstream cytokine 

production to hamper viral replication in turn [45]. 
Moreover, at the early stage of Kaposi’s sarcoma-associ-
ated herpesvirus infection, GBP1 was found upregulated 
via NF-κB pathway [46].

Different from the protective roles of GBPs in fight-
ing against microorganisms, its biological functions in 
tumors are not well characterized to a large extent. Xu et 
al. illustrated that GBP3 was overexpressed in glioblas-
toma and promoted tumor proliferation via activating the 
p62-ERK1/2 axis, and high GBP3 level diminished the 
sensitivity of glioblastoma to temozolomide treatment 
by enhancing DNA damage repair [47]. Yu et al. found 
that the expression of GBP2 was highly upregulated in 

Fig. 6  Pan-cancer analysis of the immuno-correlation of GBP2. (A) Correlations between GBP2 and 150 immunomodulators (MHC, receptors, chemo-
kines, immunoinhibitors, and immunostimulators) in pan-cancer. (B) Correlations between GBP2 and tumor purity in pan-cancer. (C) Correlations be-
tween GBP2 and TIICs estimated by TIMER and EPIC algorithms in pan-cancer. (D-G) Expression of GBP2 in tumors with different immunotherapeutic 
responses in GSE126044 (non-small cell lung cancer), GSE176307 (urothelial carcinoma), PRJEB23709 (melanoma), and MEDI4736 (breast cancer) cohorts
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glioblastoma multiforme, enhancing tumor invasion via 
Stat3/fibronectin pathway, which may predict poor prog-
nosis for patients [48]. However, there is still no definite 
evidence that GBP2 is related to immunotherapy in gas-
tric cancer.

In this research, we conducted comprehensive analysis 
of the immuno-correlation of GBP2 in gastric cancer. We 
found that GBP2 was highly expressed in gastric cancer 
and associated with poor prognosis. In addition, GBP2 
was associated with immune-hot TIME in gastric cancer. 
Wang et al. revealed the high correlation among GBP2, 
high CD8+ T cell infiltration and better efficacy of PD-1 
blockade response in colorectal cancer. They found that 
low expression of GBP2 was associated with weakened 
immune responses and poor prognosis of colorectal can-
cer patients, which suggested that GBP2 could serve as 
a potential immunotherapy target for colorectal cancer 
[14]. Similarly, GBP2 was also correlated with multiple 
immunotherapy biomarkers and the well response to 
immunotherapy in gastric cancer. In renal cell carcinoma, 
a serial of studies tried to explain the potential mecha-
nisms. GBP2 could regulate PD‑L1 expression via STAT1 
signaling [49]. Given that GBP2 could mediate STAT1 
signaling in both colorectal cancer and renal cell carci-
noma [14, 49], we supposed that GBP2-STAT1 axis might 
be critical for regulating the tumor immune status in a 
variety of malignancies. However, the supposition should 
be further validated.

Conclusions
This study uncovers that GBP2 expression is associ-
ated with the immuno-hot TMIE in gastric cancer and 
could predict the immunotherapeutic responses. The 
pan-cancer study also shows that GBP2 is a marker for 
high immunogenicity in the majority of tumor types. 
All things considered, GBP2 may be a novel biomarker 
for determining tumor immunogenicity and directing 
immunotherapy.
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