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Abstract 

Background and objective In the tumor microenvironment (TME), the dynamic interaction between tumor cells 
and immune cells plays a critical role in predicting the prognosis of colorectal cancer. This study introduces a novel 
approach based on artificial intelligence (AI) and immunohistochemistry (IHC)-stained whole-slide images (WSIs) 
of colorectal cancer (CRC) patients to quantitatively assess the spatial associations between tumor cells and immune 
cells. To achieve this, we employ the Morisita-Horn ecological index (Mor-index), which allows for a comprehensive 
analysis of the spatial distribution patterns between tumor cells and immune cells within the TME.

Materials and methods In this study, we employed a combination of deep learning technology and tradi-
tional computer segmentation methods to accurately segment the tumor nuclei, immune nuclei, and stroma 
nuclei within the tumor regions of IHC-stained WSIs. The Mor-index was used to assess the spatial association 
between tumor cells and immune cells in TME of CRC patients by obtaining the results of cell nuclei segmentation. 
A discovery cohort (N = 432) and validation cohort (N = 137) were used to evaluate the prognostic value of the Mor-
index for overall survival (OS).

Results The efficacy of our method was demonstrated through experiments conducted on two datasets comprising 
a total of 569 patients. Compared to other studies, our method is not only superior to the QuPath tool but also pro-
duces better segmentation results with an accuracy of 0.85. Mor-index was quantified automatically by our method. 
Survival analysis indicated that the higher Mor-index correlated with better OS in the discovery cohorts (HR for high 
vs. low 0.49, 95% CI 0.27–0.77, P = 0.0014) and validation cohort (0.21, 0.10–0.46, < 0.0001).

Conclusion This study provided a novel AI-based approach to segmenting various nuclei in the TME. The Mor-index 
can reflect the immune status of CRC patients and is associated with favorable survival. Thus, Mor-index can poten-
tially make a significant role in aiding clinical prognosis and decision-making.
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Introduction
Colorectal cancer (CRC) is the third most common can-
cer worldwide and the second fatal cancer globally. The 
observed increase in CRC incidence and mortality will 
last in the coming decades [1]. Tumor cells and tumor 
microenvironments (TME) jointly limit and influence the 
occurrence and development of tumors in CRC patients. 
TME is closely related to the progression of tumor metas-
tasis and patients’ response to treatment [2]. Specifically, 
it harbors non-immune cells, immune cells, and tumor 
cells which influence the development and progression 
of cancer through interaction with surrounding cells. In 
this complex ecosystem, these various cell types interact 
to determine the tumor progression [3, 4].

The information in immunohistochemical (IHC)-
stained whole-slide images (WSIs) including cell density, 
cell type, and site of immune cells is proved to be valuable 
prognostic tool [5]. T cells play a critical role in the body’s 
defense against infections and cancer, with their infiltra-
tion in human cancer being indicative of immune recog-
nition [6]. Among T cell subsets, the total lymphocyte 
count (CD3 +) and specific subtypes (CD4 + , CD8 +) 
have strong associations with the survival outcomes of 
CRC patients. CD8 + T lymphocytes, in particular, are 
essential anti-tumor immune cells that directly eliminate 
tumor cells by releasing cytotoxic molecules. The density 
of CD3 + T lymphocytes, reflecting the overall function-
ality of the immune system within the tumor microen-
vironment (TME), serves as an important prognostic 
indicator. Notably, the density of CD3 + T cells has shown 
a stronger correlation with patient survival outcomes 
compared to cytotoxic T cells (CD8 + T cells) [4, 7].

Previous research has established that the tumor eco-
system is highly complex and heterogeneous. In this 
ecosystem, the interaction of tumor cells, immune cells, 
and their microenvironment have profound effects at 
all stages of CRC disease [8]. It has been demonstrated 
that the spatial distribution of different immune cells 
amongst the immunological data provides the most 
effective information for breast cancer research [9]. 
Maley et  al. (2015) evaluated the results of haema-
toxylin and eosin (HE) staining sections from 1002 
breast cancer patients and found that co-localization 
of cancer cells and immune cells is an independent 
predictor of survival. The new predictor was evalu-
ated using the Morisita-Horn ecological index (Mor-
index). It has been proved the new predictor can be 

fully reproducible and have a more robust predictive 
performance than other standard clinical variables [10]. 
A great deal of previous research into CRC patients 
has explored the effects of immune cell density and 
tumor cell density on cancer prognosis and prediction 
[11–14]. However, few studies have quantified the rela-
tionship between spatial patterns of immune cells and 
cancer cells.

In recent years, there has been rapid development in 
artificial intelligence (AI), which has found extensive 
applications in the management and analysis of large 
biomedical datasets, aiding in diagnosis and clinical 
decision-making. Particularly, deep learning technol-
ogy has shown promise in early tumor identification 
and enhancing the efficiency of tissue classification in 
CRC. The utilization of AI technology offers notable 
advantages in terms of high efficiency and reproduc-
ibility, enabling efficient nuclei segmentation and facili-
tating further investigations into cell relationships [15, 
16].

This study aims to employ AI methods for the pre-
cise segmentation of immune nuclei, stroma nuclei, and 
tumor nuclei in immunohistochemically stained whole-
slide images (WSIs) of CRC. By identifying and locat-
ing these three cell types, the spatial associations and 
interactions between immune cells and tumor cells can 
be explored. Additionally, the prognostic significance of 
the Mor-index in CRC was investigated.

Methods
Patients
The study included clinical data of 569 patients from 
two centers, the Guangdong Provincial People’s Hospi-
tal (GDPH) and the Sixth Affiliated Hospital of Sun Yat-
sen University (SYSU6). Our study recruited patients 
with colorectal cancer confirmed stage I–III CRC who 
has been approved by the related institutional review 
board. 432 patients from GDPH were enrolled in the 
discovery cohort and 137 patients from SYSU6 were 
enrolled in the validation cohort. Exclusion criteria: 
stage IV CRC patients, WSIs with poor pathological 
image quality that interfere with observation, and sec-
tions with missing clinical information. Clinical and 
follow-up information in regard to the patient includ-
ing age, TNM stage and tumor site is obtained from 
electronic medical records. The clinical endpoint of this 
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study was overall survival (OS, time from the resection 
to date of death of any course).

IHC staining and whole‑slide images acquisition
Human anti-CD3 is an excellent marker for T cell detec-
tion due to its specific binding to T cells. The immune 
status was assessed and quantified using immunohis-
tochemistry (IHC) slides. The detailed process of IHC 
slides can be found in one of our previous studies [17]. 
The IHC slides were scanned into digitized IHC-stained 
WSIs by the scanner (Leica, Aperio-AT2, and GT450, 
USA) at a 40 × magnification (0.25–0.26 µm/pixel).

Tissue segmentation
A convolutional neural network (VGG-19) was used to 
segment tissues in IHC-stained WSIs automatically. By 
selecting the tissue category with the highest probabil-
ity of prediction as to the prediction category, nine tis-
sue categories (stroma, tumor epithelium, lymphocyte, 

mucous, normal mucosa, adipose, debris, smooth mus-
cle, and background) were separated. The detailed steps 
can be referred to in our previous research [18]. The 
regular tissue area was acquired by combining adipose 
and muscle area. Since this study only quantified the spa-
tial relationship of cell in the tumor area, the tumor area 
was reserved for analysis. The tumor area was obtained 
by merging debris, tumor stroma, and tumor epithelial 
areas. The flowchart of the entire study is shown in Fig. 1. 
For visualization, tumor area is represented in red, and 
regular tissue area is represented in blue.

Immune, tumor and stroma nuclei segmentation
Nuclei segmentation was performed in the WSI for clas-
sifying immune nuclei, tumor nuclei, and stroma nuclei. 
The tumor area, which tiled into a large number of image 
patches (1024 × 1024  pixel2 at 40 × magnification), was 
obtained by tissue segmentation. Subsequently, a Gabor 
filter was used for texture analysis of each image patch, 

Fig. 1 Nuclei segmentation based on deep learning technology and traditional computer segmentation measures the spatial association 
of tumor cells and immune cell. A Tissue segmentation is performed using a CNN (VGG-19) model to get the tumor region in WSI, the blue part 
is the tumor region to be preserved, and the red part is the cropped part. After that, nuclear segmentation and classification in the tumor area. 
The red boundaries represent the nuclei of immune cells, the blue boundaries represent the nuclei of tumor cells, and the yellow boundaries 
represent the nuclei of stroma cells in the image patch (1024 × 1024  pixel2 at 40 ×). B A schematic diagram on any spatial plane showing Mor-index 
how common domain statistics distinguish between highly segregated cell patterns and highly co-localized cell patterns. C Kaplan–Meier curve 
predicting survival probability in the discovery cohort. CNN, convolutional neural network; WSI, whole-slide image; IHC, immunohistochemical; 
Mor-index, Morisita-Horn ecological index
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and its features were extracted and segmented to obtain 
tumor epithelial regions. The following is a detailed 
description of the segmentation steps.

Firstly, an array of Gabor filters with different frequen-
cies and orientations is designed to localize different, 
roughly orthogonal, subsets of frequency and orienta-
tion information in the input image [19]. Regularly sam-
ple orientations between [30,180] degrees in steps of 30 
degrees, the sampling wavelength is 2. The image patch 
is processed by the Gabor filter to obtain a Gabor magni-
tude image. 30 degrees to 180 degrees can cover various 
texture orientations that may exist in IHC-stained WSIs. 
The wavelength of 2 is well suited for capturing fine cel-
lular structures and texture features. The step size of 30 
degrees can somewhat balance computational efficiency 
and detail preservation.

Next, the Gabor magnitude image is transformed into 
Gabor features through a series of pre-processing. This 
pre-processing includes Gaussian smoothing, adding 
extra spatial information to the feature set, and bringing 
our feature set into the format required by the K-means 
function. Set the maximum number of iterations of the 
K-means function to 5 to limit the iteration count allows 
the algorithm to converge to an acceptable clustering 
result faster, and set the number of clusters to 2 to seg-
ment the image into 2 regions. Then, the K-means clus-
tering algorithm is used to classify Gabor texture features 
into two categories to get the white region of interest 
(ROI) and the black background. The ROI area under-
went morphological operations such as swelling and cor-
rosion to obtain the tumor epithelial areas.

Finally, the previously developed nuclei segmenta-
tion software was utilized to segment tumor nuclei spe-
cifically in the tumor epithelial areas. For immune nuclei 
segmentation, the Bernsen algorithm was employed with 
a scan frame size of 77 pixels and a contrast threshold of 
15. The remaining nuclei were classified as stroma nuclei. 
The choice of a window size of 77 pixels was based on its 
suitability for capturing the size range of most immune 
nuclei. Immune nuclei, which typically exhibit a brown 
appearance, generally possess local thresholds exceeding 
15, thus justifying the selection of a contrast threshold 
of 15. As a result, three distinct types of nuclei were suc-
cessfully separated and quantified. In Fig. 1A, the bound-
aries of immune cells are depicted in red, tumor cells in 
blue and stroma cells in yellow.

The accuracy of our cell nuclei segmentation model 
is validated using three evaluation criteria. True posi-
tive (TP) represents the number of correct positive 
predictions. False positive (FP) represents the number 
of incorrect positive predictions. True negative (TN) 
represents the number of correct negative predic-
tions. False negative (FN) represents the number of 

incorrect negative predictions. Accuracy is calculated 
as the ratio of correct predictions to the total number 
of predictions.

The Dice coefficient is an ensemble similarity measure, 
usually used to calculate the similarity of two samples.

The Mean Intersection over Union (MIoU) is the 
standard metric for semantic segmentation and com-
putes the average of the ratios of the intersections and 
unions of all categories.

Measuring spatial association between tumor cell 
and immune cell
The Morisita-Horn index, originally proposed by Horn 
as an ecological measure, has proven to be a valuable 
tool for studying community structure and analyzing 
data such as diet preferences and habitat preferences 
in ecology [20, 21]. In the context of our study, this 
index is employed to quantify the spatial colocation of 
immune cells and tumor cells, providing insights into 
their spatial associations within the tumor microenvi-
ronment. This index can be calculated based on the the 
square tessellation method or the Voronoi method. For 
square tessellation, a fixed square size h-by-h was used 
for all tumor areas. H = 1024 pixel was used as the fixed 
square length and tumor area were divided into squares 
of size 1024 × 1024  pixel2, which was defined as polygon 
i. The study used the square tessellation method, where 
each polygon i is an image patch (1024 × 1024  pixel2 at 
40 × magnification). The number of immune nuclei and 
tumor nuclei of each polygon i was obtained as nli and 
nci  , respectively. In the following data analysis, polygons 
with low nuclei density were excluded. The excluded 
low-density polygon was defined as ni

di
≤ 0. 0002 of pol-

ygon i, where ni represented the total number of nuclei 
and di represented the pixel size of polygon i. To meas-
ure the spatial correlation between tumor cells and 
immune cells, the number of immune nuclei and tumor 
nuclei of polygon i was input firstly, and then calculated 
the Morisita-Horn similarity index. The proportion of 
immune nuclei and tumor nuclei in polygon i are repre-
sented by pli and pci  respectively.i.e.

Accuracy =
TP + TN

TP + TN + FP + FN

Dice =
2TP

2TP + FP + FN

MIoU =
1

k + 1

k

i=0

TP

FN + FP + TP
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Morisita-Horn’s tumor and immune cell commu-
nity structure similarity index can be expressed by this 
formula:

The Mor-index is used to compare the degree of co-
localization of immune and tumor cells. As shown in 
Fig. 1B, Mor-index is equal to 0 indicates that there is a 
highly segregated between immune cells and tumor cells, 
and 0.81 indicates that immune cells and tumor cells are 
highly co-localized.

Statistical analysis and software
Image pre-processing steps, including tissue segmenta-
tion, nuclei segmentation, nuclei counting, and other 
necessary pre-processing tasks, were performed using 
MATLAB (R2019a, MathWorks, USA). Kaplan–Meier 
curves were utilized to stratify patients, and differences 
between patient groups were evaluated using log-rank 
tests, with statistical significance defined as P < 0.05. Uni-
variate and multivariate analyses were conducted using 
Cox proportional hazard regression models to analyze 
patient data. Hazard ratios (HRs) with 95% confidence 
intervals (CIs) were calculated using the Cox model. 
Model accuracy (ACC) was used to describe the classifi-
cation accuracy, while the Dice coefficient and the mean 
intersection over union (MIoU) were employed to assess 
segmentation performance. Statistical analysis was car-
ried out using R language packages such as survival, sur-
vminer, ggplot2, ggpubr, ggpmisc, ggforest, Hmisc, and 
rms.

Patients
The 569 CRC patients were recruited for this study, with 
a slightly higher number of patients older than 60 years 
than those younger (224 vs. 345). Basic clinicopathologi-
cal information can be seen in Table 1, including age, sex, 
TNM stage, tumor site. 69 (interquartile range [IQR], 
67 − 76) months was the median follow-up time of the 
discovery cohort and 63 (IQR, 76 − 89) months was the 
median follow-up time of the validation cohort. Besides, 
with the increase in follow-up time of 1, 3, and 5 years, 
the survival rate decreased gradually. The percentage of 
survival rate was from 92.9% to 74.4% in the discovery 
cohort and from 94.1% to 82.2% in the validation cohort. 
Significant differences were found between the two 
cohorts on tumour site.

pli =
nli∑
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i

pci =
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in
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i
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Accuracy of cell nucleus segmentation results
Twenty ground truths (512 × 512  pixel2 at 40 ×) were 
used as a validation set to validate the nuclei segmen-
tation result of our method. The average accuracy of 
the nuclei segmentation results is excellent at 0.85 and 
the standard deviation was 0.03. The Dice coefficient 
and the MIoU of this automated cell nuclei classifica-
tion model were 0.79 and 0.74, respectively, with the 
same standard deviation being 0.05 (Fig.  2). We also 
used QuPath (v0.3.2), the open source software for bio-
logical-image analysis, for nuclei segmentation of this 
validation set. The Dice coefficient and the MIoU were 
only 0.35 and 0.5 respectively, and the average accuracy 
of the nuclei segmentation results was only 0.75. The 
standard deviations of the three calculation indicators 
wegeneralization re 0.07, 0.04, and 0.05, respectively. 
Compared with our method, although QuPath supports 

Table 1 Distribution of clinicopathological features in discovery 
and validation cohorts

Abbreviation: CI confidence interval, MSI microsatellite instability, MSS 
microsatellite stability, NA not available, NA not available

P value was performed by Kruskal–Wallis or χ2 test where appropriate
a Numbers in parentheses are number of events/total number of patients

Discovery cohort
(128/432)a

Validation cohort
(25/137)a

P

Age 0.121

  ≤ 60 years 161 (38.6%) 63 (46.0%)

  > 60 years 271 (62.4%) 74 (54.0%)

Sex 0.743

 Male 256 (59.3%) 84 (61.3%)

 Female 176 (40.7%) 53 (38.7%)

T 0.248

 T1 11 (2.5%) 8 (5.8%)

 T2 64 (14.8%) 36 (26.3%)

 T3 317 (73.4%) 90 (65.7%)

 T4 40 (9.3%) 3 (2.2%)

N 0.127

 N0 231 (53.2%) 87 (63.5%)

 N1 125 (28.9%) 36 (26.3%)

 N2 77 (17.8%) 14 (10.2%)

Stage 0.049

 I 59 (13.7%) 39 (28.5%)

 II 172 (39.8%) 47 (34.3%)

 III 201 (46.5%) 51 (37.2%)

Tumour site  < 0.001

 Colon 257 (59.5%) 0 (0%)

 Rectum 175 (40.5%) 137 (100%)

MSI status  < 0.001

 MSI 31 (7.1%) 0(0%)

 MSS 265 (61.3%) 48(35.0%)

 NA 136(31.6%) 89(65.0%)
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multiple classifications of nuclei, the of this algorithm is 
worse (Fig. 3).

Association between Mor‑index and  CD3+ cell infiltration 
density, MSI and MSS
To evaluate whether there could be a correlation between 
the Mor-index with  CD3+ cell infiltration density, 
microsatellite instability (MSI) and microsatellite stabil-
ity (MSS), additional analyses were performed. In the 
discovery cohort, a correlation analysis between Mor-
index and  CD3+ cell infiltration density was conducted, 
and it revealed a weak correlation between the two vari-
ables (Pearson R = 0.17, P = 0.0014, Fig. 4A). This finding 
was validated in the validation cohort (Pearson R = 0.26, 
P = 0.0046, Fig.  4B). Due to the validation cohorts 

consisted of data from the rectum and all the data in the 
validation cohort were in an MSS status., so the valida-
tion cohorts and the discovery cohorts were merged. 
Figure  4C shows the distribution of Mor-index among 
different types of microsatellite status. The MSI group 
had a higher mean Mor-index than the MSS group, with 
a statistical difference (P < 0.05).

Prognostic value of the Mor‑index
The tumor region in the IHC-stained WSIs of all patients 
was segmented, and then the immune and tumor nuclei 
were segmented to calculate the Mor-index by the num-
ber of cell nuclei. The continuous Mor-index was divided 
into two groups with 50% as the cutoff. A total of 98 cases 
(22.7%) were divided into the Mor-index-high group and 
334 cases (77.3%) into the Mor-index-low group. Survival 
curves of the high and low groups are represented in 
Fig. 5A. The Kaplan–Meier curve suggested that the high 
and low groups were significantly different in predict-
ing OS, and the high group is associated with favorable 
OS. In the discovery cohort, OS was significantly better 
for patients with high. The 5-year survival rates were 72% 
in the low group and 87% in the high group (P = 0.0014; 
Fig.  5A). Patients with high and low Mor-index experi-
enced a significant difference in survival (unadjusted HR 
0.49, 95% CI 0.27–0.77; P = 0.003; Table 2). In the valida-
tion cohort, these findings were confirmed (0.21, 0.10–
0.46, < 0.001; Table 2), and the 5-year survival rates were 
64% in the low group and 90% in the high group (Fig. 5B).

Mor‑index as an independent prognostic factor
In Table  2, the univariate association between clinico-
pathological characteristics and OS is presented. We 
identified age, stage, and Mor-index as prognostic predic-
tors for OS (P < 0.05). In multivariate analysis (Fig. 6), the 
Mor-index was still associated with OS, independent of 

Fig. 2 The results of the three calculation indicators of the model are 
Acc, Dice, and Miou in this study. Acc, accuracy; Dice, dice coefficient; 
Miou, the Mean Intersection over Union

Fig. 3 The red nucleus boundaries are immune nucleus, the blue nucleus boundaries are tumor nucleus, and the yellow nucleus boundaries are 
stroma nucleus. A An image patch (512 × 512  pixel2 at 40 ×). B The nuclei segmentation based on our method. C The nuclei segmentation based 
on QuPath. D Ground truth
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age and stage. There was an association between a higher Mor-index and a better OS in the discovery cohort 

Fig. 4 Correlation between Mor-index and  CD3+ cell infiltration, MSI, and MSS. A The correlation analysis between Mor-index and  CD3+ cell 
infiltration density in the discovery cohort (R = 0.17, P = 0.0014). B The correlation analysis between Mor-index and  CD3+ cell infiltration density 
in the validation cohort (R = 0.26, P = 0.0046). C Student’s t-test was used to compare the distribution of Mor-index among different types 
of microsatellite status. (*P < 0.05, Student’s t-test). Mor-index, Morisita-Horn ecological index; MSI microsatellite instability; MSS, microsatellite 
stability

Fig. 5 Immune-tumor cell colocation predicts long term outcomes in CRC patients. Kaplan–Meier curves analysis for Mor-index-high 
and Mor-index-low patients. A Mor-index in the discovery cohort. B Mor-index in the validation cohort. CRC, colorectal cancer; Mor-index, 
Morisita-Horn ecological index



Page 8 of 10Chen et al. BMC Cancer          (2023) 23:763 

(discovery cohort: adjusted HR for low vs. high 1.80, 95% 
CI 1.06–3.20; P = 0.029; Fig.  6A) and validation cohort 
(4.20, 1.85–9.50; < 0.001; Fig. 6B).

Discussion
As reported, a large number of immune cells interact 
closely with tumor cells, actively or negatively control the 
proliferation and death of tumor cells, and play a signifi-
cant role in the invasion of tumor cells [22]. It is known 
that immune cells are associated with cancer treat-
ment response and outcome, indicating the complex-
ity of immune system involvement in cancer. However, 
the number of immune cells does not always predict the 
response to treatment, suggesting that other relevant fac-
tors may play a role [23]. Cancer cells can evade immune 
cells by evolving complex adaptive abilities, in the same 
way, that prey can evolve complex adaptations to evade 
predators [24]. Altogether, at the cellular level, the tumor 
environment of CRC is highly complex. The information 
proposed is insufficient if only tumor cells and immune 
cells are simply considered. Therefore, an indicator is 
needed to measure the interaction of these two types of 
cells, and the higher the value of the indicator, the better 
their degree of interaction.

The Morisita-Horn index exhibits the flexibility to 
adjust its exponents, allowing for the weighting of dif-
ferent factors [25]. This index is particularly suitable for 
analyzing populations with rare or abundant species, 
making it highly relevant for assessing the diverse data of 

Table 2 Univariate analysis including age, sex, stage, tumour 
site, and Mor-index for OS in the two cohorts

Abbreviation: OS overall survival, HR hazard ratio, CI confidence interval, Stage 
tumor-node-metastasis, Mor-index Morisita-Horn ecological index

Discovery cohort
HR (95% CI)

P Validation cohort
HR (95% CI)

P

Age 1.03 (1.02–1.05)  < 0.001 1.04 (1.00–1.08) 0.029

Sex
 Male 1

 Female 1.04 (0.73–1.48) 0.824 0.74 (0.32–1.72) 0.490

Stage
 I 1 1

 II 3.15 (1.12–8.88) 0.030 1.56 (0.47–5.19) 0.470

 III 8.74 (3.21–23.79)  < 0.001 2.97 (0.96–9.12) 0.040

Tumour site
 Colon 1

 Rectum 0.97 (0.68–1.39) 0.881

Mor–index
 Low 1 1

 High 0.49 (0.27–0.77) 0.003 0.21 (0.10–0.46)  < 0.001

Fig. 6 Forest plot represents multivariate Cox regression in the discovery cohorts and validation cohorts for overall survival
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immune and tumor cell densities. The Mor-index quan-
tifies the association between tumor cells and immune 
cells in pathological sections, thus contributing to the 
advancement of research on the immune microenviron-
ment in colorectal cancer (CRC). The colocalization of 
immune and tumor cells has been strongly associated 
with favorable prognosis, indicating the vital role of the 
immune system in recognizing, limiting, and impeding 
the survival, proliferation, and invasion of targeted cancer 
cells. Notably, previous discussions have demonstrated 
that higher Mor-index scores, indicating increased co-
localization between tumor cells and immune cells, are 
predictive of a positive prognosis in breast cancer [10]. 
Subsequent studies consistently support the notion that a 
higher Mor-index is consistently linked to a more favora-
ble prognosis in colorectal cancer (CRC). As depicted in 
Fig.  5, patients with a high Mor-index exhibited a good 
prognosis, whereas those with a low Mor-index had a 
poorer prognosis. Furthermore, the Mor-index emerged 
as an independent predictor, strengthening its signifi-
cance as a prognostic indicator. These findings imply that 
the Mor-index holds potential as a reliable tool for pre-
dicting diverse survival outcomes in CRC patients.

This study obtained highly accurate nuclei segmenta-
tion results in WSIs of CRC. Nuclei image segmentation 
plays an essential role in medical diagnosis. The difficul-
ties of nuclei segmentation in pathological images are 
blurred staining, uneven staining, adhesions between 
nuclei, differences in nuclei morphology, and high cost 
for the annotation. The Watershed method is a classical 
image segmentation method, which can obtain fast and 
accurate segmentation results through region growth 
segmentation [26, 27]. Based on the watershed segmenta-
tion algorithm, this study innovatively divided the image 
into tumor region, stroma region, and immune cell aggre-
gation region, and then carries out nuclei segmentation 
and nuclei counting within the region, and eventually 
achieved an accuracy of 0.85. The results show that the 
algorithm speed and segmentation performance achieve 
the requirements. Meanwhile, quantifying the immune, 
tumor, and stroma nuclei in the immune microenviron-
ment based on IHC staining of WSI, has been relatively 
little studied at this stage.

Malignant tumors are complex and represent physi-
ological characteristics such as numerous spatial vari-
ations in gene expression and histopathology [28]. The 
mining of histopathological information by artificial 
intelligence technology is beneficial to the research of 
CRC. Overall, most studies generally use artificial intel-
ligence technology to perform tissue segmentation and 
nuclear segmentation on HE-stained images to obtain 
valuable clinicopathologic indexes. There are few stud-
ies on tissue segmentation, nuclear segmentation, and 

classification for IHC-stained images. This study pro-
vided a novel approach to quantifying cells in tumor 
areas in IHC-stained images using artificial intelligence 
technology, which was helpful for clinical diagnosis. 
This study provided a novel approach to quantifying 
cells in tumor areas in IHC-stained images using artifi-
cial intelligence technology, which was helpful for clinical 
diagnosis.

However, there are certain limitations of this study. 
First, we used only one ecological score to evaluate the 
spatial association role of immune cells and tumor cells 
and their effects on the immune microenvironment. 
There are still plenty of other scoring options to explore. 
Another limitation is the number of validation cent-
ers, which are only validated in two centers and can be 
extended to more centers to validate our results. Further-
more, regarding the universality of the Mor-index, we 
believe that the Mor-index can have similar prognostic 
value in other cancers as well. However, more data will be 
needed in the future to validate it.

Conclusion
This study introduced a novel AI-based method for accu-
rately segmenting different types of nuclei within the 
tumor microenvironment (TME). The Mor-index, which 
reflects the immune status of colorectal cancer (CRC) 
patients, was found to be positively associated with 
favorable survival outcomes. These findings suggest that 
the Mor-index holds promise as a valuable tool for assist-
ing in clinical prognosis and decision-making.
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