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Abstract
Background  The goal was to investigate the feasibility of the registration generative adversarial network (RegGAN) 
model in image conversion for performing adaptive radiation therapy on the head and neck and its stability under 
different cone beam computed tomography (CBCT) models.

Methods  A total of 100 CBCT and CT images of patients diagnosed with head and neck tumors were utilized 
for the training phase, whereas the testing phase involved 40 distinct patients obtained from four different linear 
accelerators. The RegGAN model was trained and tested to evaluate its performance. The generated synthetic CT 
(sCT) image quality was compared to that of planning CT (pCT) images by employing metrics such as the mean 
absolute error (MAE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM). Moreover, the 
radiation therapy plan was uniformly applied to both the sCT and pCT images to analyze the planning target volume 
(PTV) dose statistics and calculate the dose difference rate, reinforcing the model’s accuracy.

Results  The generated sCT images had good image quality, and no significant differences were observed among 
the different CBCT modes. The conversion effect achieved for Synergy was the best, and the MAE decreased from 
231.3 ± 55.48 to 45.63 ± 10.78; the PSNR increased from 19.40 ± 1.46 to 26.75 ± 1.32; the SSIM increased from 0.82 ± 0.02 
to 0.85 ± 0.04. The quality improvement effect achieved for sCT image synthesis based on RegGAN was obvious, and 
no significant sCT synthesis differences were observed among different accelerators.

Conclusion  The sCT images generated by the RegGAN model had high image quality, and the RegGAN model 
exhibited a strong generalization ability across different accelerators, enabling its outputs to be used as reference 
images for performing adaptive radiation therapy on the head and neck.
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Introduction
The goal of radiotherapy is to maximize the dose applied 
to the target tumor while minimizing the dose affecting 
the surrounding organs at risk. However, due to anatomi-
cal changes that may occur during the typical multiweek 
treatment period, failure to modify the radiotherapy plan 
in a timely manner according to these changes can result 
in imprecise dose delivery, compromising treatment 
efficacy and even causing radiation-induced reactions 
in normal tissues. Adaptive radiotherapy is a promis-
ing solution that can adjust treatment plans in a timely 
manner based on daily patient images. However, it still 
has drawbacks such as its long processing time and lack 
of automated assisting tools [1]. Cone beam computed 
tomography (CBCT) is a commonly used tool for observ-
ing tumor changes, but its image quality is poor, and its 
Hounsfield unit (HU) values are inaccurate due to the 
effects of scattering, making CBCT unsuitable for devel-
oping radiotherapy plans [2–5]. Therefore, many studies 
[6–12] have attempted to achieve improved CBCT image 
quality and HU accuracy by using traditional physical 
modeling methods to correct X-ray scattering results, but 
due to their long processing times and other limitations, 
these methods have not yet been widely used in clinical 
applications.

The main type of head and neck tumor is squamous 
cell carcinoma, which responds well to radiotherapy [13]. 
However, due to the concentration of critical organs and 
the high likelihood of anatomical changes in head and 
neck during tumor radiotherapy, precise dose delivery is 
crucial for minimizing the dose applied to normal tissues. 
Failure to modify the original radiotherapy plan based on 
anatomical changes can lead to insufficient tumor tissue 
doses and excessive doses applied to critical organs, ulti-
mately affecting clinical treatment outcomes [13–15].

As an important image guidance method in adaptive 
radiotherapy, CBCT cannot be directly used for treat-
ment due to dose calculation errors caused by scattering 
and other factors. Converting CBCT images to high-
quality synthetic CT (sCT) images improves the accuracy 
of patient-adaptive radiotherapy and reduces the dose 
applied to organs at risk (OARs). Recently, many studies 
have been conducted on the use of deep learning models 
for sCT image generation in adaptive radiotherapy.

CBCT-guided adaptive radiotherapy is still the main 
trend. Recently, many studies have combined deep learn-
ing methods with adaptive radiotherapy. Several mod-
els have been proposed for image-to-image translation, 
among which the most common methods are U-Net [16–
19] and generative adversarial networks (GANs) [20–25]. 
U-Net utilizes global and local features in the spatial 
domain to suppress scatter artifacts for matching tasks. 
In contrast, the GAN architecture employs a generator 
and a discriminator for adversarial competition, and the 

total loss of both modules is computed to make the gen-
erated sCT images more realistic. Networks based on the 
GAN architecture are superior to other methods.

Several studies have applied the registration GAN (Reg-
GAN) model to generate sCT images for adaptive radio-
therapy. Wang et al. [23] utilized the RegGAN model to 
improve the quality of daily CBCT images and the accu-
racy of HU values in adaptive radiotherapy for esophageal 
cancer and used the synthesized sCT images for dose cal-
culation purposes during radiotherapy. The results dem-
onstrated a significant improvement in the quality of the 
sCT images generated by RegGAN over that of the origi-
nal CBCT images, with higher dose calculation accuracy 
during a gamma analysis. Suwanraksa et al. [26] applied 
the RegNet model to the treatment of head and neck 
tumors and compared the performance of GANs trained 
with and without RegNet. The results showed that adding 
a GAN improved the network’s performance.

However, limited research has been conducted on 
verifying a model’s universality by applying it to different 
accelerators. This study aims to use RegGAN to improve 
the quality of CBCT images acquired from different 
accelerators and the accuracy of the associated HU val-
ues. The synthesized pseudo-CT images are then used 
for radiotherapy dose calculation, and their accuracy is 
compared with that of planning CT (pCT) doses to verify 
the dose calculation precision of the proposed approach. 
This study provides a reference for image conversion in 
adaptive radiotherapy.

Materials and methods
Clinical dataset
CT and CBCT images acquired from 100 patients with 
head and neck tumors treated on a Varian Vital Beam 
accelerator (Varian Medical System, USA) at the Shan-
dong Cancer Hospital were included in this study. Eighty 
cases were used as the training set, and 20 cases were 
used as the validation set. In addition, CT and CBCT 
images from 40 patients with head and neck tumors (10 
from each accelerator) treated on four accelerators - Hal-
cyon (Varian Medical System, USA), Trilogy (Varian 
Medical System, USA), Varian Vital Beam (Varian Medi-
cal System, USA), and Synergy (Elekta Corporation, Swe-
den) - were used as the test set. All patients’ pCT images 
were obtained using the Brilliance big-bore CT position-
ing machine (Philips, Amsterdam, Netherlands), with 
each patient lying in the supine position and their head 
and neck region secured using a vacuum bag and ther-
moplastic mask. The scanning layer thickness was 3 mm. 
The pCT and CBCT scanning parameters are shown in 
Table 1.
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Image Preprocessing
Since the pCT and CBCT images were acquired at differ-
ent time points and under different field of view (FOV) 
conditions, it was essential to ensure the accuracy of the 
image comparison. We used the MIM 7.1.9 worksta-
tion (MIM Software Inc., USA) for the rigid registration 
of the pCT and CBCT images, with the pCT images as 
the primary sequence and the CBCT images as the sec-
ondary sequence. The images were then cropped to the 
same number of slices. To prevent high-density bone 
structures with elevated HU values from impacting the 
training process, the HU values of both image types were 
limited to a range of [-1000, 2000] and normalized to [-1, 
1].

RegGAN Model
The RegGAN model is composed of three main parts: a 
generator network, a registration network, and a discrim-
inator network. The generator network is responsible for 
generating synthesized images, the registration network 
is responsible for correcting label noise, and the discrimi-
nator network aims to distinguish between real images 
and generated images.

The generator network is composed of a ResNet-like 
structure, which includes 2 downsampling convolution 
blocks with a 3 × 3 kernel and a 2 × 2 stride, 9 residual 
blocks, and 2 upsampling deconvolution blocks with a 
3 × 3 kernel and a 2 × 2 stride. The registration network 
employs U-Net due to its capability to extract both global 

and local features in the spatial domain, effectively miti-
gating global scattering artifacts and local artifacts. The 
discriminator is designed with four layers of 4 × 4 con-
volutional kernels and a stride of 4 for full convolution. 
Convolution is employed to map the input to an N×N 
matrix, where each point represents an evaluation value 
for a small region within the original image. Finally, 
the output determines the authenticity of the image by 
assigning either a 0 (real) or a 1 (fake).

In the model, unaligned images are considered noisy 
images, and the image transformation training process 
of the model is converted into an unsupervised learn-
ing process with noisy labels. Given a training set with N 
noisy labels {(xn,

∼
yn)}

N

n=1
, where xn,

∼
yn are images with 

two different modalities, we assume that xn  and yn are 
the correctly aligned label images, but in reality, they are 
unknown. Utilizing the generator G , as shown in Eq. (1), 
on {(xn,

∼
yn)}

N

n=1
 is as equivalent as possible to the noise-

free dataset {(xn, yn)}N
n=1. The model structure is shown 

in Figs. 1 and 2.

	
Ĝ = argmin

G

1
N

∑N

n=1
L(ϕ ◦ G(xn),

∼
yn)� (1)

The model aims to correct the output of the generator 
G (xn) by modeling the noise transition to match the 
noise distribution. Since the type of noise distribution is 
relatively certain, it can be represented as a displacement 

Table 1  Scanning and reconstruction parameters of CBCT and pCT
Tube
voltage
(kVP)

Tube
current
(mA)

Spatial
resolution
(mm2)

Slice
thickness
(mm)

Image size Number of slices

CT 120 260 0.977 × 0.977 3 mm 512 × 512 42 ~ 65
Halcyon 100 30 0.55 × 0.55 3 mm 512 × 512 63
Trilogy 100 10 0.651 × 0.651 3 mm 384 × 384 70
Vital beam 100 20 0.625 × 0.625 3 mm 512 × 512 54
Synergy 120 40 1 × 1 2.5 mm 410 × 410 264

Fig. 1  RegGAN model network structure
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error ∼
y= y ◦ T , where T  denotes a random deformation 

field that causes random displacement for each pixel. 
Therefore, a registration network R  is used after the gen-
erator G  as a label noise model to correct the results. The 
correction loss equation is shown in Eq. (2):

	
min
G,R

LCorr (G, R) = E
x,

∼
y
[‖

∼
y −G(x) ◦ R(G (x) ,

∼
y )‖1]� (2)

where R
(
G (x) ,

∼
y
)

 represents the deformation field, 
and ◦  denotes the resampling operation. To evaluate the 
smoothness of the deformation field and minimize the 
deformation field gradient, a smoothness loss is calcu-
lated using Eq. (3).

	 min
R

LSmooth (R) = E
x,

∼
y
[‖ ∇R(G (x) ,

∼
y

)
‖2

]
� (3)

Finally, the correction loss LCorr, smoothness loss Lsmooth
, and adversarial loss LAdv between the generator and dis-
criminator D  form the final total loss equation, as shown 
in Eq. (4).

	
min
G,R

max
D

LTotal (G, R, D) = LCorr + LSmooth + LAdv� (4)

Training
All training procedures were conducted on a 64-bit 
Ubuntu Linux system using PyTorch software, with a sys-
tem configuration containing 96 GB of RAM and a 24-GB 
Nvidia Titan RTX GPU. All images were normalized to 
the range of [-1, 1] and resampled to a size of 256 × 256. 

The adaptive moment estimation (Adam) optimizer was 
used for training with a learning rate of 1e-4 and (β1, β2) 
= (0.5, 0.999). The batch size was set to 1 with a weight 
decay of 1e-4. The training process included 80 epochs, 
covering a total of 640k iterations. The training duration 
was estimated to be approximately 7 h, while the average 
image processing time required per patient was approxi-
mately 15 s.

Image evaluation
In the image quality assessment, pCT was used as the 
‘gold standard’ for evaluating both the CBCT and sCT 
images. The image quality was evaluated using mean 
absolute error (MAE), peak signal-to-noise ratio (PSNR), 
and structural similarity index measure (SSIM) metrics. 
A smaller MAE value, along with larger PSNR and SSIM 
values, indicates higher similarity between the two tested 
images.

	
MAE =

∑x
1
∑y

1
∑z

1|sCTxyz − pCTxyz|
xyz

� (5)

	
MSE =

∑x
1
∑y

1
∑z

1|sCTxyz − pCTxyz|
xyz

2

� (6)

	 PSNR = 10log(
max2

CT

MSE
)� (7)

	

SSIM =
(2µsCTµpCT + c1) (2σsCT,pCT + c2)(

µ2
sCT + µ2

pCT + c1

) (
σ2

sCT + σ2
pCT + c2

)� (8)

Fig. 2  RegGAN model details
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x, y, z correspond to the values of the coordinates (x, y, 
z) within an image, and xyz  denotes the total number of 
voxels that are present in the image. maxCT is the maxi-
mum pixel value of the pCT or sCT images; MSE is the 
mean squared error; µsCT  and µpCT  are the means of the 
sCT and pCT images, respectively; σsCT,pCT denotes the 
standard deviations of the images; σsCT,pCT is the cross-
covariance; c1 and c2 are luminance and contrast regu-
larization constants, respectively.

Dose evaluation
Radiation therapy plans were designed using both pCT 
and sCT images with consistent physical planning condi-
tions. The differences among the Dmin, Dmax, Dmean, D2, 
D50, D95 and D98 values within the PTV were compared to 
evaluate the accuracy of the sCT dose calculation results. 
The difference rate (Dr) was calculated using the formula 
shown in Eq. (9):

	
Dr =

DsCT − DpCT

DpCT
� (5)

where DsCT represents the dose values calculated on the 
generated images, and DpCT  represents the dose values 
calculated according to the original plan.

Statistical analysis
A statistical analysis was performed using SPSS 20.0. The 
data were represented as (x̅±s). Nonparametric tests were 
used to compare the sCT image values and dose differ-
ence rates across different accelerators. Finally, pairwise 

comparisons were performed using the Kruskal‒Wallis 
corrected P value. The level of statistical significance was 
set at p < 0.05.

Results
Image quality comparison
The image quality of the sCT images was greatly 
improved over that of CBCT images across all four accel-
erators, with the most significant improvement observed 
on the Synergy accelerator. The MAE decreased from 
231.3 ± 55.48 to 45.63 ± 10.78; the PSNR increased from 
19.40 ± 1.46 to 26.75 ± 1.32; and the SSIM increased from 
0.82 ± 0.02 to 0.85 ± 0.04. The Vital Beam generated the 
best sCT image quality, with an MAE of 33.45 ± 5.78, a 
PSNR of 27.84 ± 0.98, and an SSIM of 0.93 ± 0.01. The sCT 
image quality differences among the images generated 
by different accelerators were relatively small. The image 
quality levels of the CBCT and sCT images produced by 
different accelerators are shown in Table 2. Table 3 pres-
ents a comparative analysis among several relevant stud-
ies aimed at improving sCT quality. In comparison with 
the study conducted by Wang [23], our research exhib-
ited similar MAE values while displaying significant 
PSNR differences. These disparities arose due to the dis-
similar selection of our ground-truth volume (GTV).

The red arrows in Fig. 3 indicate the air cavity artifacts, 
where the sCT images showed significant reductions in 
artifacts compared to the corresponding CBCT images. 
The sCT image quality differences observed across differ-
ent accelerators were relatively small.

Figure 4 shows the residual images generated from the 
differences between the CBCT and sCT images with pCT 
for 8 patients. As illustrated, the differences between the 
CBCT and pCT images were larger, while the differences 
between the sCT and pCT images were smaller, indicat-
ing a significant improvement in image quality. No appar-
ent differences were observed among the sCT images 
generated by different accelerators, but the improvement 
effect was most evident for the Synergy accelerator.

Figure 5 shows the HU value distribution curves of the 
patient images selected from different accelerators. Due 
to the preprocessing of the head and neck images, the HU 

Table 2  Image quality parameters for different accelerators
MAE PSNR SSIM

Halcyon CBCT 64.90 ± 15.53 25.12 ± 2.12 0.86 ± 0.02
sCT 42.99 ± 12.53 26.58 ± 2.23 0.88 ± 0.02
Trilogy CBCT 75.24 ± 13.62 25.32 ± 0.86 0.90 ± 0.02
sCT 34.81 ± 3.04 27.89 ± 0.75 0.91 ± 0.02
Vital beam CBCT 72.43 ± 15.76 25.52 ± 1.33 0.92 ± 0.02
sCT 33.45 ± 5.78 27.84 ± 0.98 0.93 ± 0.01
Synergy CBCT 231.3 ± 55.48 19.40 ± 1.46 0.82 ± 0.02
sCT 45.63 ± 10.78 26.75 ± 1.32 0.85 ± 0.04

Table 3  Comparison among the image quality results of various sCT studies
GTV MAE PSNR SSIM Linac

CBCT [23] Esophageal 80.10 ± 9.10 21.30 ± 4.20 / Varian EDGE Linac (Varian, USA)
sCT (RegGAN) [23] 43.70 ± 4.80 27.90 ± 5.60 /
CBCT [26] H&N 58.16 ± 25.17 26.06 ± 2.44 0.82 ± 0.09 Varian True Beam STx LINAC (Varian, USA)
sCT (Pix2Pix + RegNet) [26] 41.62 ± 13.69 27.71 ± 2.32 0.86 ± 0.05
sCT (CycleGAN + RegNet) [26] 41.67 ± 15.04 27.73 ± 2.20 0.86 ± 0.05
sCT (UNIT + RegNet) [26] 41.34 ± 13.66 27.87 ± 2.09 0.86 ± 0.05
CBCT [27] H&N 197.72 ± 59.2 22.07 ± 2.80 0.95 ± 0.03 Varian Medical Systems (Varian, USA)
sCT (without respath) [27] 150.05 ± 48.7 23.69 ± 2.80 0.96 ± 0.02
sCT (with respath) [27] 140.7 ± 54.80 24.44 ± 3.7 0.96 ± 0.02
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values were reduced to [-1000, 2000], resulting in a very 
high peak near − 1000, which compressed the effective 
comparison range of [-500, 500] and was not conducive 
to observing the HU value differences. Therefore, we dis-
carded the parts outside the [-500, 500] range during the 
calculation process. For Synergy, significant differences 
were observed between the CBCT and pCT images, with 

the CBCT peak at approximately − 220 and the pCT peak 
at approximately 70, but the sCT and pCT images exhib-
ited a higher similarity in their HU value distributions. 
The CBCT images derived from other accelerators also 
showed significant differences from the pCT images, but 
the similarity between the HU value distributions of the 

Fig. 3  Comparison among the CBCT, CT, and sCT images for different accelerators
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sCT images generated by different accelerators and the 
pCT images was significantly improved.

Dose calculation
The differences among the PTV doses produced by dif-
ferent machines are shown in Table 4. The difference in 
dose between the sCT and CT plans was within 3%. The 
dose discrepancy rates between different linacs did not 
show any significant differences (p < 0.05). The difference 
rate was relatively high and fluctuated greatly for Dmin, 
which may have been related to the HU value error of the 
sCT images. The clinical optimization goal was achieved 
when D95 exceeded or equaled the prescription dose. If 
the acceptable range for the D95 error rate in the PTV 
was set to 1%, then 32 out of the 40 patients in this study 
met the error requirements, with a pass rate of 80%. If 
the acceptable range was set to 3%, then the pass rate was 
100%. Figure 6 displays a comparison among the results 
of average dose-volume histograms (DVH) produced by 
pCT and sCT plans for a single patient, indicating a high 
degree of overlap and minimal differences between the 
two DVH curves.

Discussion
In this study, we utilized RegGAN to convert CBCT 
images into pseudo-CT (sCT) images. RegGAN can 
perform supervised learning with noisy labels, which 
is similar to actual treatment scenarios in which CBCT 
images and pCT images are typically not acquired simul-
taneously. As treatment progresses, the time interval 
increases, and patients may experience weight loss and 
tumor volume reduction, resulting in significantly dif-
ferent CBCT and CT images. The RegGAN model accu-
rately converts CBCT images of varying quality into 
precise sCT images and exhibits good universality across 
different accelerators. The original CBCT image qual-
ity varied among the four accelerators, and because the 
Synergy accelerator’s CBCT images had higher spatial 
resolutions than the CT images, the image quality per-
formance index calculated with pCT as the “gold stan-
dard” was lower. However, no significant differences 
were observed between the quality of the generated sCT 
images and that of the other accelerators (p < 0.05).

The main purpose of generating sCT images dur-
ing CBCT-guided adaptive radiotherapy is to create a 
treatment plan based on sCT. Therefore, this study also 
explored the possibility of using sCT images for radiation 

Fig. 4  CBCT-pCT and sCT-pCT differences between different accelerators
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therapy dose calculations. By using pCT as the “gold 
standard,“ we evaluated the accuracy of the HU values 
produced for the generated sCT images and the accuracy 
of the dose calculations in actual radiation therapy plans. 
The dose calculation results showed no significant dose 
variation rate differences among the different accelera-
tors (p < 0.05), indicating that the HU accuracy of the sCT 
images generated by the RegGAN network was high, and 
their dose distribution was similar to pCT’s “gold stan-
dard.” The differences were within the clinically accept-
able range, and the image conversion speed was fast, 
with the ability to complete the conversion of one patient 
image in just 15 seconds.

Table 4  Dose rate differences between the PTVs of different accelerators
Dmin (%) Dmax  (%) Dmean  (%) D2 (%) D50 (%) D95 (%) D98 (%)

Halcyon -0.49 ± 1.97 -0.13 ± 0.79 -0.07 ± 0.84 -0.12 ± 0.82 -0.07 ± 0.87 0.00 ± 0.85 -0.09 ± 0.81
Trilogy 0.25 ± 2.14 -0.37 ± 1.51 -0.69 ± 1.36 -0.52 ± 1.42 -0.80 ± 1.40 -0.24 ± 1.66 -0.36 ± 1.38
Vital beam -0.34 ± 1.60 -0.04 ± 0.54 0.00 ± 0.00 0.02 ± 0.30 0.09 ± 0.20 0.10 ± 0.27 0.07 ± 0.37
Synergy -0.03 ± 2.22 -0.72 ± 1.29 0.04 ± 0.13 -0.42 ± 1.19 -0.38 ± 1.20 -0.11 ± 1.47 -0.40 ± 2.09

Fig. 6  Comparison between the DVHs of pCT and sCT

 

Fig. 5  HU value differences between the CBCT, sCT, and pCT images of different accelerators
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Conclusion
The RegGAN model can generate high-precision sCT 
images from CBCT images obtained with different accel-
erators. The model exhibits good generalization across 
different CBCT imaging models and produces dose cal-
culations that are similar to those of pCT plans, with 
acceptable errors. Therefore, the RegGAN model can be 
used in adaptive radiotherapy for head and neck tumors.
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