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Abstract 

Background  V domain Immunoglobulin suppressor of T cell activation (VISTA) has been proved to be a novel 
immune checkpoint molecule that positively regulates T cell infiltration in several malignancies. However, the clinical 
impact of VISTA on muscle-invasive bladder cancer (MIBC) patients remains relatively obscure.

Methods  This study enrolled 135 MIBC patients from Zhongshan Hospital (ZSHS) and 391 patients from The Cancer 
Genome Atlas (TCGA) to examine the VISTA expression and immune contexture based on immunohistochemis-
try (IHC) staining and CIBERSORT algorithm. Additionally, IMvigor210 Cohort included 195 bladder-derived urothelial 
carcinoma patients to evaluate the efficacy of immunotherapy. Kaplan-Meier curve and Cox regression analyses were 
conducted to assess clinical outcomes.

Results  MIBC patients with high VISTA+ immune cells (ICs) possessed poor overall survival and inferior therapeutic 
responsiveness to adjuvant chemotherapy (ACT), but superior responsiveness to PD-L1 inhibitor. VISTA+ ICs infiltration 
shaped an immunoevasive context featured by regulatory T cells (Tregs), M2 macrophages, mast cells and exhausted 
CD8+ T cells infiltration, with increased interleukin 10 (IL-10), transforming growth factor-β (TGF-β) and interferon-γ 
(IFN-γ), but also elevated T-cell immunoglobulin mucin-3 (TIM-3), lymphocyte activation gene 3 (LAG-3) and T-cell 
immunoglobulin and ITIM domain (TIGIT), which was also mainly presented in basal-squamous and luminal-infiltrated 
subtypes of MIBC.

Conclusion  VISTA+ ICs infiltration could be an independent predictor to identify poor prognosis and therapeutic 
responses (PD-L1 blockade and ACT) in MIBC patients, which was associated with immunoevasive contexture. The 
novel immune checkpoint VISTA might be utilized as a candidate treatment biomarker in MIBC patients.

Keywords  V domain immunoglobulin suppressor of T cell activation, Muscle-invasive bladder cancer, Adjuvant 
chemotherapy, Immunotherapy, Tumor microenvironment

†Wandi Li, Zhaopei Liu, Kaifeng Jin and Fei Shao contributed equally to this 
work.

*Correspondence:
Zewei Wang
zwwang12@fudan.edu.cn
Yuan Chang
changyuan0802@163.com
Weijuan Zhang
weijuanzhang@fudan.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-023-11157-x&domain=pdf


Page 2 of 11Li et al. BMC Cancer          (2023) 23:661 

Background
Bladder cancer is the most widespread and complex uri-
nary tract malignancy all over the world with high-risk 
mortality, 25% of which are diagnosed as muscle-invasive 
bladder cancer (MIBC) [1]. MIBC is a more aggressive 
stage with unfavorable prognosis [2]. Cisplatin-based 
adjuvant chemotherapy (ACT) after radical cystectomy 
(RC) is commonly considered as the mainstay of current 
treatment for MIBC [3]. Unfortunately, the therapeutic 
efficacy is still far from satisfactory for advanced patients 
with metastases [4]. With the approval of nivolumab 
(anti-PD-1) from the US Food and Drug Administra-
tion (FDA) in MIBC [5], immune checkpoint inhibitors 
(ICIs) have shown a resounding success among cancer 
therapeutic strategies, of which regulatory molecules 
in B7 family are promising targets [6, 7]. Nevertheless, 
existing biomarker failed to cover all the responders, 
which could be partly attributed to the heterogeneity of 
tumor microenvironment (TME) [8, 9]. Consequently, 
there is an urgent need to seek predictive biomarkers for 
existing treatment and novel therapeutic paradigm for 
non-responders.

V domain immunoglobulin suppressor of T cell acti-
vation (VISTA), also known as VSIR, PD-1H, C10orf54, 
Dies1, DD1α and Gi24, belongs to the immune check-
point proteins of B7 family, which is homologous to 
PD-L1 [10, 11]. VISTA serves a crucial function in regu-
lating the immune system, preserving the stability of the 
intracellular environment [12]. Nonetheless, cancer cells 
could exploit VISTA to evade immune defenses in MIBC. 
Therefore, the development of alternative treatment 
strategies to the evasion mechanisms of MIBC are imper-
ative to maximize anti-tumor efficacy. Investigating how 
VISTA interact between immune cells (ICs) and tumor 
cells (TCs) could facilitate the development of personal-
ized therapies for MIBC patients.

VISTA has provided prognostic value and demon-
strated the potential as an immunotherapy target for 
the patients. Elevated VISTA was associated with unfa-
vorable outcomes across multiple malignancies [13–15]. 
Paradoxically, VISTA in TCs, but not in ICs, was signifi-
cantly associated with prolonged survival in pancreatic 
cancer, hepatocellular carcinoma and high-grade serous 
ovarian cancer [16–18]. Furthermore, previous stud-
ies suggested that VISTA-positive ICs correlated with 
shorter recurrence-free in non-muscle-invasive blad-
der cancer (NMIBC) [19], however, its predictive value 
in MIBC remains unclear. The study of VISTA in MIBC 
could contribute to improved risk stratification and per-
sonalized treatment options.

In this work, we found that VISTA+ ICs infiltration 
indicated miserable clinical outcomes and poor respon-
siveness to ACT. Nonetheless, VISTA+ ICs infiltration 

in turn possessed a superior responsiveness to ICIs. In-
depth transcriptomic and histological studies uncovered 
the immunosuppressive TME and presented basal-squa-
mous and luminal-infiltrated subtype in VISTA+ ICs 
high subgroup, which might account for prognosis and 
therapeutic response. Our study unraveled the poten-
tial of VISTA as a novel candidate biomarker for MIBC 
patients.

Methods
Study patients
This study enrolled three independent cohorts, Zhong-
shan Hospital (ZSHS) Cohort, The Cancer Genome Atlas 
(TCGA) Cohort and IMvigor210 Cohort. The selecting 
procedure of studying cohorts was summarized in Sup-
plementary Figure  1. The clinicopathological character-
istics of patients were listed in Supplementary Table 1-3.

For ZSHS Cohort, 215 patients who received radical 
cystectomy (RC) at Zhongshan Hospital from 2002 to 
2014 were followed up regularly till July 2016. 80 patients 
were ruled out due to the exclusion criteria: (1) postoper-
ative histopathological diagnosis of non-urothelial carci-
noma (UC) (n=13) or NMIBC (n=60), (2) unavailable in 
paraffin-embedded tumor tissues (n=7). 135 cases were 
enrolled in this study ultimately. The pathological type of 
all these patients was pure UC. Among them, 65 patients 
received ACT for at least one therapeutic cycle. The fol-
low-up protocol was instructed by European Association 
of Urology guidelines for MIBC. Overall survival (OS) 
was calculated as the time from the date of RC to the date 
of death from all causes, or to the last follow-up.

TCGA Cohort enrolled 412 bladder cancer patients 
whose clinical information was downloaded from 
http://​www.​cbiop​ortal.​org/ in July 2021, 21 patients 
were excluded because of: (1) missing survival time 
(n=3), (2) unaccessible sequencing data (n=4), (3) 
accepted neoadjuvant chemotherapy (n=10), (4) post-
operative histopathological diagnosis of NMIBC (n=4). 
391 patients were enrolled according to the inclusion 
criteria of TCGA Cohort. Among them, 335 patients 
were classified as pure UC histology. 51 patients had 
UC with variant histology. 5 additional tumors were 
included: 1 bladder adenocarcinoma, 1 squamous cell 
carcinoma of non-bladder origin, and 3 pure squamous 
cell bladder carcinomas.

IMvigor210 trial originated from 348 metastatic UC 
patients treated with anti-PD-L1 agent atezolizumab [20]. 
In this study, we enrolled 195 bladder-derived urothelial 
cancer patients as IMvigor210 Cohort. The clinical and 
RNA-seq data were obtained through http://​resea​rch-​
pub.​gene.​com/​IMvig​or210​CoreB​iolog​ies. All of these 
patients had UC that had either been histologically or 
cytologically proven to be locally advanced or metastatic, 

http://www.cbioportal.org/
http://research-pub.gene.com/IMvigor210CoreBiologies
http://research-pub.gene.com/IMvigor210CoreBiologies
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including metastasis from the renal pelvis, ureter, urinary 
bladder, or urethra.

Immunohistochemistry
All the bladder cancer tissues were obtained from the 
bladder specimens of 215 patients in ZSHS Cohort, 
which were subsequently formalin-fixed and paraffin-
embedded. Before the construction of tissue microarray 
(TMA), 4 μm-thick sections were sliced from each tis-
sue block. All samples were reviewed histologically by 
hematoxylin and eosin staining, and representative areas 
were marked on the paraffin blocks away from necrotic 
and hemorrhagic materials. Besides, each section of 
TMA was stained at the same time to guarantee an objec-
tive comparison between different samples. The protocol 
of immunohistochemistry (IHC) was executed as previ-
ously described [21]. Antibodies for VISTA and other 
molecules were provided in Supplementary Table 4.

Assay methods
TMA slides were scanned under high-power magnifica-
tion filed (HPF, 200 magnification) on NanoZoomer-XR 
(Hamamatsu) and scored by means of software ImageJ. 
All stained tissues were counted independently by two 
pathologists who were blind to the clinical and follow-up 
data. For the accurate purpose of statistical evaluation, 
we adopted as the mean value of cells infiltration in three 
representative fields (HPF, × 200 magnification). Con-
sistent to previous reports [13, 14, 16, 17], we adopted 
a method of counting VISTA expressed in ICs or TCs 
separately in the immunohistochemical scoring of MIBC 
patients in ZSHS Cohort. The cut-off value of VISTA+ 
ICs in ZSHS Cohort was 37 cells/HPF, which determined 
by the R package survMisc (https://​CRAN.R-​proje​ct.​org/​
packa​ge=​survM​isc). Whether VISTA expressed in TCs 
could be divided into positive and negative subgroup. 
Patients were dichotomized into VISTA+ ICs signa-
ture low and high subgroups in TCGA and IMvigor210 
Cohorts also based on R package survMisc to identify the 
optimal cut-off values.

RNA‑seq and data processing
RNA-seq data of both TCGA Cohort and IMvigor210 
Cohort were normalized by the formula log2(FPKM+1) 
before analysis. Based on the immune cell subsets 
expressing VISTA, ligand-receptor relationship and 
involved immune regulation process of VISTA, we 
used the average mean of the mRNA expression of 
VSIR, IL6, IL10, IGSF11, SELPLG, VSIG8, ESAM, 
CD45 to constitute VISTA+ ICs signature [10, 22]. 
The infiltration of 22 ICs in TCGA Cohort was cal-
culated by CIBERSORT algorithm, of which the sum 
was considered as the absolute score of each case. The 

involved signatures for gene set enrichment analysis 
(GSEA) were defined from previous studies or down-
loaded from https://​gsea-​msigdb.​org and showed in 
Supplementary Table 5.

Genomic analysis
Tumor mutation burden (TMB) is broadly identified 
as the number of somatic mutations per megabase of 
interrogated genome sequence (mut/Mb) [23]. Gener-
ally, TMB≥10 mut/Mb is identified as TMBhi [24]. Gene 
alterations involved in signaling pathways were used to 
describe the genome pattern, which incorporated muta-
tions and copy number variation (CNV) [25, 26]. The 
types of mutation included nonsense, missense, splice 
site, in frame deletion, multi hit, frame shift insertion and 
frame shift deletion. The types of CNV included dele-
tions and amplifications.

Statistical analysis
The relationship of VISTA+ ICs infiltration with patients’ 
clinicopathological parameters were conducted by 
Chi-square test. Analyses of the different cells infiltra-
tion between subgroups were dealt with Student’s t test. 
Overall survival (OS) was calculated from the date of 
operation until the date of death or last follow-up and 
disease-free survival (DFS) was calculated from the date 
of operation until the date of first recurrence or last 
follow-up. Kaplan-Meier curves for OS and DFS was 
evaluated by log-rank tests. Univariate and multivariate 
analyses were detected by constructing cox proportional 
hazard regression models. Gene Set enrichment analy-
sis (GSEA) performed by three clusters of signaling sig-
natures to identify the enrichment of exhausted CD8+ T 
cells in MIBC. In our study, all of data in the figure were 
shown as means ± SDs. P value of less than 0.05 was con-
sidered statistically significant. IBM SPSS Statistics 25.0 
was utilized for all of the statistical analyses. Figures were 
visualized using MedCalc Statistical Software version 
15.6.1, Graph Pad Prism Software version 7.0.1 and R 
software version 4.0.3.

Results
VISTA+ ICs infiltration indicates inferior survival outcomes 
in MIBC patients
Through immunostaining, we observed that VISTA 
expressed in both ICs and TCs, yet showed heterogeneous 
expression pattern (Fig. 1A). The number of VISTA+ ICs in 
every TMA ranged from 0 to 201 per HPF, however, VISTA 
was detected in TCs in only 36 samples among the 135 speci-
mens. We further assessed the prognostic merit of VISTA+ 
ICs and TCs infiltration by Kaplan-Meier analysis in ZSHS 
Cohort. In contrast with VISTA+ TCs infiltration (OS: p 
= 0.842, DFS: p = 0.373, Supplementary Figure 2), VISTA+ 

https://CRAN.R-project.org/package=survMisc
https://CRAN.R-project.org/package=survMisc
https://gsea-msigdb.org
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ICs infiltration was relevant to adverse prognosis (p < 0.001, 
Fig.  1B). To verify this finding, we incorporated TCGA 
Cohort and found VISTA+ ICs signature high subgroup also 
had inferior OS (p =0.020, Fig.  1C). Therefore, we focused 
in VISTA+ IC infiltration in the following study. We further 
performed univariate (Supplementary Table  6-7) and mul-
tivariate (Fig. 1D, E, Supplementary Table 8) Cox regression 
analysis to evaluate predictive value of VISTA for clinical out-
comes. After adjusting for gender, lymphatic vessel invasion 
(LVI), pT, American Joint Committee on Cancer (AJCC), we 
demonstrated that VISTA+ ICs infiltration could be regarded 
as an independent prognostic factor.

VISTA+ ICs infiltration yields suboptimal adjuvant 
chemotherapeutic responsiveness in MIBC patients
All the MIBC patients in ZSHS Cohort failed to benefit 
from cisplatin-based ACT (OS: p = 0.319, DFS: p = 0.165, 
Fig. 2A). Herein, we further examined the potential impact 
of VISTA+ ICs infiltration on the effectiveness of ACT. 
Intriguingly, compared with VISTA+ ICs high subgroup 
(OS: p = 0.322, DFS: p = 0.319, Fig. 2B), VISTA+ ICs low 
subgroup had prolonged OS and DFS (OS: p = 0.024, DFS: 
p = 0.011, Fig. 2C). Subgroup interaction analysis further 
illustrated that patients with low VISTA+ ICs infiltra-
tion would possess more clinical benefits from ACT (OS: 
P = 0.029, DFS: P = 0.016 for interaction, Fig.  2D). Collec-
tively, these results unveiled VISTA+ ICs high subgroup 
was associated with chemotherapeutic resistance to ACT 
in MIBC.

VISTA+ ICs infiltration might guide the application 
of anti‑PD‑L1 therapy in MIBC patients
Besides ACT, ICIs have emerged as a remarkable approach 
for the treatment of cancer [7]. To research the predictive 
potential of VISTA+ ICs infiltration in ICIs treatment, 
we enrolled IMvigor210 Cohort in which patients treated 
with atezolizumab. Our finding suggested that patients 
with VISTA+ ICs infiltration had higher response rates (p 
= 0.078, Fig. 3A) and reflected significantly improved OS 
after atezolizumab application (p = 0.015, Fig. 3B). In addi-
tion, we examined the association of VISTA+ ICs infil-
tration and TMB to predict anti-PD-L1 immunotherapy 
responsiveness effectively [27]. Our studies reported that 
TMBhi might reflect an increased potential for immuno-
genicity in VISTA+ ICs signature high subgroup (Fig. 3C). 
Considering that FDA has approved TMB as a valid pre-
dictor in treating metastatic UC [23], we classified MIBC 

patients into four subgroups according to VISTA+ ICs 
infiltration and TMB. Patients with VISTAhiTMBhi feature 
had a superior prognosis compared with other groups (p 
< 0.001, Fig. 3D), which provided new ideas for individual 
precise immunotherapy in MIBC patients. In brief, our 
results illustrated that VISTA+ ICs infiltration had a bet-
ter therapeutic response to PD-L1 inhibitor and could 
be a potential biomarker for ICIs treatment with MIBC 
patients.

VISTA+ ICs infiltration shaped an immunosuppressive 
microenvironment in MIBC patient
To unravel the landscape of TME in VISTA+ ICs infil-
tration, we compared the immune infiltration across 
VISTA+ ICs subgroups. Despite the inflamed contexture, 
VISTA+ ICs infiltration indicated a suppressive TME 
with elevated expression of immune checkpoints and 
inhibitory cytokines in TCGA Cohort (Fig. 4A). We veri-
fied this finding in ZSHS Cohort and observed elevated 
pro-tumor cells in VISTA+ ICs high subgroup, includ-
ing regulatory T cells (Tregs), M2 macrophages and mast 
cells (Tregs: p < 0.001, M2 macrophages: p = 0.033, Mast 
cells: p = 0.001, Fig.  4B, Supplementary Figure  3A). In 
addition, VISTA+ ICs infiltration was accompanied by 
the up-regulation expression of immune checkpoints like 
T-cell immunoglobulin mucin-3 (TIM-3), Lymphocyte 
activation gene 3 (LAG-3) and T-cell immunoglobulin 
and ITIM domain (TIGIT) (TIM-3: p = 0.007, LAG-
3: p < 0.001, TIGIT: p = 0.006, Fig.  4B, Supplementary 
Figure  3B), and indicated the elevation of interleukin 
10 (IL-10), transforming growth factor-β (TGF-β) and 
interferon-γ (IFN-γ) (IL-10: p < 0.001, TGF-β: p = 0.009, 
IFN-γ: p = 0.023, Fig. 4B). Notably, gene set enrichment 
analysis (GSEA) further manifested that Tregs and M2 
macrophages-related signaling pathways were hyperacti-
vated in VISTA+ ICs signature high subgroup (Fig. 4C).

Besides these inhibitory ICs infiltration, CD8+ T cells 
infiltration presented an exhausted phenotype and 
secreted decreased level of granzyme B (GZMB) in 
VISTA+ ICs infiltration (p = 0.037, Fig. 4C, D). Further-
more, stratification based on VISTA+ ICs and CD8+ T 
cells infiltration showed that patients with VISTAloCD8hi 
features learned more benefits than those with dou-
ble high subgroup (p < 0.001, Fig.  4E), indicating that 
exhausted CD8+ T cells were closely related to VISTA+ 
ICs enrichment. Taken together, VISTA+ ICs infiltration 
was linked to immune enriched but suppressive TME 

Fig. 1  Prognostic significance of VISTA+ ICs infiltration in MIBC patients. Representative IHC images (200x magnification) of VISTA expression, 
including negative, low, mediate and high in ICs and TCs infiltration, respectively (A). Kaplan-Meier curves for OS in ZSHS Cohort (B) and TCGA 
Cohort (C) according to VISTA+ ICs infiltration. Data were analyzed using log-rank test. Multivariate cox analysis of OS was conducted on the basis 
of clinicopathologic characteristics and VISTA+ ICs infiltration in ZSHS Cohort (D) and TCGA Cohort (E).  ICs, immune cells; TCs, tumor cells; OS, overall 
survival; HR, hazard radio; CI, confidence interval; LVI, lymphatic vesel invasion; AJCC, American joint committee on Cancer

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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and evaded immune control, which might account for the 
adverse prognosis with MIBC patients.

Characterization of gene alterations based on VISTA+ ICs 
infiltration in MIBC patients
Chromosomal instability is critical for oncogenesis, of 
which continuous accumulation lead  to intratumoral 
genetic heterogeneity [28]. Genomic alterations are 
especially frequent in bladder cancer, including somatic 

mutations and CNVs, and rearrangements, which are 
capable of determining oncogenesis, progression and 
sensitivity to therapy [29]. Herein, we profiled the dis-
tribution of gene alterations and molecular subtypes 
based on VISTA+ ICs infiltration in TCGA Cohort 
(Supplementary Figure  4). Patients with high VISTA+ 
ICs infiltration were mostly classified into basal-squa-
mous and luminal-infiltrated subtypes. In addition, 
histone modification-related gene alterations were 

Fig. 2  VISTA+ ICs infiltration predicts suboptimal responsiveness to adjuvant chemotherapy in MIBC patients. Kaplan-Meier curves for OS and DFS 
in all patients (A), VISTA+ ICs high subgroup (B) and VISTA+ ICs low subgroup (C) with or without ACT treatment.(D Cox regression analyses of OS 
and DFS for an interaction in patients with or without ACT according to VISTA+ ICs infiltration. OS, overall survival; DFS, disease-free survival; ICs, 
immune cells; ACT, adjuvant chemotherapy; HR, hazard radio; CI, confidence interval



Page 7 of 11Li et al. BMC Cancer          (2023) 23:661 	

fewer enriched in VISTA+ ICs signature high subgroup 
(p=0.014, Supplementary Figure 4).

Discussion
Nowadays, accurately predicting treatment responders 
is the main concern. Suitable biomarker for predicting 
treatment response will aid in identifying responders 
[29]. Numerous reviews suggested that increasing the 
antigenicity of cancer cells and inducing a more immu-
nogenic microenvironment after conventional chemo-
therapy [30, 31]. However, our work reported that 
VISTA+ ICs infiltration was associated with inhibitory 
TME, which suppressed the further expanded immune 
effects. That’s the possible reason why VISTA+ ICs 
infiltration could be resistant to chemotherapy but 
favorable to derived more benefits from ICIs. TMB 
is a measure of the number of mutations in a cancer 
[32]. The more mutations (i.e., the higher the TMB) 
reflected the greater the chances that some neo-anti-
gens would be immunogenic and enable T cell recog-
nition [33, 34]. Recent research reported that TMB 
might not always correlate with ICIs responsiveness 
[35]. Developing precision therapies could improve 

clinical significance by stratification of patients who 
are resistant or sensitive to ICIs. Herein, we identified 
VISTAhiTMBhi patients who possessed the outstanding 
responsiveness to ICIs based on integrating VISTA+ 
ICs infiltration stratification with TMB, which prob-
ably accounted for immune enriched and increased 
immunogenicity. The exact mechanisms still need to 
be further explored.

Accumulating evidences that the success of chemo-
therapy and immunotherapy could be partially attrib-
uted to the immune landscape of TME [36]. Our 
previous study showed that some specific subsets of ICs 
infiltration could influence the responsiveness of MIBC 
patients to chemotherapy [37–39]. Given the evasion 
of immune control from the standpoint of VISTA+ ICs 
infiltration, VISTA could promote the transformation of 
naive Foxp3+CD4+ T cells into adaptive Foxp3+ Tregs 
and induce polarized M2 macrophages [12, 40], Most 
Tregs and M2 macrophages generally released a high 
level of IL-10 and TGF-β, which exerted inhibitory influ-
ence on antigen-presenting capability of macrophages 
and T cells function [41]. It has been reported that ter-
minally exhausted CD8+ T cells enrichment always 

Fig. 3  Predictive value of VISTA+ ICs infiltration for immunotherapy in IMvigor210 Cohort. A Fractions of objective response to atezolizumab 
between VISTA+ ICs signature low and high subgroup in IMvigor210 Cohort. Data were analyzed by Chi-square test. B Kaplan-Meier curves for OS 
in IMvigor210 Cohort according to VISTA+ ICs infiltration. Data were analyzed using log-rank test. C Fractions of TMB between VISTA+ ICs signature 
low and high subgroup in IMvigor210 Cohort. Data were analyzed by Chi-square test. D Kaplan-Meier curves of OS in IMvigor210 Cohort according 
to 4 subgroups divided by VISTA+ ICs infiltration and TMB. CR, complete response; PR, progressive response; SD, stable disease; PD, partial disease; 
OS, overall survival; TMB, tumor mutation burden
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Fig. 4  Identification of immunosuppressive microenvironment based on VISTA+ ICs infiltration in MIBC. A CIBERSORT quantification of 22 types 
of immune cells, immune checkpoints (CD274, PDCD1, CTLA4, HAVCR2, LAG3, TIGIT) and cytokines (IL10, TGFB1, IFNG) between VISTA+ ICs signature 
low and high subgroups in TCGA Cohort. B Immunohistochemistry analyzed the immune contexture of immune cells (Tregs, M2 macropahges, 
mast cells), immune checkpoints (TIM-3, LAG-3, TIGIT) and cytokines (IL10, TGF-β, IFN-γ) between VISTA+ ICs low and high subgroup in ZSHS Cohort. 
Data were analyzed by Student’s t test. C Gene set enrichment analysis to evaluate enrichment of published gene sets of Tregs, M2 macrophages, 
mast cells and exhausted CD8+ T cells, among genes ranked by their expression in VISTA+ ICs signature high versus low subgroup in TCGA Cohort. 
D Immunohistochemistry analyzed the ratio of GZMB+ cells to CD8+ T cells between VISTA+ ICs low and high subgroup in ZSHS Cohort. Data were 
analyzed by Student’s t test. E Kaplan-Meier curves for OS in ZSHS Cohort according to four subgroups divided by VISTA+ ICs and CD8+ T cells 
infiltration. *P < 0.05, **P < 0.01, ***P < 0.001 and ns P > 0.05. OS, overall survival; ICs, immune cells
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accompanied with increasing immune checkpoints [37, 
42], which could support our finding that CD8+ T cells 
played an exhausted role in VISTA+ ICs infiltration. 
Moreover, targeting VISTA has been shown to induce 
inflammatory mediators and modulate exhausted CD8+ 
T cells into antitumor effector T cells [43], suggest-
ing VISTA blockade had great value in treating MIBC 
patients and could be a novel method of further clinical 
treatment.

Resent research concluded that IFN-γ could induce 
the upregulation of suppressive receptors on tumor cell 
and TAMs, such as PD-L1, and further upregulated the 
expression of VISTA to suppress the degree of antitumor 
immune responses [44, 45]. Similar to VISTA-positive 
ICs in NMIBC, VISTA+ ICs infiltration was associated 
with poor prognosis in MIBC [19], which indicated 
VISTA play a consistent and persistent role in bladder 
cancer disease progress. The expression of VISTA and 
PD-L1 in different ICs showed that they may have immu-
nologic activities in NMIBC. Additionally, VISTA expres-
sion on antigen-presenting cells is distinct from the 
PD-1/PD-L1 in melanoma [46]. In murine, VISTA pro-
moted tumor growth via regulation of T cells activation 
independent of PD-1/PD-L1 pathway [47]. In conclu-
sion, VISTA demonstrated the valuable significance as a 
potential immunotherapy target, which aids the immune 
system in anti-tumor. Moreover, VISTA and PD-1 block-
ade could make more informed decisions regarding effec-
tive therapies and personalized treatment option for 
MIBC patients.

Conclusion
We aimed to investigate clinical significance of VISTA in 
MIBC. Our study evaluated VISTA+ ICs infiltration as 
a candidate biomarker for predicting survival outcomes 
and therapeutic responsiveness. Specifically, VISTA+ IC 
high subgroup was refractory to ACT while favorable 
to PD-L1 inhibitor. Further we deciphered VISTA+ IC 
infiltration was associated with inhibitory tumor envi-
ronment characterzied by Tregs, M2 macrophages, mast 
cells and exhausted CD8+ T cells infiltration, along with 
increased IL-10 and TGF-β, but also elevated immune 
checkpoint expression, such as TIM-3, LAG-3 and 
TIGIT, which mediated the immune evasion in MIBC. 
In brief, VISTA+ ICs infiltration could be as a promising 
biomarker for guiding precision medicine strategies for 
MIBC patients.
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