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Abstract
Background  Glioblastoma (GBM) is a type of highly malignant brain tumor that is known for its significant 
intratumoral heterogeneity, meaning that there can be a high degree of variability within the tumor tissue. Despite 
the identification of several subtypes of GBM in recent years, there remains to explore a classification based on genes 
related to proliferation and growth.

Methods  The growth-related genes of GBM were identified by CRISPR-Cas9 and univariate Cox regression analysis. 
The expression of these genes in the Cancer Genome Atlas cohort (TCGA) was used to construct growth-related 
genes subtypes (GGSs) via consensus clustering. Validation of this subtyping was performed using the nearest 
template prediction (NTP) algorithm in two independent Gene Expression Omnibus (GEO) cohorts and the ZZ cohort. 
Additionally, copy number variations, biological functions, and potential drugs were analyzed for each of the different 
subtypes separately.

Results  Our research established multicenter-validated GGSs. GGS1 exhibits the poorest prognosis, with the highest 
frequency of chr 7 gain & chr 10 loss, and the lowest frequency of chr 19 & 20 co-gain. Additionally, GGS1 displays 
the highest expression of EGFR. Furthermore, it is significantly enriched in metabolic, stemness, proliferation, and 
signaling pathways. Besides we showed that Foretinib may be a potential therapeutic agent for GGS1, the worst 
prognostic subtype, through data screening and in vitro experiments. GGS2 has a moderate prognosis, with a slightly 
higher proportion of chr 7 gain & chr 10 loss, and the highest proportion of chr 19 & 20 co-gain. The prognosis of 
GGS3 is the best, with the least chr 7 gain & 10 loss and EGFR expression.
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Introduction
Glioblastoma (GBM) is an adult malignant tumor with 
a median survival of around 16 months [1]. GBM exhib-
its extensive intratumoral heterogeneity, representing a 
major barrier to effective therapy [2]. According to pre-
vious studies, patients with MGMT methylation showed 
greater benefit from chemoradiation [3]. Therefore, the 
reclassification of GBM and adoption of precision medi-
cine strategies with stratified management and personal-
ized treatment can significantly improve efficacy. Verhaak 
et al. proposed that based on transcriptome data GBM 
can be divided into four types: Proneural, Neural, Clas-
sical, and Mesenchymal [4]. This classification has had a 
profound impact on the research of GBM, but this clas-
sification does not take into account the role of specific 
genes, particularly growth-related genes.

CRISPR-Cas9 technology is a stable, efficient, and sim-
ple gene editing tool that allows for the targeted editing of 
specific genes [5]. Since its inception, this technology has 
been widely utilized in various biomedical fields, offer-
ing new avenues for studying the mechanisms underlying 
tumor development and progression, as well as promis-
ing new strategies for treating tumors [6, 7]. Based on 
CRISPR-Cas9 technology, the Depmap database was 
established by Tsherniak et al. They used the technol-
ogy to specifically knockout genes in a variety of cancer 
cell lines, combined with the growth of cancer cell lines 
after the knockout, and then predicted genes necessary 
for cancer growth [8]. Chen et al. screened osteosarcoma 
growth-related genes using the DepMap and constructed 
a prognostic risk model. To further verify that LARS is an 
essential gene for osteosarcoma growth, cellular experi-
ments were conducted. It provides a new perspective on 
the risk stratification of osteosarcoma [9]. Similarly, Ho et 
al. used the lung adenocarcinoma growth-related genes 
obtained from the DepMap database to perform con-
sensus clustering, which divided patients into subgroups 
with different prognoses, further enriching the classifica-
tion of lung adenocarcinoma [10].

We utilized the DedMap database and the Cancer 
Genome Atlas (TCGA) transcriptome data to reclassify 
GBM patients, which was validated in both the GEO 
cohorts and the ZZ cohort. We analyzed the differences 
in biological functions, such as copy number variations, 
among the three subtypes. Specifically, we delved deeper 
into the possible biological mechanisms responsible 
for the worst prognosis in the GGS1 subtype and pre-
dicted potential drugs that could target it. By stratify-
ing patients based on growth-related genes, our findings 

offer valuable insights and ideas for further research and 
precision medicine in GBM.

Materials and methods
Data sources and processing
GBM RNA-seq data. From the TCGA, we obtained clin-
ical information and RNA-seq data of 143 samples that 
were pathologically diagnosed as GBM, which we down-
loaded. Next, the data were further processed to con-
vert the raw counts in Fragments Per Kilobase Million 
(FPKM) normalization to Transcripts Per Million (TPM) 
values and further transformed into log2 (TPM + 1) for-
mat. Table S1 contains information on samples that have 
been pathologically diagnosed with GBM in this cohort.

GBM microarray data. We collected two indepen-
dent cohorts, GSE108474 and GSE7696, from the Gene 
Expression Omnibus (GEO). Samples with pathological 
diagnoses of GBM were selected. Information on samples 
pathologically diagnosed with GBM in this two cohorts 
is provided in Table S1. The Affymetrix GPL570 plat-
form (Human Genome U133 Plus 2.0 Array) was used 
to retrieve normalized matrix files for the GEO cohorts. 
The Affy package implemented the robust multi-array 
averaging (RMA) algorithm to process raw data from 
Affymetrix.

In-house data. The Human Scientific Ethics Commit-
tee of the First Affiliated Hospital of Zhengzhou Univer-
sity approved this study (No. 2019-KY-176) and complied 
with the Declaration of Helsinki. Obtain informed con-
sent from all patients who provide tumor specimens 
before participating in the research. The pertinent clinical 
information for this cohort is presented in Table S1. As 
described in a previous study [11], RNA samples assessed 
by quantification and identification will undergo subse-
quent library preparation, generated using the NEBNext 
Ultratmrnlibrary Prep Kit for Illumina (NEB, USA), and 
sequenced on the Illumina hiseq platform. High-quality 
clean data (clean reads) obtained after quality control of 
raw data for downstream analysis.

Growth-related genes were found in the DepMap database 
based on the CERES score
The Dependency Map (DepMap, https://depmap.org/
portal/) portal, established using RNAi and CRISPR-
Cas9 technology, is a database of thousands of cell lines 
from dozens of tumors [8]. The importance of genes for 
cell proliferation and growth is determined by their effect 
on cell growth when knocked down. However, cancer 
cells often have higher genomic copy number variations 

Conclusions  These results enhance our understanding of the heterogeneity of GBM and offer insights for stratified 
management and precise treatment of GBM patients.
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(CNVs), leading to DNA double-strand breaks and dam-
age responses when the single-guide RNA (SgRNA)-
Cas9 complex targets these regions. This can inhibit cell 
growth and cause false positives in gene knockout studies 
[12]. To address these issues, the CERES score was devel-
oped as a new parameter for evaluating gene necessity. 
This unbiased method estimates gene dependence while 
considering copy number effects at all levels of CNVs. 
The lower the CERES score, the more necessary the gene 
is for cell growth. This indicates that genes with lower 
CERES scores are more critical for cell growth [13].

As previously reported [9], we performed the genome-
scale CRISPR-Cas9 screening in GBM to find growth-
related genes with prognostic significance. The screening 
process involved the following steps: (1) The CERES algo-
rithm was applied to calculate the dependency scores of 
17,386 candidate genes. (2) Genes with CERES scores < 
-1 (n = 699)  in more than 80% of GBM cell lines (n = 61) 
were identified as growth-related genes (Table S2). (3) 
The screening of growth-related genes with prognostic 
significance was conducted through univariate analysis in 
the TCGA cohort (n = 143).

Subtypes were established based on growth-related genes
Univariate Cox analysis was conducted on the TCGA 
cohort, selecting 12 growth-related genes with prognos-
tic significance (Table S3). Then, the expression differ-
ences of these 12 genes in both adjacent and cancerous 
tissues were analyzed in the TCGA cohort. The expres-
sion levels of these genes were used for unsupervised 
consensus clustering, which was performed using the 
Partitioning Around Medoids (PAM) algorithm [14]. To 
ensure robust clustering, 500 iterations were performed, 
with each iteration resampling 80% of patients in the 
TCGA cohort [15]. The maximum number of clusters 
was set to 9, and the consensus cumulative distribution 
function and consensus heatmap were used to evaluate K 
values. Principal component analysis (PCA) is one of the 
most widely used dimensionality reduction algorithms, 
based on which we explore the similarity of samples from 
the same subtype at the transcriptome level.

Identify feature genes for subtype validation
We performed a within-group difference analysis for 
the three groups via the limma R package. The order of 
genes was sorted decreasingly by logFC. We selected the 
top 500 genes of these three groups as feature genes for 
GGS1, GGS2, and GGS3, respectively (Table S4).

Subtype validation based on the NTP algorithm
The nearest template prediction (NTP) is an algorithm 
that can be flexibly applied to multi-class prediction in 
across-platform and across-species, without any param-
eter optimization [16]. This method can predict the 

corresponding subtypes by signature gene list and test-
ing datasets while giving prediction confidence [17]. In 
this study, we evaluated the robustness of this classifica-
tion by running the NTP algorithm based on GGSs sig-
nature genes via the CMScaller package in three cohorts: 
GSE7696, GSE108474, and ZZ cohort. Additionally, we 
employed the NTP method to classify the cell lines corre-
sponding to different subtypes. To ensure the accuracy of 
classification, samples with FDR > 0.05 were eliminated.

Copy number variations analysis of GGSs
We obtained data on copy number variations from 
the UCSC Xena website (https://xena.ucsc.edu/). The 
maftools R package was used to analyze the top 15 seg-
ments with the highest frequency of copy number vari-
ations. To fully understand the overall copy number 
variations between different subtypes, as mentioned ear-
lier [18, 19], we used the GISTIC2 algorithm to calculate 
the GISTIC score and variation frequency.

Analysis of potential biological functions
We conducted the functional analysis using gene set 
enrichment analysis (GSEA) through the clusterPro-
filer R package [20]. This approach is distinct from tra-
ditional enrichment analysis methods in that it considers 
the global trend of gene expression. The order of genes of 
each subtype was sorted decreasingly by logFC to serve 
as input files, and pathways with larger NES values were 
selected for visual display. To increase the persuasion of 
our findings, we scored each sample’s pathway by another 
gene set enrichment algorithm, the gene-set variation 
analysis (GSVA) [21]. Differential analysis was carried 
out using the limma R package based on these pathway 
scores for the three subtypes. We identified pathways 
that displayed statistically significant differential expres-
sion, as determined by an FDR threshold of less than 0.05 
and a log fold change greater than 0, and selected them 
for visualization. To verify our previous functional analy-
sis, we also obtained protein expression data from TCPA 
(The Cancer Proteome Atlas, https://www.tcpaportal.
org/tcpa/).

Exploration of potential therapeutic agents for GGS1
As previously reported [22], our study aimed to identify 
potential therapeutic agents for GGS1, the subtype with 
the worst prognosis. We utilized two databases, the can-
cer therapeutics response portal (CTRP) and profiling of 
relative inhibition simultaneously in mixtures (PRISM), 
to perform the following analyses: (1) Ridge regression 
was performed using the pRRophetic package to pre-
dict the AUC value of each sample to the drug, and the 
lower the AUC value means the more sensitive to the 
drug response; (2) Wilcox test analysis was performed 
to determine drugs with significant differences. The 
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differences between GGS1 and GGS2, GGS1 and GGS3 
were analyzed in PRISM and CTRP databases, respec-
tively, and drugs with P values less than 0.05 were defined 
as GGS1 versus the other two types of differentially sen-
sitive drugs. (3) AUC mean values were calculated for 
each subtype under different drugs to select drugs that 
were more sensitive to GGS1. In the PRISM database and 
CTRP database, drugs with AUC mean values smaller 
than the other two types in GGS1 were screened. (4) The 
drugs obtained in the second and third steps were inter-
sected to be potential therapeutic drugs for GGS1.

Reagents and cell line
Foretinib (Lot: 114,907) was procured from TargetMol. 
CCK8 (Lot: 211104Z01-05) was obtained from US EVER-
BRIGHT. The human GBM cell line U251 was gifted by 
Professor Zhenyu Zhang, Department of Neurosurgery, 
the First Affiliated Hospital of Zhengzhou University. 
The cells were cultured in DMEM (high glucose) supple-
mented with 10% FBS at 37 °C in a 5% CO2 environment.

CCK8 assay
CCK8 assays were performed according to the manufac-
turer’s guidelines. Briefly, we seeded 5,000 cells in 100 µL 
of culture medium per well in a 96-well plate. Following 
a 5-hour period for cell attachment, varying concentra-
tions of Foretinib (0.5µM, 1µM, 2µM, 5µM, 10µM, 25µM, 
50µM) were added to the wells. The plate was then placed 
in a controlled incubator and incubated for the specified 
durations of 24 and 48  h. After the incubation, 10µL of 
CCK-8 solution was added to each well, and the plate 
was further incubated for 2  h. Finally, the absorbance 
at 450 nm was measured using a microplate reader. The 
half-maximal inhibitory concentration (IC50) was deter-
mined using GraphPad Prism 9.0 software (GraphPad; 
San Diego, CA, USA).

Statistical analysis
The data was processed, analyzed, and visualized using R 
version 4.1.0. and GraphPad Prism (GraphPad Software 
9.0). Continuous variables were analyzed using both the 
Wilcoxon rank-sum test and T-test, while categorical 
variables were compared using the Chi-square test. Sur-
vival curves were generated using the survival package 
and analyzed using the log-rank test. The hazard ratio 
(HR) of the variables was calculated using univariate Cox 
regression analysis, and independent prognostic factors 
were identified using multiple Cox regression analy-
sis. All statistical tests were considered two-sided, and a 
P-value less than 0.05 indicated statistical significance.

Results
Identify growth-related genes of GBM by CRISPR-Cas9 
technology
Flowchart depicting the entirety of this study (Fig. 1). To 
screen genes essential for GBM growth, we performed 
genome-wide screening using DepMap, which revealed 
61 GBM cell lines with 17,386 genes. We further screened 
699 genes with CERES scores < -1 in over 80% of GBM 
cell lines. Based on the expression of these 699 genes in 
the TCGA cohort, a univariate COX analysis was con-
ducted, which resulted in the selection of twelve growth-
related genes (Table S3) that had significant prognostic 
value. Notably, The HR values of these genes were greater 
than 1, indicating that they were associated with a poor 
prognosis (Fig. 2A). Besides, in contrast to adjacent non-
cancerous samples within the TCGA cohort, we observed 
that these 12 growth-related genes were predominantly 
expressed at high levels in cancer tissues (Figure S1).

Subtype classification based on growth-related genes
The expression of growth-related genes in the TCGA 
cohort was used to construct a matrix. The consensus 
clustering was performed via the ConsensusClusterPlus 
package [23] based on this matrix, and the samples were 
initially divided into 2–9 clusters (k = 2–9). According to 
the comprehensive analysis of cumulative distribution 
function (CDF) curves and consensus clustering matrix 
heatmap (Fig. 2B, S2A), we selected the optimal k value 
of 3. According to the optimal k value, all samples were 
divided into three growth-related genes subtypes (GGSs). 
Principal Component Analysis (PCA) indicated that sig-
nificant differences in subtypes were validated at the 
growth gene level (Fig. 2C). Meanwhile, the expression of 
growth-related genes was highest in GGS1, followed by 
GGS2, and lowest in GGS3 (Fig. 2D). As expected, GGS1 
had the worst prognosis, GGS3 had the best prognosis, 
and GGS2 was intermediate (Fig. 2E).

Validation in microarray cohort and in-house RNAseq 
cohort
We performed validation in two microarray cohorts 
(platform GPL570) and one in-house cohort. Using the 
expression of feature genes (Table S3), we utilized the 
NTP algorithm to predict the subtypes of the valida-
tion sets. To ensure the accuracy of the results, samples 
with FDR greater than 0.05 were filtered out. Each vali-
dated dataset is divided into three subtypes, GGS1-3. The 
Kaplan-Meier prognostic analysis was the same result as 
the TCGA cohort (Fig. 2F-H). According to the classifi-
cation results, the feature genes had similar expressions 
in the corresponding subtypes of the validation sets (Fig-
ure S2B-D). Besides, the submap analysis also showed a 
high similarity of common signature genes between the 
TCGA cohort and the validation cohort (Fig. 2I-K).
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Fig. 1  Analysis flow chart of this study
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Fig. 2  The establishment and validation of growth-related genes subtypes (GGSs). (A) Univariate analysis identified 12 growth-related genes. (B) 
Consensus map of clustering in the TCGA cohort. (C) PCA analysis based on growth-related genes. (D) The expression of growth-related genes in three 
subtypes. (E) KM survival curve analysis of GGSs in the TCGA cohort using a log-rank test. (F) KM survival curve analysis of GGSs in the GSE108474 cohort 
using a log-rank test. (G) KM survival curve analysis of GGSs in the GSE7696 cohort using a log-rank test. (H) KM survival curve analysis of GGSs in the ZZ 
cohort using a log-rank test. (I-K) SubMap plots, located in the bottom panel, evaluated expressive similarity between corresponding subtypes from two 
different cohorts
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The differences in copy number variations and frequency 
among GGSs
We observed that among the top 15 segments with the 
highest frequency of copy number variations, ampli-
fied segments were predominantly located at chr 7 and 
deleted segments were predominantly located at chr 10 
(Fig.  3A). To explore the overall picture of copy num-
ber variations, we calculated the GISTIC score and copy 
number alteration frequency for each subtype using the 
GISTIC2 algorithm [18]. We found that the frequency of 
alterations in chr 7 amplification was highest in GGS1, 
slightly lower in GGS2, and lowest in GGS3 (Fig. 3B). The 
frequency of chr 10 loss was lowest in GGS3(Fig.  3B). 
These findings were consistent with the trend observed 
in the row copy number, and we also found GGS1 has a 
higher frequency of chr 7 gain & chr 10 loss than GGS2 
(Figure S3A-C). In addition, the frequency of chr 19 & 
20 co-gain was highest in GGS2, followed by GGS3, and 

lowest in GGS1 (Fig. 3B). To further analyze the distribu-
tion of samples in the three subtypes. After referring to 
previous studies [24], we discovered that the proportion 
of samples with chr 7 gain and chr 10 loss was highest 
in GGS1, followed by GGS2, while GGS3 had the low-
est proportion (Fig.  3C). Chr 19 & 20 co-gain exhibits 
the highest proportion of samples at GGS2, followed by 
GGS3, with GGS1 exhibiting the least (Fig. 3D).

The underlying biological explanation for the poor 
prognosis of GGS1
Our analysis focused on investigating the biological func-
tions of GGS1, which is associated with the worst prog-
nosis. Referring to previous findings [24], we observed 
that TERT expression status accounted for a relatively 
high proportion of cases in GGS1 (Figure S3D). At the 
same time, TERT expression status is closely related 
to TERT promoter status, and TERT expression status 

Fig. 3  The differences in copy number variations and frequency between GGSs. (A) The distribution of the first 5 segments of chromosome gain 
and the first 10 segments of chromosome loss between GGS1-3. (B) The copy number variations frequency landscape of GGS1-3. (C) The distribution of 
chr 7 gain & chr 10 loss in GGS1-3. (D) The distribution of chr 19 & 20 co-gain in GGS1-3
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with TERT promoter mutation is mostly present [24]. As 
expected, the proportion of TERT promoter mutation 
in GGS1 was the highest (Figure S3E). However, due to 
insufficient information on TERT promoter mutation in 
the TCGA cohort, we validated it in the in-house cohort 
(Figure S3F). In addition, we found that both EGFR and 
GABP were highly expressed in GGS1 (Fig.  4A), and 
EGFR could promote cell proliferation and immortal-
ity by GABP acting on TERT-promoter mutated regions 
(Fig.  4B) by previous findings [25]. Next, we performed 
GSEA enrichment analysis, which revealed that pathways 
promoting proliferation and immortality were enriched 
in GGS1, including regulation of cell cycle phase transi-
tion, telomere maintenance, and regulation of DNA rep-
lication (Fig.  4C). Besides, the protein expression level 
of EGFR was highly expressed in GGS1 (Fig.  4D). To 
further compare differences in pathway activity between 
subtypes, GSVA enrichment analysis was performed. 
Enriched pathways are divided into four categories, 
metabolism, stemness, proliferation, and signaling. We 
discovered that GGS1 is activated and highly expressed 
in all four classes of functions, whereas GGS2 and GGS3 
are not (Fig. 4E).

Comparison with recognized characteristics of GBM
In this study, we examined the distribution of various 
known features in GBM, including age, gender, Karnof-
sky Performance Status (KPS), grade, IDH status, 1p/19q 
co-deletion, chr 7 gain & chr 10 loss, chr 19 & 20 co-gain, 
TERT promoter status, TERT expression status, MGMT 
promoter methylation, and transcriptome subtypes 
(Fig. 5A). We found that the proportion of IDHwt-non-
codel was significantly increasing and the proportion of 
chr 7 gain & chr 10 loss was significantly decreasing from 
GGS1 to GGS3. At the same time, GGS1 had the highest 
proportion of older patients (Figure S3G) and the lowest 
proportion of MGMT methylation (Figure S3H). In addi-
tion, The IDH of GGS1 was all wild type with grade 4. 
Compared to the previous classification of GBM, GGS1 
has the highest proportion of classical subtypes and does 
not contain neural subtypes (Fig.  5B). We conducted 
both univariate and multivariate Cox regression analyses, 
which further confirmed the prognostic value of these 
features. GGS1 showed an HR > 1 in both univariate 
and multivariate analyses, indicating a poor prognosis. 
(Fig. 5C-D).

Discovery of potentially specific drugs for GGS1
Using drug sensitivity data and gene expression data 
from PRISM and CTRP, we identified potential therapeu-
tic agents for GGS1 (Fig. 6A). A ridge regression model 
was employed via the pRRophetic package to deduce 
the AUC value corresponding to the drug. A lower AUC 
value indicated more sensitivity to the drug. TMZ is the 

first-line drug for glioma treatment, and previous studies 
[26] have shown that low ADM expression improves gli-
oma sensitivity to TMZ. Our results showed that samples 
with low ADM expression had lower AUC values, con-
firming the rationality of our method in glioma (Fig. 6B). 
We divided the samples into two groups according to the 
level of ADM expression, and the results showed that 
samples with low ADM expression had lower AUC values 
both in CTRP and PRISM, which were more sensitive to 
TMZ. Following the same approach, we identified poten-
tial drugs CCT128930 and Foretinib for GGS1 (Fig. 6C-
D). To evaluate the sensitivity and specificity of the drug 
for GGS1 isoforms, we relied on publicly available cell 
line expression data (https://depmap.org/) and utilized 
the NTP algorithm to determine the corresponding cell 
lines for each subtype (Table S5). And, the CCK8 assay 
demonstrated that Foretinib exhibited a high sensitivity 
to U251 belonging to the GGS1 subtype, with IC50 val-
ues of 1.187 µM (24 h) and 0.992 µM (48 h), respectively 
(Fig. 6E-F).

Discussion
As the most malignant tumor, GBM exhibits a high 
degree of intratumoral heterogeneity [2]. There is an 
urgent need for risk stratification and refined manage-
ment of GBM. In this study, we employed Consensus 
Clustering, previously used in GBM, to establish three 
subtypes (GGS1-3) with varying prognoses based on 
growth-related genes. All 12 growth-related genes are 
poor prognostic factors and are highly expressed in 
GGS1, which has the worst prognosis. In contrast to adja-
cent non-cancerous samples within the TCGA cohort, 
we observed that these 12 growth-related genes were 
predominantly expressed at high levels in cancer tis-
sues. In addition to this, these genes are associated with 
DNA replication and cell proliferation. As a component 
of the RPA/RP-A complex, RPA3 binds and stabilizes 
ssDNA intermediates that arise during DNA replication 
or stress, preventing reannealing. Additionally, it recruits 
and activates various DNA metabolism proteins and 
complexes, playing a vital role in both DNA replication 
and the cellular DNA damage response [27]. HSPA5 
may play important roles in regulating apoptosis and cell 
proliferation [28]. Although the specific mechanism of 
growth-related genes in tumor development is not the 
focus of this paper, we have conducted an in-depth explo-
ration of the characteristics of GGS1, particularly in copy 
number variations and biological function. In conclusion, 

Fig. 4  The underlying biological explanation for the poor prognosis 
of GGS1. (A) The distribution of EGFR, GABPA, GABPB1 transcriptome ex-
pression in GGS1-3. (B) Mechanistic mapping of EGFR acting on the TERT 
promoter mutated region via GABPA and GABPB1 couplets. (C) GSEA en-
richment analysis results for GGS1. (D) The distribution of EGFR protein ex-
pression among GGS1-3. (E) GSVA enrichment analysis results for GGS1-3

https://depmap.org/
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our study presents the first classification of GBM based 
on growth-related genes and identifies a more malignant 
subtype: GGS1.

The stability of molecular subtypes is crucial for their 
generalization and clinical application. In this study, we 
confirmed the stability of growth-related genes subtypes 
(GGSs) in three GEO cohorts and an in-house cohort. 
We used the NTP algorithm to predict sample subtypes 
and validate the confidence of cohort predictions, which 
is a reliable method [16]. Signature genes were selected 
through the analysis of inter-subtype differences. The 
NTP algorithm was utilized to validate the prediction of 
cohort subtypes, based on the aforementioned signature 
genes. The GGSs showed stability in all GEO cohorts 
and the ZZ cohort, and the prognosis of the validation 
cohort subtypes was consistent with that of the TCGA 
cohort, and each subtype signature gene was also simi-
larly expressed. This suggests that our classification is not 

biased by the TCGA samples’ contingency, indicating 
potential for clinical translation and generalizability.

Based on the 2021 WHO classification of central ner-
vous system tumors, adult IDHwt diffuse astrocytoma 
can be classified as glioblastoma (GBM), even in the 
absence of microvascular proliferation or necrosis, if they 
exhibit at least one of the following molecular markers: 
TERT promoter mutation, EGFR gene amplification, or 
chr 7 gain & chr 10 loss [29]. There are several lines of 
evidence [30, 31] indicating that the presence of one or 
more of these three markers is sufficient to assign the 
highest WHO grade. Moreover, all of these factors are 
linked to poor prognosis in GBM [32, 33]. Notably, the 
EGFR gene is situated on chr 7 [32]. In our study, all sam-
ples of GGS1 were of the IDHwt type, and the proportion 
of TERT promoter mutation, EGFR gene amplification, 
and chr 7 gain & chr 10 loss were the highest among the 
three types. Although GGS2 also exhibited a higher level 
of chr 7 gain & chr 10 loss, the proportion of chr 19 & 

Fig. 5  Comparison with recognized characteristics of GBM. (A) A heatmap was generated to display the association between GGS1 and recognized 
characteristics, as well as previous classification. (B) The distribution of previous types among GGS1-3. (C) Univariate analysis was performed to investigate 
the association of GGS1 and recognized characteristics with prognosis. (D) Multivariate analysis was conducted to evaluate the relationship between 
GGS1 and recognized characteristics with prognosis
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20 co-gain was also higher. The presence of chr 19 & 20 
co-gain is indicative of a better prognosis, which may 
account for the superior prognosis of GGS2 as compared 
to GGS1 [34]. Further investigation is necessary to estab-
lish the connection between chr 7 gain & chr 10 loss and 
chr 19 & 20 co-gain, as well as their underlying biological 
significance. In conclusion, GGS1 represents a molecular 

subtype that demonstrates a greater degree of similarity 
with GBM diagnosis in terms of copy number variations.

Growth-related genes screened by CRISPR-Cas 9 
have already been used in several studies [9, 10]. GGSs 
were established based on growth-related genes of GBM 
obtained by CRISPR-Case 9 screening, and we found 
that growth-related genes of GBM all were indicators of 

Fig. 6  Identification of Potential Drugs Targeting GGS1. (A) Flow chart of drug screening. (B) Comparison of AUC values for Foretinib among three 
subtypes. (C) Comparison of AUC values for CCT128930 among three subtypes. (D) AUC comparison between high and low ADM expression groups. 
(E-F) U251 cells were seeded in 96-well plates and treated with Foretinib (0, 0.5, 1, 2, 5, 10, 25, and 50 µM) for 24 and 48 h
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poor prognosis. More interestingly, these growth-related 
genes all are highly expressed in GGS1. GSEA and GSVA 
enrichment analysis shows that GGS1 is more active in 
proliferative function and metabolic function. The Phos-
phatidylinositol 3-kinase/Akt/mammalian target of the 
rapamycin (PI3K/Akt/mTOR) pathway is a crucial ther-
apeutic target in cancer therapy. This signaling pathway 
is essential for regulating processes such as cell growth, 
proliferation, and survival [35]. It is noteworthy that in 
88% of GBM cases, this signaling pathway is constitu-
tively activated, and the upstream protein responsible for 
this activation is EGFR [36]. Consequently, targeting this 
pathway has become a major focus in the effort to treat 
GBM [37]. Furthermore, the high expression of EGFR in 
GGS1, at both the transcriptome and protein levels rela-
tive to the other two types, suggests that GGS1 exhibits 
a higher degree of proliferation. Notably, EGFR can also 
influence the TERT promoter mutation region through 
GABPA and GABPB1, which can in turn promote pro-
liferation and immortality [25]. In summary, at the bio-
logical level, GGS1 exhibits distinct high proliferative 
characteristics.

GGS1 consistently demonstrated the most unfavorable 
prognosis across three independent cohorts. Addition-
ally, in both univariate and multivariate COX analysis, 
its hazard ratios (HRs) were consistently greater than 1, 
indicating a poor prognostic indicator. Faced with the 
current situation, our research team aimed to develop 
drugs that specifically target GGS1. Through the analy-
sis of PRISM and CTRP databases, we have identified 
CCT128930 and Foretinib as potential drugs that show 
higher sensitivity to GGS1. Notably, CCT128930 is an 
AKT enzyme inhibitor [38] that has shown promising 
results in clinical trials for pediatric tumors associated 
with the AKT pathway [39]. Similarly, Foretinib has dem-
onstrated efficacy in inhibiting medulloblastoma [40] 
and has been shown to have an inhibitory effect on GBM 
growth by inhibiting the G2/M cell cycle [41]. More 
importantly, Foretinib showed high sensitivity to U251 
(GGS1 subtype), with IC50 values of 1.187 µM (24  h) 
and 0.992 µM (48 h), respectively. These values indicate 
that Foretinib exhibits strong inhibitory activity that sur-
passes the previously reported inhibition of U251 by LTr1 
(2.03µM, 24 h) [42]. These findings emphasize the supe-
rior therapeutic potential of Foretinib.

We conducted genome-scale CRISPR-Cas9 screening 
and univariate COX analysis to identify growth-related 
genes for risk stratification. This approach aligns with the 
concept of precise patient management in clinical prac-
tice and can guide decision-making and improve clinical 
treatment efficacy to some extent. Therefore, our find-
ings hold a certain value. However, this study has certain 
limitations. The mechanism by which growth-related 
genes contribute to a more malignant phenotype in GBM 

requires further investigation. Additionally, we used 
bioinformatics methods to predict the chemosensitiv-
ity of GGS1, which necessitates long-term follow-up in 
prospective clinical studies for further validation. More 
critically, as research progresses, it has become evident 
that the prognosis of glioma patients can be influenced 
by factors such as primary and recurrent tumor status, 
chemoradiotherapy, and IDH status [29]. However, due 
to temporal limitations, certain datasets may not contain 
the relevant information pertaining to these factors. If 
conditions permit, to better investigate GBM, we intend 
to base primary IDHwt GBM on the next study while try-
ing to maintain consistency of treatment measures such 
as chemoradiotherapy in an attempt to reduce the impact 
of sample bias on the results.

Conclusion
We have identified three prognostic subtypes based on 
growth-related genes, and have observed differences in 
copy number variations and biological functions among 
them. Furthermore, we conducted investigations into 
the underlying mechanisms contributing to the unfa-
vorable prognosis of GGS1 and identified potentially 
responsive therapeutic agents. These findings represent a 
novel contribution to the field, as previous studies have 
not reported similar results. Our discoveries deepen our 
understanding of copy number variations and biologi-
cal function in GBM, clarify its heterogeneity, and offer 
insights into precision treatment.

Abbreviations
GGSs	� Growth-related genes subtypes
GBM	� Glioblastoma
NTP	� Nearest template prediction
AUC	� Area under the dose-response curve
DepMap	� Dependency Map
GISTIC2.0	� Genomic identification of significant targets in cancer 2.0
PRISM	� Profiling of relative inhibition simultaneously in mixtures
CTRP	� Cancer therapeutics response portal

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12885-023-11131-7.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Acknowledgements
Not applicable.

Author contributions
ZQL, SYW, and XWH provided direction and guidance throughout the 
preparation of this manuscript. NNZ, SYW, and ZQL wrote and edited the 
manuscript. SYW reviewed and made significant revisions to the manuscript. 
NNZ, SYW, ZQL, HX, YQR, CGG, LL, ZYZ, and YCJ collected and prepared the 
related papers. All authors read and approved the final manuscript.

https://doi.org/10.1186/s12885-023-11131-7
https://doi.org/10.1186/s12885-023-11131-7


Page 13 of 14Zhao et al. BMC Cancer          (2023) 23:749 

Funding
This research was supported by the National Natural Science Foundation of 
China (81702465, 82273493).

Data availability
Public data used in this work can be acquired from the TCGA (https://
portal.gdc.cancer.gov/), GEO (https://www.ncbi.nlm.nih.gov/geo/), Cell line 
expression data (https://depmap.org/portal/download/all/), and TCPA (https://
www.tcpaportal.org/tcpa/), Other data supporting the findings of this study 
are available from the corresponding author upon reasonable request.

Declarations

Competing interests
The authors declare no competing interests.

Ethics approval and consent to participate
The experimental protocol was meticulously designed in adherence with the 
ethical guidelines of the Helsinki Declaration and received official approval 
from the Human Scientific Ethics Committee of the First Affiliated Hospital of 
Zhengzhou University (No. 2019-KY-176). Moreover, written informed consent 
was duly obtained from individual participants or their legal guardians to 
ensure their voluntary participation in the study.

Consent for publication
Not applicable.

Author details
1Department of Interventional Radiology, The First Affiliated Hospital of 
Zhengzhou University, Zhengzhou, Henan 450052, China
2Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou 
University, Zhengzhou, Henan 450052, China
3Department of Respiratory and Critical Care Medicine, The First Affiliated 
Hospital of Zhengzhou University, Zhengzhou, China
4Department of Endovascular Surgery, The First Affiliated Hospital of 
Zhengzhou University, Zhengzhou, China
5Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated 
Hospital of Zhengzhou University, Zhengzhou, China

Received: 18 February 2023 / Accepted: 29 June 2023

References
1.	 Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, Toms S, 

Idbaih A, Ahluwalia MS, Fink K, et al. Effect of Tumor-Treating Fields Plus 
maintenance temozolomide vs maintenance temozolomide alone on 
survival in patients with glioblastoma: a Randomized Clinical Trial. JAMA. 
2017;318(23):2306–16.

2.	 Prager BC, Xie Q, Bao S, Rich JN. Cancer Stem cells: the Architects of the 
Tumor Ecosystem. Cell Stem Cell. 2019;24(1):41–53.

3.	 Lim M, Weller M, Idbaih A, Steinbach J, Finocchiaro G, Raval RR, Ans-
stas G, Baehring J, Taylor JW, Honnorat J, et al. Phase III trial of chemo-
radiotherapy with temozolomide plus nivolumab or placebo for newly 
diagnosed glioblastoma with methylated MGMT promoter. Neurooncology. 
2022;24(11):1935–49.

4.	 Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, 
Ding L, Golub T, Mesirov JP, et al. Integrated genomic analysis identifies 
clinically relevant subtypes of glioblastoma characterized by abnormalities in 
PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110.

5.	 Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the 
challenges and approaches. Drug Delivery. 2018;25(1):1234–57.

6.	 Liu Z, Shi M, Ren Y, Xu H, Weng S, Ning W, Ge X, Liu L, Guo C, Duo M, Li L, 
Li J, Han	  X. Recent advances and applications of CRISPR-Cas9 in 
cancer immunotherapy. Mol Cancer. 2023;22(1):35. https://doi.org/10.1186/
s12943-023-01738-6.

7.	 Wang SW, Gao C, Zheng YM, Yi L, Lu JC, Huang XY, Cai JB, Zhang PF, Cui YH, Ke 
AW. Current applications and future perspective of CRISPR/Cas9 gene editing 
in cancer. Mol Cancer. 2022;21(1):57.

8.	 Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, Cowley GS, Gill 
S, Harrington WF, Pantel S, Krill-Burger JM, et al. Defining a Cancer Depen-
dency Map. Cell. 2017;170(3):564–576e516.

9.	 Chen W, Lin Y, Jiang M, Wang Q, Shu Q. Identification of LARS as an essential 
gene for osteosarcoma proliferation through large-scale CRISPR-Cas9 
screening database and experimental verification. J translational Med. 
2022;20(1):355.

10.	 Ho KH, Huang TW, Liu AJ, Shih CM, Chen KC. Cancer Essential Genes Strati-
fied Lung Adenocarcinoma Patients with Distinct Survival Outcomes and 
Identified a Subgroup from the Terminal Respiratory Unit Type with Different 
Proliferative Signatures in Multiple Cohorts. Cancers 2021, 13(9).

11.	 Yan J, Zhang S, Li KK, Wang W, Li K, Duan W, Yuan B, Wang L, Liu L, Zhan Y, 
et al. Incremental prognostic value and underlying biological pathways of 
radiomics patterns in medulloblastoma. EBioMedicine. 2020;61:103093.

12.	 Munoz DM, Cassiani PJ, Li L, Billy E, Korn JM, Jones MD, Golji J, Ruddy DA, Yu 
K, McAllister G, et al. CRISPR Screens provide a Comprehensive Assessment 
of Cancer Vulnerabilities but generate false-positive hits for highly amplified 
genomic regions. Cancer Discov. 2016;6(8):900–13.

13.	 Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, Dharia NV, 
Montgomery PG, Cowley GS, Pantel S, et al. Computational correction of 
copy number effect improves specificity of CRISPR-Cas9 essentiality screens 
in cancer cells. Nat Genet. 2017;49(12):1779–84.

14.	 Xu T, Le TD, Liu L, Su N, Wang R, Sun B, Colaprico A, Bontempi G, Li J. 
CancerSubtypes: an R/Bioconductor package for molecular cancer sub-
type identification, validation and visualization. Bioinf (Oxford England). 
2017;33(19):3131–3.

15.	 Pan J, Hu Y, Sun S, Chen L, Schnaubelt M, Clark D, Ao M, Zhang Z, Chan D, 
Qian J, et al. Glycoproteomics-based signatures for tumor subtyping and 
clinical outcome prediction of high-grade serous ovarian cancer. Nat Com-
mun. 2020;11(1):6139.

16.	 Hoshida Y. Nearest template prediction: a single-sample-based flexible class 
prediction with confidence assessment. PLoS ONE. 2010;5(11):e15543.

17.	 Liu Z, Weng S, Dang Q, Xu H, Ren Y, Guo C, Xing Z, Sun Z, Han, X. Gene 
interaction perturbation network deciphers a high-resolution taxonomy in 
colorectal cancer. eLife. 2022;11:e81114. https://doi.org/10.7554/eLife.81114.

18.	 Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. 
GISTIC2.0 facilitates sensitive and confident localization of the targets of 
focal somatic copy-number alteration in human cancers. Genome Biol. 
2011;12(4):R41.

19.	 Li X, Xu W, Kang W, Wong SH, Wang M, Zhou Y, Fang X, Zhang X, Yang H, 
Wong CH, et al. Genomic analysis of liver cancer unveils novel driver genes 
and distinct prognostic features. Theranostics. 2018;8(6):1740–51.

20.	 Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool 
with confidence assessments and item tracking. Bioinf (Oxford England). 
2010;26(12):1572–3.

21.	 Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.

22.	 Liu Z, Xu H, Weng S, Guo C, Dang Q, Zhang Y, Ren Y, Liu L, Wang L, Ge X 
et al. Machine learning algorithm-generated and multi-center validated 
melanoma prognostic signature with inspiration for treatment management. 
Cancer immunology, immunotherapy: CII 2022.

23.	 Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing 
biological themes among gene clusters. OMICS. 2012;16(5):284–7.

24.	 Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Moro-
zova O, Newton Y, Radenbaugh A, Pagnotta SM, et al. Molecular profiling 
reveals biologically discrete subsets and pathways of progression in diffuse 
glioma. Cell. 2016;164(3):550–63.

25.	 McKinney AM, Mathur R, Stevers NO, Molinaro AM, Chang SM, Phillips JJ, 
Costello JF. GABP couples oncogene signaling to telomere regulation in TERT 
promoter mutant cancer. Cell Rep. 2022;40(12):111344.

26.	 He Z, Cheng M, Hu J, Liu L, Liu P, Chen L, Cao D, Tang J. miR-1297 sensitizes 
glioma cells to temozolomide (TMZ) treatment through targeting adreno-
medullin (ADM). J translational Med. 2022;20(1):443.

27.	 Lin YL, Shivji MK, Chen C, Kolodner R, Wood RD, Dutta A. The evolutionarily 
conserved zinc finger motif in the largest subunit of human replication 
protein A is required for DNA replication and mismatch repair but not for 
nucleotide excision repair. J Biol Chem. 1998;273(3):1453–61.

28.	 Kang JM, Park S, Kim SJ, Kim H, Lee B, Kim J, Park J, Kim ST, Yang HK, Kim WH, 
et al. KIAA1324 suppresses gastric Cancer Progression by inhibiting the Onco-
protein GRP78. Cancer Res. 2015;75(15):3087–97.

29.	 Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins 
C, Ng HK, Pfister SM, Reifenberger G, et al. The 2021 WHO classification 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://depmap.org/portal/download/all/
https://www.tcpaportal.org/tcpa/
https://www.tcpaportal.org/tcpa/
https://doi.org/10.1186/s12943-023-01738-6
https://doi.org/10.1186/s12943-023-01738-6
https://doi.org/10.7554/eLife.81114


Page 14 of 14Zhao et al. BMC Cancer          (2023) 23:749 

of tumors of the Central Nervous System: a summary. Neurooncology. 
2021;23(8):1231–51.

30.	 Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB, Kleinschmidt-
DeMasters BK, Perry A, Reifenberger G, Stupp R, et al. cIMPACT-NOW 
update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, 
IDH-wildtype, with molecular features of glioblastoma, WHO grade IV. Acta 
Neuropathol. 2018;136(5):805–10.

31.	 Tesileanu CMS, Dirven L, Wijnenga MMJ, Koekkoek JAF, Vincent A, Dubbink 
HJ, Atmodimedjo PN, Kros JM, van Duinen SG, Smits M, et al. Survival of 
diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of 
glioblastoma, WHO grade IV: a confirmation of the cIMPACT-NOW criteria. 
Neurooncology. 2020;22(4):515–23.

32.	 Stichel D, Ebrahimi A, Reuss D, Schrimpf D, Ono T, Shirahata M, Reifenberger 
G, Weller M, Hänggi D, Wick W, et al. Distribution of EGFR amplification, 
combined chromosome 7 gain and chromosome 10 loss, and TERT promoter 
mutation in brain tumors and their potential for the reclassification of IDHwt 
astrocytoma to glioblastoma. Acta Neuropathol. 2018;136(5):793–803.

33.	 Chamberlain MC, Sanson M. Combined analysis of TERT, EGFR, and 
IDH status defines distinct prognostic glioblastoma classes. Neurology. 
2015;84(19):2007.

34.	 Geisenberger C, Mock A, Warta R, Rapp C, Schwager C, Korshunov A, Nied AK, 
Capper D, Brors B, Jungk C, et al. Molecular profiling of long-term survivors 
identifies a subgroup of glioblastoma characterized by chromosome 19/20 
co-gain. Acta Neuropathol. 2015;130(3):419–34.

35.	 Grzmil M, Hemmings BA. Deregulated signalling networks in human brain 
tumours. Biochim Biophys Acta. 2010;1804(3):476–83.

36.	 Comprehensive genomic characterization. Defines human glioblastoma 
genes and core pathways. Nature. 2008;455(7216):1061–8.

37.	 Venkatesh HS, Chaumeil MM, Ward CS, Haas-Kogan DA, James CD, Ronen SM. 
Reduced phosphocholine and hyperpolarized lactate provide magnetic reso-
nance biomarkers of PI3K/Akt/mTOR inhibition in glioblastoma. Neurooncol-
ogy. 2012;14(3):315–25.

38.	 Yap TA, Walton MI, Hunter LJ, Valenti M, de Haven Brandon A, Eve PD, Ruddle 
R, Heaton SP, Henley A, Pickard L, et al. Preclinical pharmacology, antitumor 
activity, and development of pharmacodynamic markers for the novel, 
potent AKT inhibitor CCT128930. Mol Cancer Ther. 2011;10(2):360–71.

39.	 Toson B, Fortes IS, Roesler R, Andrade SF. Targeting Akt/PKB in pediat-
ric tumors: a review from preclinical to clinical trials. Pharmacol Res. 
2022;183:106403.

40.	 Faria CC, Golbourn BJ, Dubuc AM, Remke M, Diaz RJ, Agnihotri S, Luck A, 
Sabha N, Olsen S, Wu X, et al. Foretinib is effective therapy for metastatic 
sonic hedgehog medulloblastoma. Cancer Res. 2015;75(1):134–46.

41.	 Gortany NK, Panahi G, Ghafari H, Shekari M, Ghazi-Khansari M. Foretinib 
induces G2/M cell cycle arrest, apoptosis, and invasion in human glio-
blastoma cells through c-MET inhibition. Cancer Chemother Pharmacol. 
2021;87(6):827–42.

42.	 Song QQ, Lin LP, Chen YL, Qian JC, Wei K, Su JW, Ding JH, Lu M, Liu Y, Tan RX 
et al. Characterization of LTr1 derived from cruciferous vegetables as a novel 
anti-glioma agent via inhibiting TrkA/PI3K/AKT pathway. Acta Pharmacol Sin 
2022.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 


	﻿CRISPR-Cas9 identifies growth-related subtypes of glioblastoma with therapeutical significance through cell line knockdown
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Data sources and processing
	﻿Growth-related genes were found in the DepMap database based on the CERES score
	﻿Subtypes were established based on growth-related genes
	﻿Identify feature genes for subtype validation
	﻿Subtype validation based on the NTP algorithm
	﻿Copy number variations analysis of GGSs
	﻿Analysis of potential biological functions
	﻿Exploration of potential therapeutic agents for GGS1
	﻿Reagents and cell line
	﻿CCK8 assay
	﻿Statistical analysis

	﻿Results
	﻿Identify growth-related genes of GBM by CRISPR-Cas9 technology
	﻿Subtype classification based on growth-related genes
	﻿Validation in microarray cohort and in-house RNAseq cohort
	﻿The differences in copy number variations and frequency among GGSs
	﻿The underlying biological explanation for the poor prognosis of GGS1
	﻿Comparison with recognized characteristics of GBM
	﻿Discovery of potentially specific drugs for GGS1

	﻿Discussion
	﻿Conclusion
	﻿References


