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Abstract 

Background  To explore the value of a multiparametric magnetic resonance imaging (MRI)-based deep learning 
model for the preoperative prediction of Ki67 expression in prostate cancer (PCa).

Materials  The data of 229 patients with PCa from two centers were retrospectively analyzed and divided into train-
ing, internal validation, and external validation sets. Deep learning features were extracted and selected from each 
patient’s prostate multiparametric MRI (diffusion-weighted imaging, T2-weighted imaging, and contrast-enhanced 
T1-weighted imaging sequences) data to establish a deep radiomic signature and construct models for the preopera-
tive prediction of Ki67 expression. Independent predictive risk factors were identified and incorporated into a clinical 
model, and the clinical and deep learning models were combined to obtain a joint model. The predictive perfor-
mance of multiple deep-learning models was then evaluated.

Results  Seven prediction models were constructed: one clinical model, three deep learning models (the DLRS-
Resnet, DLRS-Inception, and DLRS-Densenet models), and three joint models (the Nomogram-Resnet, Nomogram-
Inception, and Nomogram-Densenet models). The areas under the curve (AUCs) of the clinical model in the testing, 
internal validation, and external validation sets were 0.794, 0.711, and 0.75, respectively. The AUCs of the deep models 
and joint models ranged from 0.939 to 0.993. The DeLong test revealed that the predictive performance of the deep 
learning models and the joint models was superior to that of the clinical model (p < 0.01). The predictive performance 
of the DLRS-Resnet model was inferior to that of the Nomogram-Resnet model (p < 0.01), whereas the predictive per-
formance of the remaining deep learning models and joint models did not differ significantly.

Conclusion  The multiple easy-to-use deep learning–based models for predicting Ki67 expression in PCa developed 
in this study can help physicians obtain more detailed prognostic data before a patient undergoes surgery.
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Background
Prostate cancer (PCa) is the most common malignancy 
and is responsible for the second-highest rate of can-
cer-related mortality in men [1, 2]. Advanced PCa has a 
high rate of bone metastasis, which severely affects the 
survival of patients. Therefore, early diagnosis of PCa is 
crucial [3]. Multiparametric MRI is considered one of 
the most effective imaging methods for the diagnosis of 
PCa and plays a key role in the diagnosis, staging, treat-
ment evaluation, and prognosis of PCa [4, 5]. Adequate 
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preoperative assessment of PCa can help physicians for-
mulate personalized treatment and follow-up plans and 
is beneficial to patients’ long-term prognoses.
Ki67 is a marker gene of tumor cell proliferation and is 

involved in cell anabolism. It is expressed throughout the 
cell cycle, except for the G0 phase. High Ki67 expression 
implies active cell proliferation; the Ki67 index can reflect 
the proliferation capacity of tumor cells [6, 7]. High Ki67 
expression in PCa is a poor prognostic factor and is cor-
related with overall survival, disease-free survival, and 
distant metastasis [8, 9]. The existing methods for detect-
ing Ki67 expression levels are invasive, complex, barely 
reproducible, and susceptible to subjective influence [10, 
11]. Therefore, researchers must develop noninvasive, 
simple, and reproducible methods for detecting Ki67 
expression in patients with PCa. The results of the pre-
sent study may facilitate the formulation of more precise 
treatment plans for patients with PCa.

As the core of artificial intelligence, deep learning algo-
rithms have achieved amazing accuracy in image rec-
ognition and object detection in recent years [12, 13]. 
Convolutional neural networks (CNNs), a representative 
class of deep learning algorithms which comprise convo-
lutional, pooling, excitation, and fully connected layers, 
have been applied extensively in radiomics. Models con-
structed using CNNs can automatically learn to extract 
and select image features used to make predictions; such 
models facilitate deep mining of image information [14] 
and have extensive application prospects.

Regarding noninvasive preoperative prediction of Ki67 
expression in PCa, Zhang et  al. [15] used quantitative 
parameters of dynamic contrast-enhanced (DCE) MRI to 
preoperatively predict Ki67 expression. Among the quan-
titative parameters examined therein, Ktrans achieved the 
highest predictive performance with an AUC value of 
0.826, whereas Kep yielded an AUC of 0.784. Fan et  al. 
[10] used three MRI sequences (T2-weighted imaging 
[T2WI], diffusion-weighted imaging [DWI], and DCE 
MRI) to construct various radiomics prediction mod-
els to predict Ki67 expression in PCa. The random for-
est model achieved the highest performance. The models 
developed in the aforementioned studies used quantita-
tive parameters of functional MRI or handcrafted radi-
omics to predict Ki67 expression in PCa; however, these 
models were not subjected to external validation, and 
their stability and reliability therefore remain questiona-
ble. To date, no studies have evaluated the use of multiple 
deep learning models for the prediction of Ki67 expres-
sion. Therefore, in the present study, three CNN-based 
deep learning models (Resnet101, Inception_v3, and 
Densenet121) for preoperatively predicting Ki67 expres-
sion in PCa were constructed. The models were validated 
using internal and external data sets and may therefore 

serve as reliable tools in the development of personalized 
preoperative treatment plans.

Methods
Patients
This study was conducted in accordance with the Dec-
laration of Helsinki in 1964 and approved by the Insti-
tutional Review Board (IRB) of Tongde Hospital of 
Zhejiang Province (2022-234 K) and Shanghai Putuo Dis-
trict People’s Hospital (2022-7). The need for informed 
consent for this retrospective study was waived. The data 
of 229 patients with PCa confirmed by pathology reports 
from January 2019 to December 2021 at two cent-
ers were collected. The patients were aged 44–94 years 
(mean: 75.5 ± 8.1 years). All the patients underwent regu-
lar T2WI, DWI, and enhanced MRI examinations. The 
inclusion criteria were as follows: (1) All patients’ MRI 
examinations were performed prior to puncture biopsy 
and surgery; (2) complete clinicopathological data; and 
(3) no antitumor treatment before the MRI examination. 
The exclusion criteria were as follows: (1) incomplete 
imaging and clinical data and (2) poor image quality that 
would hinder image analysis.(Fig. 1).

Image analysis
All the patients received 3.0T MRI (Verio, Siemens, Ger-
many) or 1.5T MRI (Avanto, Siemens, Germany) scan-
ning equipped with 8-channel abdominal coil. Automatic 
gradient shimming was used to bias field correction. The 
selected sequences including axial T2WI, DWI, and con-
trast-enhanced T1WI (CE- T1). MRI scanning param-
eters were summarized in Table 1. The patients’ clinical 
and pathological data were recorded. Age, tumor location 
(peripheral, transitional zone or both involvement), long 
diameter (LD), short diameter (SD), ADC values, total 
prostate specific antigen (TPSA), free prostate specific 
antigen (FPSA), MRI-based TN staging (mrTN), M stage 
was assessed based on radiological (including X-ray plain 
film, CT, MRI and/or Emission CT bone scan) examina-
tion (rM), Ki67 expression, capsule invasion (CI), semi-
nal vesicle invasion (SVI) and enhance mode (EMode). 
The cutoff value for Ki67 expression was set to 10%, and 
the patients were divided into a low-expression group 
(< 10%) and high-expression group (≥ 10%) accordingly.

Deep learning process
Step 1 (Preparing the data sets): Python 3.9 (https://​www.​
python.​org/) and PyCharm Community Edition (https://​
pytor​ch.​org/)    were used for data processing. The pros-
tate MRI images from the 229 patients included in the 
data set comprised three MRI sequences (T2WI, DWI, 
and T1C). A total of 687 images in JPG format were pro-
cessed. The regions of interest (ROI) of the lesions with 
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the maximum cross-sectional image of prostate cancer 
lesions were selected and manually cut close to the edge 
of the prostate gland on each image into a 256 × 256 size 
as jpg format by an abdominal radiologist (10 years of 
experience) and confirmed by the pathologist (15 years 
of experience) based on the pathological results. Subse-
quently, the outlined images were confirmed by another 
abdominal radiologist with 20 years of experience. If 
their opinions conflicted, the conflicts were resolved 

through discussion until a consensus was reached. All the 
images were converted into jpg format and were resized 
to 256 × 256. To avoid data heterogeneity, all the images 
were normalized by the normalize [transforms. Normal-
ize (mean, std)] function: x= (x - mean)/std. The data 
from Center 1 were divided into training and testing sets 
in a ratio of 7:3. The models were constructed using the 
training set and tested on the testing set and external 
data (Fig. 2).

Step 2 (Constructing the CNN): First, three models 
were constructed using different deep-learning neu-
ral network architectures (Resnet101, Inception_v3, 
and Densenet121). The details of three CNN models in 
present study are summarized as follow: (1) Resnet101 
residual network structure: First 7 × 7 × 64 convolution 
is carried out, followed by 33 (3 + 4 + 23 + 3) building 
blocks. Each block includes 3 layers, so the blocks alto-
gether contain 99 (33 × 3) layers. With the last FC layer 
(fully connected layer) included, the network finally 
comprises a total of 101 (1 + 99 + 1) layers. The 101-layer 
network only refers to the convolution layer or the full 
connection layer, however the second-activation layer 
or Pooling layer is not included. (2) DenseNet121 dense 
convolutional network structure: The DenseNet net-
work structure mainly consists of three core structures, 
namely, DenseLayer (the most basic atomic unit of the 
model, which provides the initial feature extraction), 

Prostate cancer from 
Center 1 (n1=347)

Prostate cancer from 
Center 2 (n2=131)

Incomplete pathological or 
imaging data 

(n1=158,n2=79)

Poor image quality
(n1=10, n2=4)

Initial inclusion
(n1=189)

Initial inclusion
(n2=54)

Enrolled patients
(n1=179)

Enrolled patient
(n2=50)

Training set
(n=125)

Invad set
(n=54)

Exvad set
(n=50)

Fig. 1  Flow diagram of enrolled patients in this study

Table 1  MRI scanning parameters in two centers

Sequence Parameters Siemens 3.0T Siemens 1.5T

T2WI TR/TE,ms 4000/97 4120/97

FOV,mm 200*200 200*200

Thickness,mm 3.0 3.0

Matrix 426*256 460*512

DWI b value 0,800,1500 0,1000

TR/TE,ms 9700/93 3439/95

FOV,mm 256*256 250*250

Thickness,mm 3.0 3.0

Matrix 213*106 144*192

CE-T1 TR/TE,ms 5.1/1.7 7.64/2.77

FOV,mm 256*256 234*250

Thickness,mm 3.0 3.0

Matrix 426*256 180*256
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DenseBlock (the basic unit of the model’s dense connec-
tion) and Transition (the transition unit among different 
dense connections for convolutional and pooling lay-
ers, which is used to integrate the learned features and 
reduce the size of the feature map). The model can be 
built through splicing and layer classification of the above 
structures. The DenseBlock of DenseNet-121 containing 
six BottleNecks that are linked in series passes through 
the convolutional layer and the pooling layer, and then 
allows for output at the fully connected layer. (3) Incep-
tionV3 network structure: Inception-v3 model consists of 
46 layers in total and 11 Inception modules, which inte-
grates different convolutional layers in parallel, mainly by 
input matrix, intermediate structure and output matrix.

The prostate MRI data were input into the models. The 
input data first passed through the convolution layer, in 
which parameters such as the numbers of input chan-
nels (In channel) and output channels (Out channel), 
convolution kernel size, and convolution stride were 
set. The data then passed through the max-pooling 
layer. The data repeatedly passed through the convolu-
tion layer and max-pooling layer before being subjected 
to dimensionality reduction and flattening. The deep 
learning features were extracted from the last fully con-
nected layer. Preliminary screening of the deep learning 
features was performed using the minimum redundancy 
maximum correlation (mRMR) method; thereafter, the 

least absolute shrinkage and selection operator (LASSO) 
method with 10-fold cross-validation, was used to fur-
ther reduce the dimensions and select the strongest rel-
evant features to construct a model.

Step 3 (Training and testing): First, the parameters (i.e., 
number of iterations and rounds) for CNN training were 
set. Second, the loss function and optimizer model were 
defined. Finally, the test data set was input into the CNN 
model for testing, and evaluation indicators such as sen-
sitivity, specificity, and accuracy were calculated.

Statistical analysis
Statistical analysis was performed using R software ver-
sion 3.6.1 (R Core Team [2019],http:www.r-project.rog). 
Normally distributed continuous variables are herein 
presented as means ± standard deviations, and categori-
cal variables are presented as frequencies and percent-
ages. A t test and rank-sum test were used to analyze 
data with and without normal distributions, respec-
tively; a chi-square test was used to analyze count data. 
Univariate and multivariate analyses were performed on 
the clinical variables in the training set, and independent 
predictors were selected and incorporated into a clinical 
model. Receiver operating characteristic (ROC) curves 
were used to evaluate the predictive performance of the 
models. The DeLong test was used to perform pairwise 
comparisons of the ROC curves of each model. The 

Fig. 2  Flowchart of the study. First, model construction: Independent predictive factors of Ki67 expression in PCa were identified and incorporated 
into the clinical model. Three deep learning models were constructed based on different deep-learning neural network architectures (Resnet101, 
Inception_v3, and Densenet121), then deep learning signatures were calculated accordingly. Then the three deep learning models were combined 
with the selected clinical features (mrT and ADC values) to create three nomograms. Second, model evaluation: the ROC curves, nomogram plots, 
and calibration curves were used for model evaluation
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Table 2  Comparison of Clinical and imaging features with different Ki67 status in three sets

mrTN MRI-based TN staging, rM M stage based on radiological examination, Location A = peripheral, B = transitional zone, C = both involvement, LD Long diameter, 
SD Short diameter, CI Capsule invasion, TPSA Total prostate specific antigen, FPSA Free prostate specific antigen, EMode I = no enhancement; II = progressive 
enhancement; III = fast-in and fast-out enhancement; IV: fast-in and slow-out enhancement pattern

A Train B Invad C Exvad

Ki67(low) Ki67(high) p.overall Ki67(low) Ki67(high) p.overall Ki67(low) Ki67(high) p.overall

N=94 N=31 N=35 N=19 N=31 N=19

Age 76.0 [72.0;82.0] 74.0 [67.5;82.0] 0.386 77.0 [69.0;81.0] 76.0 [68.0;83.5] 0.863 73.0 [69.0;78.5] 76.0 [71.5;80.0] 0.280

mrT <0.001 0.069 0.614

  I 43 (45.7%) 3 (9.68%) 16 (45.7%) 3 (15.8%) 15 (48.4%) 6 (31.6%)

  II 31 (33.0%) 9 (29.0%) 12 (34.3%) 7 (36.8%) 10 (32.3%) 9 (47.4%)

  III 11 (11.7%) 8 (25.8%) 5 (14.3%) 5 (26.3%) 5 (16.1%) 3 (15.8%)

  IV 9 (9.57%) 11 (35.5%) 2 (5.71%) 4 (21.1%) 1 (3.23%) 1 (5.26%)

mrN 0.026 0.087 0.273

  No 80 (85.1%) 20 (64.5%) 30 (85.7%) 12 (63.2%) 27 (87.1%) 14 (73.7%)

  Yes 14 (14.9%) 11 (35.5%) 5 (14.3%) 7 (36.8%) 4 (12.9%) 5 (26.3%)

rM 0.006 0.169 0.549

  No 83 (88.3%) 20 (64.5%) 33 (94.3%) 15 (78.9%) 30 (96.8%) 17 (89.5%)

  Yes 11 (11.7%) 11 (35.5%) 2 (5.71%) 4 (21.1%) 1 (3.23%) 2 (10.5%)

SVI 0.877 0.297 1.000

  No 76 (80.9%) 24 (77.4%) 30 (85.7%) 14 (73.7%) 28 (90.3%) 17 (89.5%)

  Yes 18 (19.1%) 7 (22.6%) 5 (14.3%) 5 (26.3%) 3 (9.68%) 2 (10.5%)

CI 0.005 0.364 0.011

  No 44 (46.8%) 5 (16.1%) 15 (42.9%) 5 (26.3%) 21 (67.7%) 5 (26.3%)

  Yes 50 (53.2%) 26 (83.9%) 20 (57.1%) 14 (73.7%) 10 (32.3%) 14 (73.7%)

TPSA 14.0 [9.64;31.1] 41.4 [23.3;100] <0.001 13.9 [8.60;23.4] 32.0 [15.7;100] 0.005 14.9 [8.82;46.7] 27.3 [12.9;45.1] 0.484

FPSA 1.77 [1.03;3.84] 6.78 [2.68;30.0] <0.001 1.10 [0.77;2.75] 3.96 [2.17;12.8] 0.001 1.67 [0.86;4.48] 2.43 [1.11;5.22] 0.660

Location: 0.005 0.213 0.458

  A 46 (48.9%) 10 (32.3%) 13 (37.1%) 3 (15.8%) 9 (29.0%) 4 (21.1%)

  B 20 (21.3%) 2 (6.45%) 8 (22.9%) 4 (21.1%) 10 (32.3%) 4 (21.1%)

  C 28 (29.8%) 19 (61.3%) 14 (40.0%) 12 (63.2%) 12 (38.7%) 11 (57.9%)

LD 17.3 [11.8;22.2] 27.0 [20.7;39.7] <0.001 15.4 [12.1;26.2] 23.7 [14.8;30.9] 0.150 16.1 [10.4;26.0] 22.1 [19.6;27.6] 0.084

SD 11.6 [7.88;15.7] 19.2 [14.1;23.9] <0.001 10.9 [7.50;13.9] 14.7 [10.1;21.0] 0.025 10.3 [6.80;16.4] 13.8 [11.4;19.6] 0.101

Number: 0.639 0.194 0.759

  U 46 (48.9%) 13 (41.9%) 18 (51.4%) 14 (73.7%) 19 (61.3%) 10 (52.6%)

  M 48 (51.1%) 18 (58.1%) 17 (48.6%) 5 (26.3%) 12 (38.7%) 9 (47.4%)

ADC 580 [509;695] 521 [495;580] 0.007 578 [500;694] 557 [504;632] 0.556 650 [600;747] 583 [537;626] 0.002

EMode: 0.514 1.000 0.457

  I 1 (1.06%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

  II 34 (36.2%) 8 (25.8%) 13 (37.1%) 7 (36.8%) 7 (22.6%) 5 (26.3%)

  III 47 (50.0%) 16 (51.6%) 11 (31.4%) 6 (31.6%) 12 (38.7%) 10 (52.6%)

  IV 12 (12.8%) 7 (22.6%) 11 (31.4%) 6 (31.6%) 12 (38.7%) 4 (21.1%)

DLRS-Resnet -4.18 [-6.12;-
2.37]

3.25 [0.74;4.23] <0.001 -3.94 [-5.77;-
2.58]

2.15 [0.34;3.28] <0.001 -4.38 [-5.83;-
1.85]

2.88 [1.53;4.67] <0.001

DLRS-Inception -3.46 [-5.00;-
1.99]

1.60 
[-0.16;3.14]

<0.001 -3.77 [-5.39;-
2.65]

2.96 [1.07;3.63] <0.001 -3.57 [-5.44;-
2.18]

1.60 [1.01;2.48] <0.001

DLRS-
Densenet

-4.60 [-6.60;-
2.66]

2.33 [0.89;4.27] <0.001 -4.68 [-5.87;-
2.47]

3.13 [2.14;5.99] <0.001 -4.80 [-7.38;-
2.71]

2.18 [0.48;4.51] <0.001
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calibration curve was used to test the degree of model 
calibration, and the decision curve was used to analyze 
the net clinical benefit of each model. All the p values 
were two-tailed, and statistical significance was defined 
as a p value of < 0.05.

Results
Patient clinical features
A total of 229 patients were pathologically confirmed 
PCa. Among them, 214 patients underwent prostate can-
cer puncture biopsy, and 15 patients underwent radical 
prostatectomy. Of the patients in the training, internal 
validation, and external validation sets, 31 (24.8%) and 
19 (35.2%), and 19 (38%), respectively, had high Ki67 
expression. In the training set, age, number of lesions and 
EMode had no statistical difference (P > 0.05), while mrT, 
mrN, mrM, TPSA, Location, LD, SD and ADC values ​​
of the high- and low-expression groups differed signifi-
cantly (p < 0.05). A comparison of the clinical features of 
the patients in the training, internal validation, and exter-
nal validation sets is presented in Table 2. According to 
European Association of Urology-European Association 
of Nuclear Medicine-European Society for Radiotherapy 
and Oncology-European Society of Urogenital Radiol-
ogy-International Society of Geriatric Oncology (EAU-
EANM-ESTRO-ESUR-SIOG) guidelines on prostate 
cancer, Gleason score of 7 was used as the critical value 
to divide patients into low-risk (< 7) and high-risk (≥ 7) 
groups [16]. There were 65 cases of low-risk and 164 
cases of high-risk in this study.

Construction and predictive performance of clinical model
In this study, KI67 expression level was considered as the 
dependent variable, fourteen Clinical and MRI indicators 

(including Age, mrT, mrN, rM, SVI, CI, TPSA, FPSA, 
Location, LD, SD, Number of lesions, ADC and EMode) 
of prostate diseases as independent variables. All the 
variables of interest were included in univariate and mul-
tivariate logistic regressions. Among the variables, mrT 
(OR = 0.91, P = 0.038) and ADC (OR = 0.99, P = 0.04) 
were identified as independent predictive factors of Ki67 
expression in PCa and were incorporated into the clinical 
model (Fig. 3). The AUCs of the clinical model in predict-
ing Ki67 expression in PCa were 0.794, 0.711, and 0.75 in 
the training, internal validation, and external validation 
sets, respectively.

Predictive performance of deep learning models
The three models constructed in the present study 
(Resnet101, Inception_v3, and Densenet121) extracted 
6144, 6144, and 3000 deep learning features, respec-
tively. To avoid model overfitting due to feature redun-
dancy, mRMR and Lasso regression were performed to 
filter out all the features with a high degree of multicol-
linearity. Finally, 43 (T2WI:17、DWI:13,CE-T1WI:13), 
39 (T2WI:15、DWI:11,CE-T1WI:12), and 78 (T2WI:30
、DWI:22,CE-T1WI:26) features related to Ki67 expres-
sion were selected from among the features extracted 
by the Resnet101, Inception_v3, and Densenet121 
models, respectively. Three deep learning image tag-
ging models (the DLRS-Resnet, DLRS-Inception, and 
DLRS-Densenet models) were constructed using the Cox 
proportional-hazards model. According to the Youden’s 
index values in the training set, the optimal cutoff val-
ues for the DLRS models were determined to be 0.272, 
0.192, and 0.285, respectively. In the training, internal 
validation, and external validation sets, the DLRS of the 
high- and low-expression groups differed significantly 

Subgroup

Age (cont. var.)

OR.Univariable.

mrT (cont. var.)

Unit.P.value

mrN: 1 vs 0 

OR.Multivariable.

mrM: 1 vs 0 

Mult.P.value

SVI: 1 vs 0 

Univariable

CI: 1 vs 0 

Multivariable

TPSA (cont. var.)

FPSA (cont. var.)

Location (cont. var.)

LD (cont. var.)

SD (cont. var.)

Number: 1 vs 0 

ADC (cont. var.)

EMode (cont. var.)

0.98 (0.93,1.03) 

2.48 (1.63,3.78) 

3.14 (1.24,7.96) 

4.15 (1.58,10.92) 

1.23 (0.46,3.3) 

4.58 (1.62,12.94) 

1.02 (1.01,1.03) 

1.08 (1.04,1.13) 

1.83 (1.14,2.93) 

1.09 (1.05,1.13) 

1.12 (1.06,1.19) 

1.33 (0.58,3.01) 

0.995 (0.9913,0.9987) 

1.6 (0.88,2.89) 

0.429

< 0.001

0.016

0.004

0.679

0.004

0.002

< 0.001

0.012

< 0.001

< 0.001

0.499

0.008

0.123

NA

2.91 (1.06,8.01) 

1.15 (0.3,4.47) 

0.26 (0.03,2.28) 

NA

0.5 (0.1,2.44) 

0.9956 (0.9844,1.0068) 

1.04 (0.98,1.11) 

0.61 (0.31,1.21) 

1.07 (0.97,1.18) 

1.01 (0.89,1.15) 

NA

0.9941 (0.9886,0.9997) 

NA

NA

0.038**

0.839

0.223

NA

0.394

0.438

0.199

0.155

0.173

0.841

NA

0.04**

NA

0 1 2 3 4 5 0 1 2 3 4 5

Fig. 3  Clinical model construction. According to the results of univariate and multivariate logistic regression analysis, mrT and ADC values were 
identified as independent predictors of Ki67 expression and were incorporated into the clinical model



Page 7 of 15Deng et al. BMC Cancer          (2023) 23:638 	

(p < 0.001). Figure  4 illustrates the DLRS distribution. 
The AUCs of DLRS-Resnet in predicting Ki67 expression 
in PCa in the training, internal validation, and external 
validation sets were 0.961, 0.95, and 0.976, respectively; 
the corresponding AUCs of DLRS-Inception were 0.939, 
0.97, and 0.973, respectively; and the corresponding 
AUCs of DLRS-Densenet were 0.98, 0.983, and 0.944, 
respectively (Table 3).

Nomogram construction and predictive performance
The three deep learning models were combined with the 
selected clinical features (mrT and ADC values) to cre-
ate three nomograms: Nomogram-Resnet, Nomogram-
Inception, and Nomogram-Densenet (Fig. 5). The AUCs 
of Nomogram-Resnet in predicting Ki67 expression in 
PCa in the testing, internal validation, and external vali-
dation sets were 0.975, 0.958, and 0.993, respectively; 
the corresponding AUCs of Nomogram-Inception were 
0.962, 0.988, and 0.983, respectively; and the correspond-
ing AUCs of Nomogram-Densenet were 0.983, 0.986, and 
0.952, respectively. The AUC curves of each model are 
displayed in Fig. 6.

Comparison of predictive performance of models
The AUCs of the nomograms were higher than those of 
the clinical and DLRS models. The DeLong test revealed 
that the predictive performance of the DLRS mod-
els and nomograms was superior to that of the clinical 
model (p < 0.05), but the predictive performance of the 
DLRS models and nomograms did not differ significantly 
(Table 4). The calibration curves in Fig. 7 indicate that the 
Ki-67 expression levels predicted using the nomograms 
were highly consistent with postoperative immunohisto-
chemistry results. The closer the calibration curve is to 
the 45° line, the higher the recognition accuracy of the 
corresponding nomogram is. Decision curve analysis 
revealed that all the DLRS models and nomograms had 
a greater net benefit than did the clinical model (Fig. 8). 
Supplemental clinical impact curves were constructed 
to further illustrate the clinical value of the nomograms 
(Fig. 9). According to the radar chart (Fig. 10), the Nomo-
gram-Densenet, Nomogram-Inception, and Nomogram-
Resnet models exhibited the highest performance in the 
testing set, internal validation set, and external validation 
set, respectively.
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Discussion
To the best of our knowledge, this study is the first to 
use multisequence MRI to construct three deep learning 
models for the preoperative prediction of Ki67 expres-
sion in PCa. The deep learning models were combined 
with independent predictive risk factors to create nomo-
grams. Both the deep learning models and nomograms 
exhibited satisfactory predictive performance and were 
validated using internal and external data sets.

Previous studies have demonstrated that Ki67 expres-
sion may be related to the prognosis of various tumors 
[17, 18]. Patients with PCa with high Ki67 expression 
(> 10%) exhibit poor tumor differentiation and are at a 
higher risk of metastasis and recurrence. Ki67 expres-
sion is a risk factor for poor prognosis in PCa [10, 19]. 
A study [6] showed that Ki67 upregulation has close 
relationship with PCa aggressiveness. Ki67 expression is 
associated with disease-free survival, biochemical recur-
rence and metastasis. Patients with high Ki67 expres-
sion are more likely (2.62 times) to develop biochemical 
recurrence than those with low Ki67 expression. Another 
study [20] suggests that Ki67 may provide additional 
prognostic information for Gleason reporting methods 
of PCa. However, accurately measuring Ki67 expression 
through conventional imaging examinations is difficult. 

Radiomics can be used to mine digital information from 
medical images and reflect the heterogeneity of tumors 
[21].

Most radiomics studies conducted to date have 
involved the use of multilayer manual delineation for fea-
ture extraction [22]. Manual delineation is labor-inten-
sive, time-consuming, and subject to subjective influence. 
The results of delineation and, in turn, the interpretation 
of features, vary between doctors. In the present study, 
an abdominal radiologist selected the ROIs of the lesions 
with the maximum diameter during image segmentation. 
Relative to manual delineation layer by layer, the method 
employed in this study has multiple advantages: the sub-
sequent network is less affected by the accuracy of ROI 
segmentation, and the method itself is easy to use and 
can reduce physicians’ workloads. Thousands of deep 
learning features were extracted by the deep learning 
models to avoid model overfitting due to feature redun-
dancy. Among the features, those with a high degree of 
multicollinearity were excluded, and those related to 
Ki67 expression were selected. The selected features were 
strongly correlated with PCa tumor proliferation and 
invasion. The deep learning models DLRS-Resnet, DLRS-
Inception, and DLRS-Densenet achieved high prediction 
accuracy, with AUCs ranging from 0.939 to 0.983.

Table 3  Diagnostic efficiency in different models

ROC AUC​ ACC​ SEN SPE PPV NPV

TRAIN Clinic 0.794 0.744 0.774 0.734 0.49 0.908

DLRS-Resnet 0.961 0.896 0.903 0.894 0.737 0.966

DLRS-Inception 0.939 0.872 0.935 0.851 0.674 0.976

DLRS-Densenet 0.98 0.928 0.935 0.926 0.806 0.978

Nomogram-Resnet 0.975 0.952 0.871 0.979 0.931 0.958

Nomogram-Inception 0.962 0.944 0.871 0.968 0.9 0.958

Nomogram-Densenet 0.983 0.92 1 0.894 0.756 1

INVAD Clinic 0.711 0.685 0.737 0.657 0.538 0.821

DLRS-Resnet 0.95 0.907 0.895 0.914 0.85 0.941

DLRS-Inception 0.97 0.926 0.947 0.914 0.857 0.97

DLRS-Densenet 0.983 0.907 1 0.857 0.792 1

Nomogram-Resnet 0.958 0.926 0.895 0.943 0.895 0.943

Nomogram-Inception 0.988 0.963 1 0.943 0.905 1

Nomogram-Densenet 0.986 0.963 0.895 1 1 0.946

EXVAD Clinic 0.75 0.68 0.842 0.581 0.552 0.857

DLRS-Resnet 0.976 0.94 1 0.903 0.864 1

DLRS-Inception 0.973 0.92 1 0.871 0.826 1

DLRS-Densenet 0.944 0.9 0.842 0.935 0.889 0.906

Nomogram-Resnet 0.993 0.96 0.947 0.968 0.947 0.968

Nomogram-Inception 0.983 0.96 0.895 1 1 0.939

Nomogram-Densenet 0.952 0.88 0.895 0.871 0.81 0.931
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The three deep learning models developed in this study 
had distinct characteristics. Resnet101 architecture is 
based on a 101-layer deep residual network, which ena-
bles it to overcome the vanishing gradient problem [23, 
24] and achieve high classification accuracy. Inception 
architecture uses 1 × 1 convolution to reduce dimension-
ality and minimize computational complexity. The prin-
ciple of decomposing a sparse matrix into a dense matrix 
can be used to accelerate convergence and achieve higher 
accuracy [25–27]. The number of output feature maps of 
each convolution layer in the dense block of Densenet is 
extremely small (< 100); the network is narrow and has 
few parameters. The connection makes the transmission 
of features and gradients more efficient, rendering the 
network easier to train [28, 29].

Regarding the noninvasive preoperative prediction of 
Ki67 expression in tumors, although manual radiomics 
models based on image data to predict Ki67 expression 
in the tumor cells of patients with bladder cancer, breast 
cancer, and lung cancer have been constructed in previ-
ous studies [30–32], few of these studies involved exter-
nal validation. The models constructed in the present 
study therefore achieved higher prediction performance. 
In contrast to manual radiomics, deep learning models, 
like those constructed in this study, automatically learn 
from high-dimensional data through neural networks, 
which minimizes the need for feature engineering and 
saves time. In the present study, the introduction of 
deeper and more complex network structures required 
repeated adjustments in the models’ parameters to 
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Delong test in different models

P1= Training vs Invad, p2=p.Training vs Exvad, p3= Invad vs Exvad

Model comparison Z1 p1 Z2 p2 Z3 p3

Clinic vs DLRS-Resnet -3.621 <0.001 -3.043 0.002 -3.054 <0.001

Clinic vs DLRS-Inception -2.762 <0.001 -3.219 0.001 -3.086 0.002

Clinic vs DLRS-Densenet -4.283 <0.001 -3.693 <0.001 -2.607 0.009

Clinic vs Nomogram-Resnet -4.299 <0.001 -3.279 0.001 -3.548 <0.001

Clinic vs Nomogram-Inception -4.008 <0.001 -3.628 <0.001 -3.418 <0.001

Clinic vs Nomogram-Densenet -4.573 <0.001 -3.683 <0.001 -2.979 <0.001

DLRS-Resnet vs Nomogram-Resnet -1.812 0.070 -0.926 0.354 -1.177 <0.001

DLRS-Inception vs Nomogram-Inception -1.418 0.1561 -1.363 0.173 -0.767 0.443

DLRS-Densenet vs Nomogram-Densenet -0.478 0.632 -0.404 0.686 -0.725 0.469

DLRS-Resnet vs DLRS-Densenet -0.927 0.354 -0.930 0.353 0.978 0.328
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Fig. 7  Calibration curve for deep learning models. Nomogram-Resnet (a), Nomogram-Inception (b), and Nomogram-Densenet (c). The y axis 
represents the observed probability; the x axis represents the nomogram-predicted probability; and the solid diagonal gray line represents a perfect 
prediction by an ideal model
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achieve optimal results. Internal and external validation 
demonstrated the reliability and robustness of the deep 
learning models.

The results of the present study indicate that the differ-
ences in MRI scanners and scanning parameters between 
centers exert no significant effect on the predictive per-
formance of deep learning algorithms, which supports 
the reliability and robustness of the deep learning mod-
els. The AUCs of the nomograms constructed by combin-
ing clinical features and DLRS were optimal. Clinical data 
and medical images complement each other and can be 
combined to display tumor features from different angles 
[33]. Nomograms can be used to obtain more compre-
hensive information on tumor prognosis. Utilizing the 
proposed method enables physicians to develop more 
personalized and effective treatment strategies [34].

A study [35] adopted biparametric MRI 
(T2WI + ADC map) to characterize prostate can-
cer. Multiple integrated nomograms were established 
combining clinical variables, PI-RADS score and 
deep learning. The ClaD (clinical variables + PI-RADS 
score + deep learning) nomogram got the best predict-
ing performance compared with deep learning model, 
DIN (clinical variables + deep learning) nomogram, 
and PIN (clinical variables + PI-RADS score) nomo-
gram. The Prostate Imaging–Reporting and PI-RADS 
based on multiparameter MRI was widely applied and 
recognized in clinical practice. However, the subjec-
tive methods are often dependent on physician’s expe-
rience and expertise, differences exist among different 
individuals. By contrast, deep learning can obtain more 
features than the naked eye and reflect the heterogene-
ity of tumors. Similarity, Jing et al. [36] used PI-RADS 
and MRI radiomics signature (based on T2WI + DWI 
sequence) to construct nomogram for predicting clini-
cally significant prostate cancer. They revealed that 
nomogram had better predictive performance than PI-
RADS in both the training group, internal and external 
validation group. Compared with these studies, the pre-
sent study has the following superiorities. First, mul-
tisequence single-layer segmented images were used 
for feature extraction and selection. Relative to other 
radiomic models, the proposed model is simpler and 
easier to use which saves much time on image segmen-
tation and feature learning. Second, three deep learn-
ing prediction models with distinct characteristics were 
constructed, all of which exhibited satisfactory predic-
tion performance. Third, the models were subjected to 
internal and external validation that determined to be 
stable and reliable.

This study has some limitations. First, the sample con-
tained fewer patients with low Ki67 expression than 
high Ki67 expression, and the results must therefore be 

validated using a larger sample. Second, deep learning 
analysis process involved manual segmentation and was 
susceptible to subjective influences. Automatic segmen-
tation technology will be further investigated in future 
follow-up studies. Finally, the degree to which immuno-
histochemical indicators reflect tumor features warrants 
further investigation.

Conclusions
In this study, three easy-to-use DLRS models and radi-
omic nomograms for predicting Ki67 expression in PCa 
were developed. The models exhibit strong predictive 
performance and may serve as a new noninvasive strat-
egy for preoperative prediction of PCa prognosis.
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