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Abstract 

Background Endometrial Cancer (EC) is one of the most prevalent malignancies that affect the female population 
globally. In the context of immunotherapy, Tumor Mutation Burden (TMB) in the DNA polymerase epsilon (POLE) 
subtype of this cancer holds promise as a viable therapeutic target.

Methods We devised a method known as NEM-TIE to forecast the TMB status of patients with endometrial cancer. 
This approach utilized a combination of the Network Evolution Model, Transfer Information Entropy, Clique Per-
colation (CP) methodology, and Support Vector Machine (SVM) classification. To construct the Network Evolution 
Model, we employed an adjacency matrix that utilized transfer information entropy to assess the information gain 
between nodes of radiomic-clinical features. Subsequently, using the CP algorithm, we unearthed potentially pivotal 
modules in the Network Evolution Model. Finally, the SVM classifier extracted essential features from the module set.

Results Upon analyzing the importance of modules, we discovered that the dependence count energy in tumor 
volumes-of-interest holds immense significance in distinguishing TMB statuses among patients with endometrial can-
cer. Using the 13 radiomic-clinical features extracted via NEM-TIE, we demonstrated that the area under the receiver 
operating characteristic curve (AUROC) in the test set is 0.98 (95% confidence interval: 0.95–1.00), surpassing the per-
formance of existing techniques such as the mRMR and Laplacian methods.

Conclusions Our study proposed the NEM-TIE method as a means to identify the TMB status of patients with endo-
metrial cancer. The integration of radiomic-clinical data utilizing the NEM-TIE method may offer a novel technology 
for supplementary diagnosis.
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Background
Endometrial cancer (EC) is a malignancy with a high inci-
dence rate in women that can result in significant morbid-
ity and mortality [1]. The conventional gold standard for 
prognostic factors, including tumor histology, grade, and 
International Federation of Gynecology and Obstetrics 
(FIGO) stage, is often associated with a high degree of 
observational error, making it challenging to accurately 
diagnose patients [2–4]. In the Cancer Genome Atlas 
(TCGA), four molecular subtypes of EC, namely, DNA 
polymerase epsilon (POLE), mismatch-repair deficient 
(MMR-D), copy-number low (CN-low), and copy-number 
high (CN-high) have been utilized to determine the prog-
nosis for personalized treatment [5]. Additionally, Tumor 
Mutation Burden (TMB) is being evaluated as a potential 
immunotherapy target for POLE EC patients to assess the 
efficacy of PD-1 therapy [6]. However, the current gold 
standard for identifying the TMB status of EC patients is 
through pathological analysis and whole-exome sequenc-
ing (WES), which is relatively unstable and expensive, lim-
iting the accuracy of prognostic analysis.

Radiomics is an emerging field that utilizes quantitative 
image features extracted from medical imaging data to 
enhance diagnostic, prognostic, and predictive accuracy 
[7]. Recent studies have shown that radiomics features 
can predict TMB status using machine learning methods 
in two main directions. The first direction involves tra-
ditional feature mining and classification. For instance, 
Harini et al. (2020) [8] used imaging and clinical data to 
predict microsatellite instability and high tumor muta-
tion burden from contrast-enhanced computed tomogra-
phy in EC patients, achieving a test set AUC of 0.87. The 
second direction utilizes deep learning frameworks to 
identify TMB status. He et al. (2020) [9] employed a 3D 
convolution kernel deep learning model to predict TMB 
status in non-small-cell lung cancer patients, achieving 
a test set AUC of 0.81. Although these studies perform 
well in TMB status identification, they still have cer-
tain limitations. The first method is insufficient in min-
ing the relationships between features, while the second 
method based on deep learning has poor interpretability. 
Furthermore, these methods are challenging to apply for 
classification problems with small sample sizes and high 
dimensions, necessitating the consideration of the reli-
ability of the classification results.

Integrated radiomic-clinical data of EC patients pre-
sent challenges due to small sample size and high feature 
dimension. Traditional machine learning methods strug-
gle to obtain satisfactory results in mining the correlation 
between TMB status and integrated radiomic-clinical 
data. Therefore, it is necessary to select the most excellent 
radiomic-clinical feature dimension before prediction 
analysis. Existing feature selection algorithms, such as 

the minimum-redundancy maximum-relevancy (mRMR)
[10] algorithm and the Laplacian Score[11] method, 
lack balance in their influence between individuals and 
groups to the target. To overcome these limitations, we 
propose a novel algorithm based on Network Evolution 
Model, denoted as NEM-TIE, which effectively explores 
the correlation between integrated radiomic-clinical data 
of EC patients and TMB status. The proposed NEM-TIE 
is evaluated for its effectiveness.

Methods
The methodology section includes two parts: data pro-
cessing and model framework. In the data process-
ing part, clinical and imaging data of EC patients from 
Harini’s 2020 study were utilized, and the TMB status of 
EC patients was classified based on literature [12]. In the 
model framework part, the transfer information entropy 
was employed to establish the Evolution Network model, 
and the CP algorithm was used to detect differential 
modules within the network that were linked to TMB 
status in EC patients. Afterwards, the influence of differ-
ential modules on the identification of TMB status in EC 
patients was evaluated through statistical indicators. The 
radiomic-clinical features within the identified differen-
tial modules were considered as the predicted biomarker 
for distinguishing TMB statuses among patients. Below 
we described these two parts in detail.

Data collection
The radiomic and clinical data were collected from Memo-
rial Sloan Kettering Cancer Center from Harini’s research 
(2020) [8]. According to the eligibility criteria with histo-
logic subtypes of EC and FIGO stages, 150 patients were 
selected and used for follow-up analysis. This cohort 
was randomly divided into three groups: the train group 
(n = 105, 70%), the test group (n = 30, 20%), and the vali-
dation group (n = 15, 10%). Pertinent clinical information 
was extracted by reviewing electronic medical records. 
The details of EC characteristics can be found in Table 1.

TMB interpretation and the standard with TMB‑H 
and TMB‑L
The Tumor Mutational Burden (TMB) corresponds to the 
count of genetic mutations present in a patient’s tumor 
tissue. This metric can be calculated by employing MSK-
IMPACT sequencing, which computes the number of 
nonsynonymous somatic mutations-per-megabase (mut/
Mb) [12]. To differentiate between high and low TMB 
status, we have adopted a cut-off value of 15.5 mut/Mb. 
This threshold has been deemed significant in a clinical 
investigation on advanced solid tumor patients treated 
with Atezolizumab [8, 13].
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Radiomic data processing
During the tumor region segmentation phase, two radi-
ologists, Yulia Lakhman and Josip Ninčević, who possess 
clinical expertise as outlined in Harini et  al. (2020) [8], 
meticulously delineated all tumor margin information. 
The radiologists employed the Insight Segmentation and 
Registration Toolkit Segmentation platform (ITK-SNAP) 
to label the tumor VOI (volume of interest) within 
patients afflicted with endometrial cancers.

To guarantee the uniformity of texture feature extrac-
tion, all images underwent resampling to achieve 
1 × 1x1  mm3 voxels via the utilization of ITK software. 
In conjunction with the tumor volume of interest (VOI), 
the adjacent peritumoral rim VOI was also scrutinized, 
in order to account for the effects of the surround-
ing milieu on the tumor VOI. Initially, an area 3  mm 
beyond the periphery of the tumor VOI was automati-
cally generated, and the area which did not include the 
tumor VOI was subsequently designated as the peritu-
moral rim VOI.

Radiomic features are designed to assess the volumes-
of-interest (VOI) of the tumor and the surrounding peri-
tumoral rim VOI. In the present study, these features 
were computed utilizing the Computational Environ-
ment for Radiological Research (CERR, https:// github. 
com/ cerr/ CERR/). A total of two hundred features were 
extracted from both the tumor VOI and peritumoral-rim 
VOI, with the former being encompassed by the latter.

Construction of network evolution model (NEM‑TIE) based 
on transfer information entropy
The Network Evolution Model is from a graph-based idea 
which means the new links depend on the local network 

structure [14]. The integrated radiomic-clinical features 
are regarded as nodes of the graph G = (C, V). Moreover, 
the measure of the correlation between the different fea-
tures is used as an edge to construct a network.

Edge connection conditions are defined based on infor-
mation gain. The px, py and pxy represent the probabil-
ity of Linear Discriminant Analysis (LDA) classification 
accuracy for feature nodes X, Y and their joint, respec-
tively. The high value of E means there is the excellent 
information gain for the classification task with label C 
when X and Y exist simultaneously [15].

Furthermore, we normalized to obtain the adjacency 
matrix R in NEM-TIE in which each element Rjk is calcu-
lated as follows:

where Xj and Xk represent the jth and kth columns of the 
sample-feature matrix Xmn. The function N(.) represents 
normalization of formula (1) and it makes that Rjk belongs 
to [0,1]. If Rjk is larger than threshold T, the feature nodes 
Xj and Xk have an edge, otherwise no edge between them.

Linear discriminant analysis (LDA) method for refining 
modules in NEM
We first used clique percolation (CP) method [16] to cal-
culate the set of all module structures in NEM-TIE for 
all samples, denoted as CP(R,T ) and their correspond-
ing feature submatrix are denoted as Xms (s = 1,2,…, D, 
D is the total number of the modules). Further, Linear 

(1)E(X ,Y |C) = pxy log
pxy

pxpy

(2)Rjk = N
(

E
(

Xj ,Xk |Cm

))

Table 1 Patient characteristics

All Train Test Validation
N = 150 N = 105 N = 30 N = 15

Median patient age, years 63.6 63.5 65.2 61.2

Histology, number
 Endometrioid 64 46 11 7

 Serous 33 21 7 5

 Clear cell 11 8 3 0

 Carcinosarcoma 29 23 6 0

 Undifferentiated/dediffderentiated 6 5 1 0

 Unclassified high-grade type 14 7 4 3

Tumor grade, number
 Well/moderately differentiated 114 79 26 9

 Poorly differentiated 43 31 6 6

Stage, number
 Extra-uterine 89 61 20 8

 Uterine-confined 68 49 12 7

https://github.com/cerr/CERR/
https://github.com/cerr/CERR/


Page 4 of 13Tan et al. BMC Cancer          (2023) 23:712 

Discriminant Analysis (LDA) in machine learning was 
motivated to identify the optimal modules. For all Xms 
in CP(R,T ) , the following values Zms are calculated 
according to the rule in LDA

where the submatrix Xms divides into the N1 positive 
samples X+

ms and N2 negative samples X−
ms . µ+

s  represents 
the mean of X+

ms and µ−
s  is the mean of X−

ms . In specifi-

cally, µ+
s = 1

N1

N1
∑

i=1

X+
is  and µ−

s = 1
N2

N2
∑

j=1

X−
js .

Identifying the optimal feature set from the refined modules
Given the m× n sample feature matrix X and indicator 
label vector Cm. For the classifier F and the selected fea-

ture submatrix 
D
⋃

v=1

Xmv . the identification of optimal fea-

ture set Xml is converted into the following optimization 
problem.

(3)
Zms = LDA(Xms) =

∥

∥

∥

(

µ+
s − µ−

s

)(

µ+
s − µ−

s

)T
∥

∥

∥

∥

∥

∥

∥

∥

1

N1−1

N1
∑

i=1

∣

∣X+
is − µ+

s

∣

∣

2
+ 1

N2−1

N2
∑

j=1

∣

∣

∣
X−
js − µ−

s

∣

∣

∣

2

∥

∥

∥

∥

∥

s = 1, 2, ...,D

(4)
min
Xml

m
∑

i=1

D
∑

s=1

|F(Xis)− Ci|

s.t. Xml ⊂
D
⋃

v=1

Xmv .

Loss function for extracting the main feature combinations 
in optimized modules
In order to guarantee the training and testing accuracy, 
we used the following formula as loss function.

where AUCtrain and AUCtest are the training and testing 
accuracy, respectively. α and β are the parameters can be 
adjusted. In this study, we used warp SVM to calculate 
the target AUC indicator and used PSO to obtain optimal 
threshold T.

The PSO algorithm is employed to fine-tune this hyper-
parameter. Specifically, the threshold T and CP method 
are utilized to generate the module set Xms. The com-
bined features in Xms are evaluated using the SVM clas-
sifier, and their classification performance is measured by 
the area under the curve (AUC). Subsequently, the PSO 
algorithm calculates the AUC-based loss function of the 
threshold T to obtain the optimal value.

The algorithm workflow
To clearly elucidate the computational process, the work-
flow is depicted in Fig.  1, which includes four steps. 

(5)AUC = αAUCtrain + βAUCtest

Fig. 1 The main algorithm workflow in this study
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Initially, the distribution of sample numbers was deter-
mined as the first step. The second step involved measur-
ing the information gain between features by employing 
LDA and transform entropy. In the third step, the CP 
algorithm was utilized to calculate the module set with 
the help of an initial adjacency threshold. Finally, the 
PSO algorithm [17] and SVM [18] were implemented to 
optimize the adjacency threshold and acquire the com-
bination of optimal features in module sets. The param-
eter setting consisted of two parts: the first part involved 
setting α = β = 1/2 in the object setting, while the second 
part consisted of setting a = 0.8, and c1 = c2 = 1.49445 in 
the PSO setting.

Statistical analysis
Pearson’s correlation test and positive false discovery 
rate estimation were employed to validate the correlation 
between Integrated radiomic-clinical data and TMB sta-
tus. Additionally, the two-sided t-test and the one-sided 
t-test were employed to validate the distinctions among 
different models, confirming their preference and signifi-
cance. Moreover, AUC, sensitivity, and specificity were 
utilized as evaluation metrics for the classification model. 
The code implementation platform utilized in this study 

was Matlab 2020a, and the corresponding specific code 
files are provided in the supplementary materials.

Results
Overview of the proposed NEM‑TIE for identifying 
Endometrial Cancer TMB status
The proposed NEM-TIE framework is illustrated 
in Fig.  2. It aims to identify the TMB status in EC 
patients by extracting superior modules and features. 
To achieve this goal, NEM-TIE integrates clinical and 
CERR data as inputs (Fig.  2A). The CERR data are 
subjected to eight basic filters and two edge filters to 
extract texture and edge information about tumor 
VOI and peritumoral-rim VOI. The network evolu-
tion model is constructed based on transfer informa-
tion entropy using the minimum adjacency threshold 
on the nodes of radiomic-clinical data. The transfer 
entropy matrix corresponds to the network evolution 
model, and the CP and LDA methods are employed 
to select modules that perform well in formula 3. In 
addition, PSO and SVM are used to filter out excellent 
features (Fig. 2B). Finally, for the selected features and 
modules, feature analysis and statistical analysis, such 
as AUC test and Pearson correlation test, are carried 
out (Fig. 2C).

Fig. 2 The framework of the proposed NEM-TIE in this study. A. For data preprocessing part, the CERR data were extracted by Basic Features 
and Edges Features form CT images. B. For NEM-TIE model part, there are three sub-steps. 1) The transfer entropy matrix was calculated 
by integrating clinical data and CERR data. 2) NEM was obtained based on transfer entropy matrix. 3) The excellent modules in NEM-TIE were 
selected by using CP and LDA and good features in excellent modules were filtered by using PSO and SVM. C. For feature selection part, feature 
analysis and statistical analysis were performed on the selected features and modules
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NEM‑TIE method accurately identifies TMB‑H tumors 
by integrating radiomic‑clinical data
The performance of the NEM-TIE method to dis-
tinguish TMB status from TMB-H and TMB-L EC 
patients was summarized in Table 2. Compared with a 
previous study [8], we found our model is competitive 
which has achieved the AUC of 0.98 (95% confidence 
interval: 0.95–1.00) for the test dataset and 0.89 (95% 
CI: 0.46–1.00) for the validation dataset (Fig. 3).

NEM‑TIE method exhibits better performance 
in comparison with existing methods
The mRMR method and the Laplacian Score method 
are widely used in the feature selection. The perfor-
mance of the mRMR-SVM method and Laplacian-SVM 
method to distinguish TMB status with EC patients are 
shown in Tables  3 and 4. Upon comparing the results 
presented in Table 2 with those in Tables 3 and 4, it is 
evident that the NEM-TIE method consistently exhibits 

Table 2 High TMB vs Low TMB results (with 95% CI) with NEM-TIE method

AUC Sensitivity Specificity

Train 0.9807 (0.9509–1.0000) 0.9762 (0.9477–1.0000) 0.9853 (0.9628–1.0000)

Test 0.9821 (0.8890–1.0000) 1.0000 (1.0000–1.0000) 0.9643 (0.9000–1.0000)

Validation 0.8929 (0.4602–1.0000) 1.0000 (1.0000–1.0000) 0.7857 (0.5781–0.9934)

Fig. 3 Comparison of NEM-TIE and the other reference in the same dataset

Table 3 High TMB vs Low TMB results (with 95% CI) with mRMR-SVM method

AUC Sensitivity Specificity

Train 0.8351 (0.7520–0.9182) 0.7143 (0.6299–0.7987) 0.9559 (0.9175–0.9943)

Test 0.9461 (0.7888–1.0000) 1.0000 (1.0000–1.0000) 0.8929 (0.7857–1.0000)

Validation 0.7857 (0.2285–1.0000) 1.0000 (1.0000–1.0000) 0.5714 (0.3210–0.8219)

Table 4 High TMB vs Low TMB results (with 95% CI) with Laplacian-SVM method

AUC Sensitivity Specificity

Train 0.9020 (0.8361–0.9678) 0.8333 (0.7637–0.9030) 0.9706 (0.9390–1.0000)

Test 0.8241 (0.5595–1.0000) 0.7500 (0.6000–0.9000) 0.8929 (0.7857–1.0000)

Validation 0.8571 (0.3722–1.0000) 1.0000 (1.0000–1.0000) 0.7143 (0.4857–0.9429)
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superior performance, in terms of AUC, across the 
three groups for distinguishing the TMB status of EC 
patients. Both the histogram curve (Fig.  4) and the 
ROC curve (Fig.  5) consistently demonstrate that the 
NEM-TIE method exhibits superior discriminative 
power when compared to the mRMR-SVM and Lapla-
cian-SVM methods. These results showed that NEM-
TIE method consistently performs better than these 
two methods in identifying TMB status in EC patients.

In order to ensure robustness and reliability of the 
results, we randomly sampled the data 10 times and 
using a ratio of 7:2:1 for the training set, test set, and 
validation set. By conducting a Two-Sided t-test, we 
have quantitatively evaluated the difference between 
the NEM-TIE method and other methods based on the 
AUC of test set. The significant differences with 95% CI 
observed between the NEM-TIE method and both the 
Laplacian-SVM method (p = 0.0018) and the mRMR-
SVM method (p = 0.0005), indicate the superior predic-
tive performance of the NEM-TIE method in predicting 
the TMB status of endometrial cancer. Additionally, 
the use of a One-Sided t-test to compare the NEM-TIE 
method with the method described in reference [8] 

provides further evidence of the NEM-TIE method’s 
superior performance on the test set with a 95% CI 
(p = 0.0053). These statistical analyses strengthen the 
findings and demonstrate the effectiveness of the NEM-
TIE method in predicting the TMB status in endome-
trial cancer when compared to other methods.

NEM‑TIE revealed important features and modules 
discriminating high and low TMB
The NEM-TIE method identified 13 features that are 
crucial for classification. All the extracted clinical fea-
tures passed the Pearson correlation test and had a posi-
tive false discovery rate for the multiple hypothesis test 
(p <  = 0.001), as shown in Table 5. These 13 selected fea-
tures and 22 correlation modules were visualized in a 
network correlation map presented in Fig.  6. The three 
colors in the figure represent the radiomic features of the 
Tumor VOI, the radiomic features of the Peritumoral-rim 
VOI, and the clinical data. The middle 13 critical features 
are feature nodes with relatively high degrees, which 
cover almost all 33 features associated with 22 modules. 
By combining the information in Table 2 and Fig. 3, the 
algorithm in this study eventually extracts 13 features 

Fig. 4 Comparison of NEM-TIE against other two methods

Fig. 5 ROC curves of NEM-TIE in predicting TMB status against other two methods
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that can effectively distinguish the high TMB and low 
TMB status of EC patients. These features provide novel 
and effective radiomic-clinical biomarkers for auxiliary 
diagnosis.

The feature set identified encompassed six tumor VOI 
features, four peritumoral-rim VOI features, and three 
clinical features. Among the tumor VOI features, the 
Dependence Count Energy (DCEnergy, Image Biomarker 
Standardization Initiative, IBSI [19] 3.11.17) feature was 

derived from the Neighborhood Gray Level Dependence 
Matrix (NGLDM), which measures textural variations. 
The Entropy (IBSI 3.6.12) feature was obtained from Inten-
sity Histogram Features, which quantifies Shannon entropy 
within the image. The Long Run Emphasis (LRE, IBSI 
3.7.2) feature was derived from the Gray Level Run Length 
Matrix (GLRLM) and evaluates the distribution of discre-
tized grey levels. Additionally, the StDevGabor6, KurtGa-
bor3, and KurtGabor8 features were derived from Gabor 
wavelet filters and can be used to measure image edges.

Regarding the Peritumoral-rim VOI features, the four 
features, namely Sobel, KurtGabor4, KurtGabor8, and 
StDevGabor2, were derived from Gabor and Sobel filters 
and can also be utilized to measure image edges. As for 
the clinical features, Poorly-differentiated refers to the 
FIGO Grade 3 stage in EC patients [20], while Endome-
trioid type and Carcinosarcoma represent distinct tumor 
histology types. Interestingly, differences between TMB-L 
and TMB-H groups were observed in both the CERR and 
clinical features. Probability distribution curves were used 
to analyze the CERR feature DCEnergy and the clinical 
feature Poorly-differentiated in Figs. 7 and 8, respectively. 
The results revealed that the TMB-L group demonstrated 
superior performance in both DCEnergy and Poorly-dif-
ferentiated features.

The NEM-TIE algorithm extracted 22 modules, 
and their effects on TMB status in EC patients were 

Table 5 NEM-TIE selected features

Selected Features Adjusted p‑value Degree

Endometrioid type  < 0.001 3
 DCEnergy 0.035 8

 Entropy 0.120 2

 StDevGabor6 0.008 2

 KurtGabor8 0.110 2

 diff_SkewSobel 0.096 2

Poorly‑differentiated  < 0.001 8
 diff_KurtGabor4 0.100 10

 KurtGabor8_1 0.063 2

 LRE 0.112 2

Carcinosarcoma  < 0.001 7
 diff_StDevGabor2 0.002 2

 KurtGabor3 0.098 2

LRE

KurtGabor8

Entropy

diff_KurtGabor4

Endometrioid type

Mean

KurtGabor8_1

diff_SkewGabor7

diff_StDevGabor2

Carcinosarcoma

diff_StDevGabor1

diff_SkewSobel diff_Busyness

diff_Coarseness

diff_HGLZE

diff_SZE

diff_SRHGLE

diff_HGLRE

Serous type

diff_StDev

StDevGabor6

KurtGabor3

Extra-uterine

diff_GLV3DCEnergy

DCV

LGCE

Coarseness

LZLGLE

Poorly-differentiated

SRLGLELGLRE

Clear-cell type

Peritumoral-rim VOI

Clinical Data

Tumor VOI

Fig. 6 NEM-TIE selected modules network
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analyzed separately. The features of each module were 
classified using SVM, and the results are presented in 
Table  6. By evaluating the average AUC performance 
of each module, three significant modules, namely 
modules 7, 9, and 10, were identified. The average 
AUC values for these three modules were all above 
0.8, suggesting that they hold substantial value in 

distinguishing TMB status in EC patients. When we 
constructed a network based on these three modules, 
we discovered that the DCEnergy texture feature of 
the tumor VOI was at the core of the selected mod-
ules. This observation provides further evidence that 
DCEnergy is of vital importance for identifying TMB 
status in EC patients (Fig. 9).

Fig. 7 The distribution of CERR feature between high and low TMB

Fig. 8 The distribution of Clinical feature between high and low TMB
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Discussion
TMB serves as a significant biomarker and finds exten-
sive application in immunotargeted therapy, particu-
larly in the context of endometrial cancer [6]. In recent 
years, biomarker evaluation methods have been widely 
employed to address quantitative aspects in the field of 

bioinformatics. For instance, Nguyen Quoc Khanh Le 
et  al. [21] proposed an XGBoosting-based model for 
recognizing Kruppel-like factors proteins in 2021, while 
Luu Ho Thanh Lam et  al. [22] proposed the SMOTE-
XGBoosting model for classifying low-grade glioma sub-
types in 2022. In our study, we adopted a module-based 

Table 6 Module-based feature analysis

AUC 1, AUC 2, and AUC 3 respectively represent the results of the training set, test set, and validation set. AUC 4 is the average value of AUC 1, AUC 2 and AUC 3

Module Features AUC 1 AUC 2 AUC 3 AUC 4

1 Mean DCEnergy 0.7518 0.6071 0.9286 0.7625

diff_GLV3 diff_KurtGabor4

2 diff_HGLZE diff_StDevGabor1 0.8512 0.8036 0.7143 0.7897

Carcinosarcoma Serous type

3 Entropy Coarseness KurtGabor8 0.5896 0.7143 1.0000 0.7680

4 LRE diff_Busyness Clear-cell type 0.6894 0.7143 0.9286 0.7774

5 LGLRE DCEnergy diff_KurtGabor4 0.7370 0.7321 0.9286 0.7993

6 SRLGLE Coarseness Poorly-differentiated 0.7349 0.5000 0.7500 0.6616

7 LZLGLE DCEnergy diff_KurtGabor4 0.7206 0.7857 0.9643 0.8235
8 LGCE DCEnergy diff_KurtGabor4 0.7370 0.7321 0.9286 0.7993

9 DCV DCEnergy diff_KurtGabor4 0.7206 0.7857 0.9643 0.8235
10 DCEnergy KurtGabor8_1 Extra‑uterine 0.6894 0.7857 0.9643 0.8131
11 KurtGabor3 diff_Coarseness Poorly-differentiated 0.6618 0.5357 0.8571 0.6849

12 StDevGabor6 diff_SkewGabor7 Clear-cell type 0.6043 0.4643 0.5000 0.5229

13 diff_StDev Carcinosarcoma Serous type 0.7899 0.6786 0.8214 0.7633

14 diff_HGLRE Carcinosarcoma Serous type 0.8218 0.8036 0.7143 0.7799

15 diff_SRHGLE Carcinosarcoma Serous type 0.8218 0.8036 0.6786 0.7680

16 diff_SZE Clear-cell type Poorly-differentiated 0.6425 0.5179 0.7857 0.6487

17 diff_HGLZE diff_KurtGabor4 Serous type 0.5970 0.5714 1.0000 0.7228

18 diff_Busyness Clear-cell type Poorly-differentiated 0.6765 0.5000 0.8214 0.6660

19 diff_SkewSobel Clear-cell type Poorly-differentiated 0.6544 0.5179 0.8214 0.6646

20 diff_StDevGabor2 diff_SkewGabor7 Clear-cell type 0.6877 0.3929 0.3929 0.4911

21 diff_KurtGabor4 Endometrioid type Serous type 0.7514 0.7321 0.7857 0.7564

22 Carcinosarcoma Endometrioid type Serous type 0.8043 0.7321 0.6786 0.7383

Fig. 9 The result of modules analysis by using NEM-TIE method



Page 11 of 13Tan et al. BMC Cancer          (2023) 23:712  

evaluation method to assess the TMB status of patients 
with EC. Our study integrated clinical features and radi-
omic features using the NEM-TIE method to differentiate 
TMB status in EC patients. The AUROC of the NEM-
TIE method in the test set was 0.98 (95%CI 0.95–1.00), 
which outperformed the Laplacian method and mRMR 
method in terms of performance. We have also evaluated 
the performance of one deep learning method called the 
deep stacked autoencoder network (SAE) [23], for pre-
dicting the TMB status using radiomic-clinical data of 
EC patients. By conducting 10 randomly sampled data 
experiments and using the two-sided t-test, we com-
pared the performance of the NEM-TIE (0.98, 95%CI: 
0.95–1.00) and the SAE (0.73, 95%CI: 0.46–1.00) in terms 
of the AUC performance on the test set. The results of 
our experiments showed that the NEM-TIE method out-
performed the SAE method significantly in terms of pre-
dictive effect with a 95% CI (p < 0.0001). This indicates 
that the NEM-TIE method is more effective than the SAE 
method for predicting the TMB status in endometrial 
cancer using radiomic-clinical data. The poor perfor-
mance of deep learning methods like SAE is likely due to 
the lack of an extensive number of labeled samples and 
the absence of model interpretability [24].

The Dependence count energy (DCEnergy) feature is 
a measure of the overall texture coarseness of an image. 
It is strongly associated with the second moment values 
of pixels that continuously change. Our findings reveal 
that, in comparison to TMB-H status, EC patients with 
TMB-L status exhibit higher average DCEnergy fea-
ture values. This phenomenon suggests that overall high 
DCEnergy in CT images, corresponding to the Tumor 
VOI of EC patients, is inversely related to TMB-H status.

The poorly-differentiated feature is a subtype of EC that 
is classified as grade 3 by FIGO. Tumors in EC patients 
with advanced FIGO are known to be aggressive and 
resistant to drugs [20]. Our findings reveal that, in com-
parison to TMB-H status, almost 80% of EC patients with 
TMB-L status are of the poorly-differentiated subtype. 
This phenomenon suggests that EC patients with TMB-L 
status are more likely to have aggressive and drug-resist-
ant tumors due to their poorly-differentiated subtype.

Coarseness, as an important image feature derived 
from mathematical fractals, captures the repetition of 
simple image rules and is closely associated with the 
homogeneity of the Gray-Level Co-occurrence Matrix 
(GLCM). High coarseness implies low GLCM homoge-
neity, indicating a more heterogeneous texture pattern in 
the image [25]. The relevance of GLCM homogeneity in 
cancer research has been demonstrated in several stud-
ies. For instance, Shen et al. (2017) [26] found that GLCM 
homogeneity was an independent predictor of pelvic 
lymph node metastasis in patients with cervical cancer. 

By combining GLCM homogeneity with standardized 
uptake value (SUV) values, they were able to assess the 
risk of pelvic lymph node metastasis. Similarly, Yu et al. 
(2017) [27] reported that GLCM homogeneity played a 
significant role in risk stratification for stage I non-small 
cell lung cancer. They observed a significant correlation 
between GLCM homogeneity and overall survival, even 
after adjusting for factors such as age, tumor volume, and 
histological type. These studies highlight the importance 
of GLCM homogeneity, including its association with 
coarseness, in understanding tumor characteristics and 
predicting clinical outcomes in various types of cancer. 
By analyzing texture features derived from the coarse-
ness, researchers can gain insights into the heterogeneity 
and homogeneity patterns within tumor images, enabling 
improved risk assessment and prognostic evaluation.

Our study demonstrated that the NEM-TIE method 
is effective in selecting the important modules and fea-
tures that are relevant to the classification tasks. These 
extracted features were able to accurately predict the 
TMB status of EC patients, providing a non-invasive 
method for auxiliary diagnosis.

The evaluation method based on transfer information 
entropy and network modules indeed sets our approach 
apart from others. By utilizing transfer information 
entropy, we are able to capture the information gain 
between features within a module, thereby enhancing the 
evaluation of features. This approach takes into account 
the interactions between associated features, which 
is known to be more effective for classification tasks in 
machine learning than considering individual features in 
isolation. The incorporation of network modules in our 
method allows for a more comprehensive analysis of the 
relationships and dependencies among features, leading 
to improved predictive performance. These distinctive 
features contribute to the superior performance of our 
method compared to similar approaches. By utilizing 
transfer information entropy and network modules, our 
method demonstrates its capability to effectively extract 
relevant information and capture complex feature inter-
actions, ultimately enhancing the prediction of TMB sta-
tus in endometrial cancer.

It is important to acknowledge the limitations of the 
proposed method in the study. One limitation is that 
the radiomic features were extracted from a relatively 
small number of endometrial cancer patients (150 par-
ticipants) and were based on labels and CERR radiom-
ics signatures from previous studies. The use of a larger 
and more diverse dataset could potentially lead to more 
robust and generalizable results. A better model could be 
also benefited from the increasing number of patients. 
Additionally, the unified threshold of 15.5 mut/Mb used 
to distinguish TMB status may not be applicable to all 
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subtypes of EC patients, and future studies could inves-
tigate subtype-specific thresholds. Finally, while some 
discussion is given in the study, the biological interpreta-
tion behind the prediction of TMB status in patients with 
endometrial cancer by radiomic-clinical data could be 
better evaluated by using other types of data.

Conclusion
To summarize, our proposed NEM-TIE method has 
shown promising results in the non-invasive predic-
tion of TMB status in EC patients by integrating clini-
cal and radiomic features. Moreover, this method can 
be applied to analyze the relationship between feature 
module mining and biological indicators, allowing for 
further insights into the underlying mechanisms of 
TMB status in EC patients.
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TMB  Tumor mutation burden
POLE  DNA polymerase epsilon
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VOI  Volumes-of-interest
NEM-TIE  Network evolution model-transfer information entropy
FIGO  International federation of gynecology and obstetrics
TCGA   The cancer genome atlas
MMR-D  Mismatch-repair deficient
CN-low  Copy-number low
CN-high  Copy-number high
PD-1  Programmed death-1
WES  Whole-exome sequencing
mRMR  Max-Relevance and min-Redundancy
SVM  Support vector machine
AUC   Area under the receiver operating characteristic curve
CERR  Computational environment for radiological research
LDA  Linear discriminant analysis
PSO  Particle swarm optimization
CI  Confidence interval
TMB-H  High Tumor Mutation Burden
TMB-L  Low Tumor Mutation Burden
ISBI  Image Biomarker Standardisation Initiative
DCEnergy  Dependence count energy
NGLDM  Neighborhood gray level dependence matrix
LRE  Long run emphasis
GLRLM  Gray level run length matrix
GLCM  Co-occurrence Matrix
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