
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Ding et al. BMC Cancer          (2023) 23:991 
https://doi.org/10.1186/s12885-023-11096-7

BMC Cancer

†Zongren Ding, Yijun Wu, Guoxu Fang and Zhaowang Lin 
contributed equally to this work.

*Correspondence:
Yongyi Zeng
lamp197311@126.com

1Department of Hepatopancreatobiliary Surgery, Mengchao 
Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, 
Fuzhou 350025, China
2Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian 
Medical University, Fuzhou 350025, China
3Department of Radiotherapy, Mengchao Hepatobiliary Hospital of Fujian 
Medical University, Fuzhou 350025, China
4Fujian Provincial Cancer Hospital, Fuzhou 350025, China

Abstract
Objectives The purpose of this study was to develop and validate a radiomics nomogram for predicting thymidylate 
synthase (TYMS) status in hepatocellular carcinoma (HCC) by using Gd-DTPA contrast enhanced MRI.

Methods We retrospectively enrolled 147 consecutive patients with surgically confirmed HCC and randomly 
allocated to training and validation set (7:3). The TYMS status was immunohistochemical determined and classified 
into low TYMS (positive cells ≤ 25%) and high TYMS (positive cells > 25%) groups. Radiomics features were extracted 
from the arterial phases and portal venous phase of Gd-DTPA contrast enhanced MRI. Least absolute shrinkage and 
selection operator (LASSO) were applied for generating the Rad score. Clinical data and MRI findings were assessed to 
build a clinical model. Rad score combined with clinical features was used to construct radiomics nomogram.

Results A total of 2260 features were extracted and reduced to 7 features as the most important discriminators 
to build the Rad score. InAFP was identified as the only independent clinical factors for TYMS status. The radiomics 
nomogram showed good discrimination in training (AUC, 0.759; 95% CI 0.665–0.838) and validation set (AUC, 0.739; 
95% CI 0.585–0.860), and showed better discrimination capability (P < 0.05) compared with clinical model in training 
(AUC, 0.656; 95% CI 0.555–0.746) and validation set (AUC, 0.622; 95% CI 0.463–0.764).

Conclusions The radiomics nomogram shows favorable predictive efficacy for TYMS status in HCC, which might be 
helpful for the personalized treatment of HCC.

Keywords Radiomics, Thymidylate synthase, Hepatocellular carcinoma, Nomogram

Development and validation a radiomics 
nomogram for predicting thymidylate 
synthase status in hepatocellular carcinoma 
based on Gd-DTPA contrast enhanced MRI
Zongren Ding1†, Yijun Wu1†, Guoxu Fang1†, Zhaowang Lin2†, Kongying Lin1, Jun Fu1, Qizhen Huang3, Yanyan Tang2, 
Wuyi You2, Jingfeng Liu4 and Yongyi Zeng1*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-023-11096-7&domain=pdf&date_stamp=2023-10-17


Page 2 of 9Ding et al. BMC Cancer          (2023) 23:991 

Strengths and limitations of this study.
1. Fluorouracil is one of the most commonly used 

chemotherapy drugs for hepatocellular carcinoma.
2. Thymidylate synthase expression level were a key 

determinant for therapeutic responsiveness to 
fluorouracil.

3. Detecting of TYMS not only has guiding significance 
for the selection of chemotherapy drugs for HCC 
patients, but also has certain value for the judgment 
of prognosis.

4. The present study proved that the Gd-DTPA 
contrast-enhanced MR-based radiomics model has 
favorable predictive value for predicting TYMS 
status in HCC.

Introduction
Hepatocellular carcinoma (HCC) is the most common 
primary liver cancer and the second most common cause 
of cancer death worldwide [1]. Because of the occult 
symptoms of HCC, most patients were intermediate or 
advanced and unresectable when diagnosed. For unre-
sectable HCC, various systemic therapies are available, 
such as molecular targeted agents, immunotherapy or 
chemotherapy [1]. However, the application of chemo-
therapy in HCC is very limited because HCC has also 
been shown to be chemoresistant to the most common 
chemotherapies. Moreover, chemoresistance leads to 
the poor prognosis of HCC and is also a major cause of 
tumour recurrence and metastasis in HCC [2]. With the 
in-depth study of the mechanism of chemoresistance, 
many expression products of key drug resistance genes 
have been found, such as thymidylate synthase (TYMS), 
DNA topoisomerases-II (TopoII), P-gp and tubulin beta-
III (βIII-tubulin) [3–6].

TYMS is a key rate-limiting enzyme in folate metabo-
lism, catalysing the conversion of deoxyuridine mono-
phosphate (dUMP) to deoxythymidine monophosphate 
(dTMP) [7]. This conversion essentially influences DNA 
repair, methylation and synthesis through the production 
of nucleotides. Several preclinical studies have shown 
that TYMS expression levels are a key determinant for 
therapeutic responsiveness to fluorouracil, which is one 
of the most commonly used chemotherapy drugs for 
HCC [8–10]. Therefore, it was reported that TYMS gene 
expression may be an independent predictor of survival 
in HCC [11].

Typically, TYMS status is assessed by pathological 
methods. HCC is mostly diagnosed at advanced stages of 
disease, and pathological evidence is not currently avail-
able. Biopsies are an invasive and unpleasant procedure 
and are unnecessary for these patients. Hence, there is 
an urgent need to develop a noninvasive and accurate 
method to predict TYMS status in HCC for the guidance 
of chemotherapies and the prediction of prognosis.

Radiomics is an emerging field involving the extrac-
tion of high-throughput data from quantitative imaging 
features and the subsequent combination of this informa-
tion with clinical data in an attempt to provide prognostic 
and predictive information from imaging features alone. 
Many studies have demonstrated the ability of radiomics 
or radiogenomics to predict gene expression in HCC [12, 
13]. To the best of our knowledge, there is no literature 
describing a radiomics signature that could facilitate the 
noninvasive detection of TYMS status in HCC. There-
fore, this study aimed to develop and validate a radiomics 
nomogram for predicting TYMS status in HCC based on 
Gd-DTPA contrast-enhanced MRI.

Materials and methods
Patients
In this single-centre retrospective study, the medi-
cal records were viewed to collect consecutive patients 
from January 2019 to August 2020. The inclusion crite-
ria were as follows: (a) HCC diagnosis with pathological 
evidence, including biopsies and surgery, (b) complete 
clinical and pathologic data, and (d) patients who under-
went Gd-DTPA contrast-enhanced MRI less than 15 
days before achieving pathological evidence. The exclu-
sion criteria were (a) absence of high-quality Gd-DTPA 
contrast-enhanced MRI (no image artefact or an incom-
plete sequence that can affect the radiomics analysis) and 
(b) incomplete medical records such that required clini-
cal data were not available. We developed and validated 
the model using the TRIPOD (transparent reporting of a 
multivariable prediction model for individual prognosis 
or diagnosis) guidelines [14].

This study was approved by the Institutional Eth-
ics Committee of Mengchao Hepatobiliary Hospital of 
Fujian Medical University (2020_072_01), and written 
informed consent was obtained from all study partici-
pants. The studies were performed in accordance with 
the ethical standards as outlined in the 1964 Declaration 
of Helsinki and its later amendments or comparable ethi-
cal standards.

Patient and Public Involvement: The patients or the 
public WERE NOT involved in the design, conduct, 
reporting or dissemination plans of our research.

Clinical data and TYMS status assessment
A standardized data form was created to collect all rel-
evant clinical information. The form included 28 items 
that were categorized into the 4 following groups: (1) 
demographics and clinical characteristics of the patients 
(including age, gender, HbsAg, HBeAG, HBV-DNA, 
HCVAb and ascites); (2) laboratory variables including 
Child‒Pugh class, total bilirubin (TBIL), albumin (ALB), 
alanine aminotransferase (ALT), aspartate aminotrans-
ferase (AST), prothrombin time (PT), international 
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normalized ratio (INR), alpha-fetoprotein (AFP), carcino-
embryonic antigen (CEA), cancer antigen 125 (CA125), 
and carbohydrate antigen 19 − 9 (CA19-9); (3) liver and 
tumour characteristics, such as liver cirrhosis, tumour 
number and diameter (of the largest lesion in multinodu-
lar HCC), tumour margin, capsule and haemorrhage (tar-
geted HCC), arterial hyperenhancement status (including 
early enhancement and washout) and venous invasion on 
MR scan; and (4) TYMS status.

The histological HCC evaluation was performed by two 
pathologists with > 10 years of experience who initially 
fixed the specimens in 10% formalin and embedded them 
in paraffin. The resulting 3–4 mm paraffin sections were 
prepared for immunohistochemical analysis. Thymidylate 
synthase (TYMS) expression was detected using a com-
mercially available anti-human TYMS mouse monoclo-
nal antibody (TS106, Maixin Biotechnology). We divided 
TYMS expression in HCC into high-expression (tumour 
cell positive rate > 25%) and low-expression (tumour cell 
positive rate ≤ 25%) cohorts.

MR Image acquisition and image processing
The MRI examination was performed using a 3.0 T mag-
netic resonance scanner (Magnetom Verio, Siemens 
Healthcare, Erlangen, Germany), an 8-channel phased 
array body coil, and a high-pressure syringe. The con-
trast agent was Gd-DTPA (Gd - DTPA, BeiLu Pharma-
ceutical), the dosage was 0.2 ml/kg, the speed was 2.5 
ml/s, and the contrast was flushed with 20 ml of normal 
saline. The preparation before the scan: patients were 
instructed to fast (no food or water) for at least four 
hours before scan, psychological guidance and breathing 
training (calm breath holding at the end of the breath) 
were conducted. Contrast-enhanced axial T1-weighted 
images (CE - T1) were acquired using a three-dimen-
sional volumetric interpolated breath-hold examina-
tion (3D - VIBE) sequence (TR = 4.16 ms, TE = 2.01 ms, 
FOV = 380 × 308 mm, matrix = 320 × 320 × 75%, slice thick-
ness = 3 mm, spacing = 3 mm, FA = 16°, and NEX = 1) with 
multiphase contrast. Arterial phase, portal venous phase 
and delayed phase images were acquired after contrast 
administration at 20–30, 60–70, 120–1180  s for each 
patient, with breath holding in all phases.

The lesions were segmented manually using 3D-Slicer 
(version 4.10.2), and the arterial phases and portal 
venous phase of T1 images were used to indicate the 
volume of interest (VOIs) by drawing the outline of 
tumour tissues layer-after-layer and avoiding bile duct 
and vessels by radiologist 1 and radiologist 2. If there 
were multiple lesions, only the largest lesions were seg-
mented. PyRadiomics (version 2.1) implementation in 
3D-Slicer was utilized for further preprocessing steps and 
radiomics feature extraction. We adopted resampling as 
a preprocessing method, which was performed to obtain 

a voxel size of 1 × 1 × 1 mm3 via trilinear interpolation 
before feature calculation [15]. A fixed bin width of 25 
was used for image discretization. Image reconstruc-
tion was performed by applying wavelet decomposition 
filtering and Laplacian of Gaussian filtering with sigma 
values of 0.5, 1.0, and 1.5. Seven common feature groups 
were extracted from the filtered and original images in 
three dimensions, including first order, grey-level depen-
dence matrix (GLDM), grey-level cooccurrence matrix 
(GLCM), grey-level run length matrix (GLRLM), grey-
level size zone matrix (GLSZM), neighbouring grey tone 
difference matrix (NGTDM) and shape.

Construction of the clinical model and radiomics model
The intraclass correlation coefficients (ICCs) are one of 
the reliability coefficients used to measure and evaluate 
inter-observer reliability and test-retest reliability. We use 
the ICCs to evaluate intra-observer and inter-observer 
reliability and reproducibility of feature extraction as pre-
vious radiomics articles describe [15, 16]. Thirty samples 
were randomly chosen and delineated by the two radiolo-
gists. Radiologist 1 delineated the VOIs on arterial phases 
and portal venous phase of T1 images twice within 
one week under the same standard to assess the intra-
observer reproducibility, and radiologist 2 independently 
delineated the VOIs once to assess the inter-observer 
agreement by comparing the results with the radiomics 
features extracted from the VOIs delineated by the radi-
ologist 1 [16]. Radiomics features were selected when the 
intraclass correlation coefficient (ICC) was > 0.8. Radiol-
ogist 1 finished the remaining samples.

Before radiomics feature selection, z score normaliza-
tion was employed to eliminate different feature mag-
nitudes by scaling values to a mean of 0 and a standard 
deviation of 1 [16]. Then, the samples were randomly 
grouped into training and validation sets at a ratio of 7:3. 
The training set was used for radiomics feature selection 
and construction of the models, and the validation set 
was used to evaluate the diagnostic performance of the 
models. Least absolute shrinkage and selection opera-
tor regression (LASSO) was employed for the selection 
of features, with penalty parameter tuning conducted by 
10-fold cross-validation to compile a radiomics signa-
ture [17]. Then, a correlation analysis was carried out to 
exclude the features with high correlation. Multivariate 
logistic regression was applied to generate the Rad score.

Univariate regression analysis was applied to com-
pare the differences in the clinical data and MRI findings 
between the two groups (low and high TYMS groups), 
and multiple logistic regression analysis was used to build 
the clinical model using the significant variables from the 
univariate analysis as inputs. Odds ratios (ORs) as esti-
mates of the relative risk with 95% confidence intervals 
(CIs) were obtained for each risk factor. The Rad-score 
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combined with clinical features in the clinical model was 
used to construct a radiomics nomogram.

Statistics
Statistical analysis was performed using R (version 3.6.3). 
Categorical variables were compared using the χ2 test or 
Fisher’s exact test. Continuous variables were expressed 
as the median [Q1, Q3] and compared using Student’s 
t test or the Mann‒Whitney U test. Serum AFP levels 
were normalized with a natural logarithm transformation 
to reduce the effect of small differences. Variables that 
reached statistical significance in the univariate analy-
sis were considered for the multivariate model based 
on multivariate binary logistic regression. LASSO was 
implemented using ‘glmnt’. The DeLong test was used to 
measure the differences in ROC curves [16]. Model fit 
was assessed by calibration plots via 1000 bootstrap resa-
mples. The clinical utility of the models was evaluated by 
decision curve analysis. P < 0.05 was considered statisti-
cally significant.

Results
Patient characteristics
A total of 147 patients with HCC (127 men and 20 
women; mean age, 54.9 ± 13.3 years) were enrolled in this 
study. The clinical data and MRI findings of HCCs in the 
training and validation sets are shown in Table 1. TYMS 
status was identified as high in 45 (43.7%) patients and 23 
(52.3%) patients in the two sets, respectively (P = 0.438). 
All clinical data and MRI findings showed no significant 
difference between the two sets (P > 0.05).

Radiomics features selection
We extracted 2,260 radiomics features in each patient 
from the arterial phase and portal venous phase of 
ceMRI. For intra- and interobserver agreement, 1529 
radiomics features were selected with an intraclass cor-
relation coefficient (ICC) > 0.8, and seven hundred thirty-
one features were excluded. Then, 1529 features were 
subjected to LASSO regression, and seven features (three 
and four features, respectively, from arterial phase and 
portal venous) were selected with the best tuned regu-
larization parameter Log (λ) of -2.62 under the minimum 
criterion found by 10-fold cross validation. A Pearson 
correlation analysis of the seven features showed that all 
features were weakly correlated, with a Pearson correla-
tion coefficient less than 0.80 (Fig. 1). The Rad score was 
built according to the weight coefficient of the selected 
seven features in the LASSO regression. The Rad score 
showed statistically significant differences between low 
and high TYMS, and there was a significant difference 
in the median Rad score of low TYMS: -0.451 [− 0.621, 
− 0.259]; median Rad score of high TYMS: −0.157[− 0.426, 
0.058] in the training set and median Rad score of low 

Table 1 Characteristics of patients in the training and validation 
sets
Clinical factors Training set 

(n = 103)
Validation set 
(n = 44)

P

Age, years 59.0 [47.0, 65.0] 55.0 [43.8, 65.0] 0.372
Gender, Female/ Male 14 (13.6%)/89 

(86.4%)
6 (13.6%)/38 
(86.4%)

1

HbsAg, positive/ 
negative

96 (93.2%)/7 
(6.8%)

39 (88.6%)/5 
(11.4%)

0.55

HBeAG, positive/ 
negative

17 (16.5%)/86 
(83.5%)

12 (27.3%)/32 
(72.7%)

0.202

HBV-DNA, copies/
ml ≤ 10^4/>10^4

78 (75.7%)/25 
(24.3%)

30 (68.2%)/14 
(31.8%)

0.456

HCVAb, positive/ 
negative

4 (3.9%)/99 
(96.1%)

0 (0%)/44 (100%) 0.44

Child-Pugh class, A/B 86 (83.5%)/17 
(16.5%)

39 (88.6%)/5 
(11.4%)

0.584

TBIL, mmol/l 14.5 [11.8, 19.8] 15.2 [12.7, 18.1] 0.391
ALB, g/l 38.0 [34.0, 41.0] 38.0 [36.0, 39.3] 0.242
ALT, m/l 43.0 [25.5, 68.0] 28.5 [22.5, 49.8] 0.231
AST, m/l 41.0 [28.0, 75.0] 36.5 [24.8, 50.3] 0.851
PT, s 13.1 [12.6, 13.6] 13.4 [12.9, 13.9] 0.372
INR 0.990 [0.945, 

1.05]
1.02 [0.970, 1.06] 0.354

InAFP 4.49 [2.28, 6.15] 4.49 [1.60, 7.60] 0.535
CEA, ng/ml 2.60 [1.85, 4.05] 2.95 [1.60, 3.80] 0.327
CA125, U/ml 12.0 [8.86, 21.0] 12.0 [7.68, 19.8] 0.175
CA19-9, U/ml 16.4 [8.45, 28.9] 15.7 [8.86, 27.3] 0.776
Liver cirrhosis, Absent/ 
Present

55 (53.4%)/48 
(46.6%)

23 (52.3%)/21 
(47.7%)

1

Ascites, Absent/ Present 87 (84.5%)/16 
(15.5%)

35 (79.5%)/9 
(20.5%)

0.626

Tumour number, Soli-
tary/ Multiple

81 (78.6%)/22 
(21.4%)

31 (70.5%)/13 
(29.5%)

0.392

Tumour diameter, cm 4.40 [2.40, 7.40] 5.25 [2.68, 7.10] 0.827
Tumour margin, Non 
smooth/ Smooth

69 (67.0%)/34 
(33.0%)

32 (72.7%)/12 
(27.3%)

0.622

Tumour capsule, Ab-
sent/ Present

56 (54.4%)/47 
(45.6%)

26 (59.1%)/18 
(40.9%)

0.729

Hemorrhage, Absent/ 
Present

93 (90.3%)/10 
(9.7%)

39 (88.6%)/5 
(11.4%)

0.995

Venous invasion, Ab-
sent/ Present

83 (80.6%)/20 
(19.4%)

35 (79.5%)/9 
(20.5%)

1

Early enhancement, 
Absent/ Present

22 (21.4%)/81 
(78.6%)

7 (15.9%)/37 
(84.1%)

0.593

Washout, Absent/ 
Present

30 (29.1%)/73 
(70.9%)

8 (18.2%)/36 
(81.8%)

0.237

TYMS, Low/ High 58 (56.3%)/45 
(43.7%)

21 (47.7%)/23 
(52.3%)

0.438

Note: HbsAg, Hepatitis B surface antigen; HBeAG, hepatitis B e antigen; 
HCVAb, Hepatitis C Virus Antibody; TBIL, total bilirubin; ALB, albumin; ALT, 
alanine transarninase; AST, Aspartate transaminase; PT, prothrombin time; INR, 
international normalized ratio; AFP, alpha-fetoprotein; CEA, carcinoembryonic 
antigen; CA125, cancer antigen 125; CA19-9, carbohydrate antigen 19 − 9; TYMS, 
thymidylate synthase
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TYMS: -0.535 [− 0.690, -0.251]; median Rad score of high 
TYMS: −0.125 [− 0.355, 0.012] in the validation set.

Construction of the clinical model and radiomics model
In the training set, the univariate analysis showed that PT, 
INR, and InAFP reached statistical significance (P < 0.05) 
when comparing the high and low TYMS groups 
(Table 2), while the multivariate analysis identified InAFP 
(OR 1.291; 95% CI 1.077–1.567; p = 0.007) as the only 
independent predictor of TYMS, and InAFP was used to 
build the clinical model. Moreover, PT (OR = 0.979, 95% 
CI 0.003–10.141, P = 0.985) and INR (OR = 0.026, 95% CI 
6.659e-13–2.069e + 08, P = 0.756) were excluded. The Rad 
score combined with InAFP was used to construct the 
radiomics nomograms.

Diagnostic performance of two models
The results showed that the radiomics nomogram con-
structed by the Rad score and InAFP generated the 
highest performance for predicting TYMS status in the 
training and validation sets. In the training set, the AUCs 
of the clinical model and radiomics nomogram were 
0.656 (95% CI 0.555–0.746) and 0.759 (95% CI 0.665–
0.838), respectively. In the validation set, the AUCs of the 
clinical model and radiomics nomogram were 0.622 (95% 
CI 0.463–0.764) and 0.739 (95% CI 0.585–0.860), respec-
tively (Figs.  2 and 3). Therefore, the predictive perfor-
mance of the radiomics nomogram was superior to that 
of the clinical model in both sets (P < 0.05).

The calibration curves showed good consistency 
between the nomogram estimated by the radiomics 

model and the actual frequencies of TYMS status in 
both the training and validation sets. DCA showed that 
the radiomics nomogram had a higher overall net ben-
efit for predicting TYMS status than the clinical model 
across the majority of the range of reasonable threshold 
probabilities (Fig.  4). More details about the predictive 
performance of the two models are described in detail in 
Table 3.

Discussion
The present study showed that the Gd-DTPA contrast-
enhanced MR-based radiomics model, which incorpo-
rates the Rad score and InAFP, has a favourable predictive 
value for predicting TYMS status in HCC with AUCs 
of 0.759 and 0.739 in the training and validation sets, 
respectively. In comparison to the clinical model, the 
radiomics model showed overall superiority in the evalu-
ation of AUC in both the training and validation sets. The 
calibration curves showed good consistency between the 
nomogram estimated by the radiomics model and the 
actual frequencies of the TYMS status in both the train-
ing and validation sets. Decision curve analysis showed 
that the radiomics nomogram outperformed the clini-
cal model in terms of clinical usefulness. To the best of 
our knowledge, this is the first report that uses radiomics 
to establish a nomogram for predicting TYMS status in 
HCC.

Numerous studies have shown that models combin-
ing textural or radiomics features with clinical factors 
are more comprehensive and reliable than clinical mod-
els [17–19]. The reason why radiomics models have 

Fig. 1 (A) LASSO regression analysis of 1529 features. (B) The AUC curve was plotted by tuning parameter (λ) selection performed by 10-fold cross-
validation. Vertical lines on the left and right denote the minimum criterion and 1-standard error criterion (1 - SE), respectively. The minimum criterion 
was applied and 7 features was selected. (C) The correlation analysis heatmap of 7 features screened by LASSO.
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better predictive performance is not clear. However, most 
studies have supposed that this is directly related to the 
hypothesis of radiomics [17–19]. The underlying hypoth-
esis of radiomics is that genomic and proteomic patterns 
can be expressed in terms of macroscopic image-based 

features. We can infer phenotypes or gene–protein signa-
tures, possibly containing prognostic information, from 
the quantitative analysis of medical image data. Our con-
clusion confirms this hypothesis. On the basis of the clin-
ical model, the dimension of radiomics was added, which 
greatly improved the performance of predicting TYMS.

Our results show that InAFP was the only independent 
predictor of TYMS status, and InAFP was significantly 
increased in the high TYMS group. The results indicated 
that AFP has a strong correlation with drug resistance 
to fluorouracil, and AFP may be an important marker 
for patient selection of treatment regimens containing 
fluorouracil. AFP is an important biomarker for the diag-
nosis and prognosis of HCC. AFP also plays an impor-
tant role in inhibiting the immune response in vivo, and 
these effects lead to MDR in HCC cells [20]. Moreover, 
AFP can be used as a biomarker for HCC drug therapy. A 
phase II clinical trial was conducted to evaluate the effi-
cacy of intravenous fluorouracil in the treatment of HCC; 
i.v. fluorouracil was well tolerated and induced a durable 
partial response in 31% (5 of 16) of patients with HCC 
who had low levels of serum AFP; and the treatment 
regimen was ineffective in patients with HCC who had 
high levels of serum AFP [21]. Yan Wang et al. [22] evalu-
ated the prognostic significance of AFP status in HCC 
patients after transarterial chemoembolization (TACE) 
and receiving the chemotherapeutic agents of TACE, 
including fluorouracil and cisplatin, and reported that 
patients with AFP-negative status have a better treatment 
response and prognosis after TACE than AFP-positive 
HCC patients. Takahiro Yamasaki et al. reported the 
prognostic factors in patients with advanced HCC receiv-
ing hepatic arterial infusion chemotherapy (HAIC) using 
low-dose cisplatin (CDDP) and 5-fluorouracil (5 - FU) 
with/without leucovorin (or isovorin), indicated that AFP 
level was a significant prognostic factor, and suggested 
that patients with a lower AFP level were suitable candi-
dates for HAIC [23].

Our study has certain guiding significance for clinicians 
to make treatment decisions. HCC is mostly diagnosed 
at advanced stages of the disease, and chemotherapeu-
tic drugs are one of the major therapeutic options for the 
treatment of patients with advanced HCC. Fluorouracil 
has been verified to prolong the survival of these patients 
[24]. Meanwhile, several preclinical studies have shown 
that TYMS expression levels are a key determinant 
for therapeutic responsiveness to fluorouracil [8–10]. 
Moreover, it is difficult to determine the status of TYMS 
because pathological biopsy is usually not recommended 
for advanced HCC. Therefore, our noninvasive and sim-
ple model can be a potential alternative tool.

Our study had several limitations. First, all included 
patients had surgically resected HCC, and the predic-
tive performance of the model in unresectable HCC still 

Table 2 Univariate analysis for clinical data and MRI findings 
associated with the TYMS status in the training set
Clinical factors Low TYMS 

(n = 58)
High TYMS 
(n = 45)

P 
value

Age, years 61.0 [51.3, 66.0] 54.0 [41.0, 64.0] 0.119
Gender, Female/ Male 10 (17.2%)/48 

(82.8%)
4 (8.9%)/4 (8.9%) 0.349

HbsAg, positive/ 
negative

53 (91.4%)/5 
(8.6%)

43 (95.6%)/2 
(4.4%)

0.659

HBeAG, positive/ 
negative

6 (10.3%)/52 
(89.7%)

11 (24.4%)/34 
(75.6%)

0.1

HBV.DNA2, copies/
ml ≤ 10^4/>10^4

45 (77.6%)/13 
(22.4%)

33 (73.3%)/12 
(26.7%)

0.789

HCVAb, positive/ 
negative

4 (6.9%)/54 
(93.1%)

0 (0%)/45 (100%) 0.2

Child-Pugh class, A/B 46 (79.3%)/12 
(20.7%)

40 (88.9%)/5 
(11.1%)

0.302

TBIL, mmol/l 14.4 [11.8, 20.0] 14.6 [11.8, 19.7] 0.537
ALB, g/l 37.0 [33.0, 40.0] 38.0 [36.0, 41.0] 0.095
ALT, m/l 44.0 [26.0, 72.8] 35.0 [25.0, 62.0] 0.767
AST, m/l 41.5 [29.3, 66.0] 40.0 [27.0, 80.0] 0.489
PT, s 13.2 [12.8, 14.0] 13.0 [12.5, 13.4] 0.038
INR 1.00 [0.950, 1.08] 0.990 [0.940, 

1.01]
0.041

InAFP 4.04 [1.90, 5.32] 4.62 [4.22, 7.23] 0.004
CEA, ng/ml 2.60 [1.85, 4.08] 2.60 [1.90, 3.90] 0.535
CA125 U/ml 12.0 [8.85, 17.6] 12.0 [9.30, 23.1] 0.335
CA19-9, U/ml 16.9 [9.15, 31.1] 16.4 [6.90, 26.6] 0.517
Liver cirrhosis, Absent/ 
Present

28 (48.3%)/30 
(51.7%)

27 (60.0%)/18 
(40.0%)

0.325

Ascites, Absent/ Present 49 (84.5%)/9 
(15.5%)

38 (84.4%)/7 
(15.6%)

1

Tumour number, Soli-
tary/ Multiple

43 (74.1%)/15 
(25.9%)

38 (84.4%)/7 
(15.6%)

0.306

Tumour diameter, cm 4.20 [2.40, 6.50] 4.90 [2.80, 8.10] 0.102
Tumour margin, Non 
smooth/ Smooth

37 (63.8%)/21 
(36.2%)

32 (71.1%)/13 
(28.9%)

0.567

Tumour capsule, Ab-
sent/ Present

29 (50.0%)/29 
(50.0%)

27 (60.0%)/18 
(40.0%)

0.417

Hemorrhage, Absent/ 
Present

55 (94.8%)/3 
(5.2%)

38 (84.4%)/7 
(15.6%)

0.153

Venous invasion, Ab-
sent/ Present

47 (81.0%)/11 
(19.0%)

36 (80.0%)/9 
(20.0%)

1

Early enhancement, 
Absent/ Present

9 (15.5%)/49 
(84.5%)

13 (28.9%)/32 
(71.1%)

0.162

Washout, Absent/ 
Present

15 (25.9%)/43 
(74.1%)

15 (33.3%)/30 
(66.7%)

0.542

Note: HbsAg, Hepatitis B surface antigen; HBeAG, hepatitis B e antigen; 
HCVAb, Hepatitis C Virus Antibody; TBIL, total bilirubin; ALB, albumin; ALT, 
alanine transarninase; AST, Aspartate transaminase; PT, prothrombin time; INR, 
international normalized ratio; AFP, alpha-fetoprotein; CEA, carcinoembryonic 
antigen; CA125, cancer antigen 125; CA19-9, carbohydrate antigen 19 − 9; TYMS, 
thymidylate synthase
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Fig. 4 Calibration curves of the nomogram on the training set (A) and validation set (B). (C) Decision curve analysis for the nomogram in the total dataset

 

Fig. 3 The radiomics nomogram, combining InAFP and Rad score developed in the training set

 

Fig. 2 ROC curves comparing the two models in training (A) and validation (B) set
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needs to be further validated. Second, the number of 
samples was still limited compared to the large number 
of features. A large-scale clinical study enrolling more 
samples would help validate and improve the applicabil-
ity of our model as an effective tool to predict TYMS sta-
tus. Finally, sample selection bias was unavoidable in this 
retrospective study. Therefore, a prospective study should 
be conducted to further prove the practicability of the 
model.

In conclusion, the MR-based radiomics nomogram, 
a noninvasive prediction tool that incorporates the Rad 
score and InAFP, shows favourable predictive efficacy 
for TYMS status in HCC, which might be helpful for the 
selection of chemotherapy drugs and the prediction of 
prognosis.
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