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High glucose promotes the progression

of colorectal cancer by activating the BMP4
signaling and inhibited by glucagon-like
peptide-1 receptor agonist
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Abstract

Background The detailed molecular mechanism between type 2 diabetes mellitus (T2DM) and colorectal cancer
(CRQ) is still uncertain. Bone morphogenetic protein 4 (BMP4) dysregulation is implicated in T2DM and CRC,
respectively. This study aims to investigate whether BMP4 can mediate the interaction of CRC with T2DM.

Methods We firstly explored the expression of BMP4 in The Cancer Genome Altas (TCGA) databases and CRC
patients with or without DM from the Shanghai Tenth People’s Hospital. The diabetic model of CRC cell lines in vitro
and the mice model in vivo were developed to explore the BMP4 expression during CRC with or without diabetes.
Further inhibition of BMP4 to observe its effects on CRC. Also, glucagon-like peptide-1 receptor agonist (GLP-1RA) was
used to verify the underlying mechanism of hypoglycemic drugs on CRC via BMP4.

Results BMP4 expression was upregulated in CRC patients, and significantly higher in CRC patients with diabetes
(P<0.05). High glucose-induced insulin resistance (IR)-CRC cells and diabetic mice with metastasis model of CRC had
increased BMP4 expression, activated BMP4-Smad1/5/8 pathway, and improved proliferative and metastatic ability
mediated by epithelial-mesenchymal transition (EMT). And, treated CRC cells with exogenously BMP inhibitor-Noggin
or transfected with lentivirus (sh-BMP4) could block the upregulated metastatic ability of CRC cells induced by IR.
Meanwhile, GLP-1R was downregulated by high glucose-induced IR while unregulated by BMP4 inhibitor noggin, and
treated GLP-1RA could suppress the proliferation of CRC cells induced by IR through downregulated BMP4.

Conclusions BMP4 increased by high glucose promoted the EMT of CRC. The mechanism of the BMP4/

Smad pathway was related to the susceptible metastasis of high glucose-induced IR-CRC. The commonly used
hypoglycemic drug, GLP-1RA, inhibited the growth and promoted the apoptosis of CRC through the downregulation
of BMP4. The result of our study suggested that BMP4 might serve as a therapeutic target in CRC patients with
diabetes.
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Background

Colorectal cancer (CRC), one of the most frequent and
deadly malignancies, is the third most commonly diag-
nosed cancer among all types of cancers and the second
cause of cancer death [1]. Many factors associated with
the onset of CRC have been found and investigated,
including genetic reason, lifestyle, diet habits, chronic
diseases, and so on [2]. Diabetes mellitus (DM), one of
the most common chronic diseases, has been reported to
be associated with many kinds of cancer, like colorectum,
lung, pancreas, esophagus, liver, thyroid, breast, and so
on [3, 4]. There may exist direct or indirect associations
between DM and cancer, and no one can deny that much
has been done in molecular research [5]. However, the
detailed association and mechanism are still unclear, and
relative studies about type 2 diabetes mellitus(T2DM)
and CRC are still worthy of investigation.

Bone Morphogenetic Proteins (BMPs), one of the
largest subgroups of the transforming growth factor-p
(TGE-P) superfamily, were initially found can induce
mesenchymal stem cells to differentiate into bone and
promote the formation of bone and cartilage formation
[6]. Besides, emerging evidence has proved that BMPs
are multifunctional and involved in many physiologi-
cal regulatory processes, including cell differentiation,
apoptosis, immunology, metabolism, and so on [7-10].
BMPs play a function mainly through the canonical and
noncanonical pathways. The canonical signaling pathway,
also known as SMAD dependent pathway, in which the
secreted BMPs bind with heteromeric complexes of type
I receptor(BMPRI) and type II receptor(BMPRII) to acti-
vate the canonical signal transduction pathway [11]. Both
receptor types are serine/threonine kinases, and have
a short extracellular domain, a single transmembrane
domain, and an intracellular domain. The combination
of BMPs with BMPR furtherly activates the phosphory-
lation of the Smad1/5/8 complex, which is assembled
with Smad4 and is transferred into the nucleus to acti-
vate or suppress the expression of relative genes [12].
Besides the canonical signaling pathway, BMPs also can
function through non-canonical BMP pathways like
extracellular signal-regulated protein kinase(ERK)/MAP
kinase(MAPK) and phosphoinositide 3-kinase (PI3K)/
protein kinase B (AKT) pathway [13, 14].

Studies have reported that BMP4 is implicated in the
progression of many types of cancer, like breast, colon,
bladder, and gastric cancer [15-17]. The upregulated
expression of BMP4 has been found in CRC and pro-
motes the progression of carcinoma [18]. Epithelial-mes-
enchymal transition (EMT) as one of the most important
mechanisms in cancer metastasis also has been reported
by many studies that could be induced by BMP4 in many
kinds of cancer [17, 19]. In addition, BMP4 plays a vital
role in metabolic diseases and is markedly increased in
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patients with impaired glucose tolerance or T2DM [20—
22]. Serum BMP4 levels are negatively associated with
insulin sensitivity [22]. And BMP4 expression increased
in diabetic animals reduces glucose-stimulated insulin
secretion [23] and inhibits beta cell growth and function
[24]. However, no study investigated whether the glu-
cose metabolic disorder in CRC interacted with BMP4 to
affect the progression of CRC.

Considering that BMP4 may crosstalk glucose metab-
olism and CRC, we designed this study to investigate
whether the increased BMP4 induced by diabetes facili-
tates the progression of CRC, which may contribute to
finding a potential therapeutic target for the treatment of
CRC. In addition, we will further explore whether gluca-
gon-like peptide-1 receptor agonist(GLP-1RA), a widely
used drug for T2DM, can affect the progression of CRC
by meditating the expression of BMP4 [25].

Methods

Patients and demographic data

In this study, 37 CRC patients who underwent laparo-
scopic colorectal surgery were enrolled between Jan
2021 and May 2021 from the Shanghai Tenth People’s
Hospital. According to with or without the comorbidi-
ties of T2DM, patients were divided into two groups the
CA+DM group(with T2DM) and the CA group(without
T2DM). The diagnosis of T2DM based on the diagnosis
of a physician and/or prescription of glucose-lowering
drugs and/or abnormal laboratory values as defined
by the American Diabetes Association guidelines:
HbA1lc>6.5%, or fasting plasma glucose>7.0 mmol/L,
or 2-h plasma glucose>11.1 mmol/L during a 75 g oral
glucose tolerance test (OGTT), or random plasma glu-
cose>11.1 mmol/L with typical symptoms of hyperglyce-
mia or hyperglycaemic crisis [26]. Blood samples of these
patients were collected during the first 24 h after hospital
admission. Blood was collected in an EDTA anticoagu-
lant tube. After centrifugation at 3000 rpm for 10 min,
the upper plasma specimens were collected and stored
at -80°C. In addition, the demographic data of enrolled
patients were collected from the electronic record,
including age, sex, height, weight, BMI (body mass
index), tumor size, tumor node metastasis (TNM) stage,
and tumor differentiation. Additionally, plasma speci-
mens were obtained as described above from 37 patients
undergoing CRC resection. The Human BMP4 ELISA Kit
(ab231930, Abcam, USA) was used to determine plasma
BMP4 levels as per manufacturer instruction, and the
result was reported in pg/ml. All specimens were tested
in duplicate. The protocol was approved by the Ethics
Committee of the Shanghai Tenth People’s Hospital.
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Cell culture and insulin resistance model of CRC cell

The human colorectal cell lines HCT116, SW480, SW620,
and SW1116 were obtained from the Chinese Academy
of Sciences cell bank. MC38 cell line was purchased from
ATCC (CL0203). These cells were cultured in RPMI-
1640 medium supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin and streptomycin at 37 °C in 5%
CO2. The insulin resistance (IR) model of CRC cells was
cultured with RPMI-1640 medium containing 50mM
concentration glucose for 24 h. A Glucose consumption
assay was used to verify the establishment of IR. CRC
cell lines (1*10° cells/mL) were seeded in 96-well plates
and treated with high glucose. A glucose assay kit was
supplied from Nanjing Jiancheng Bioengineering Insti-
tute (Nanjing, China), which was used to measure glu-
cose concentrations in the culture medium. The culture
medium was collected, and glucose reagent was added
and then placed at 37 °C for 15 min. The OD values were
measured at 505 nm. The results were calculated as fol-
lows: Glucose consumption=glucose concentration in
the blank group (no cells, only medium) — glucose con-
centration in each group (model and control groups)[27].
The relative levels of glucose consumption in cells were
normalized to that of the control group.

Externally intervention and lentiviral transfection

Noggin (200nM)(ab281817, Abcam, USA), an inhibitor
of BMP4, and active recombinant human BMP4 (100nM)
(ab238298, Abcam, USA) were added to cell culture for
48 h for inhibition or overexpression of BMP4 respec-
tively. In addition, we used the lentiviral vector sys-
tem (Genomeditech Biotechnology Co. Ltd, Shanghai,
China) transfected SW1116 cells to establish the BMP4
downregulation model(shBMP4-SW1116). Finally, west-
ern blotting was used to validate the efficiency of BMP4
downregulation.

Cell viability assay

Cell viabilities were determined by cell counting kit-8
(CCK-8, Nanjing Jiancheng, China) assay, and the CRC
cells (1*10* cells/well) were seeded on 96-well plates

Table 1 gRT-PCR primer sequences

Gene Forward sequence Reverse sequence
BMP4 5'- GGAGGAGGAGGAAGAGCAGA-3 5'- CACTG-
(human) GTCCCTGGGAT-
GTTC-3
BMP4 5'- ATTCCTGGTAACCGAATGCTG-3' 5'- CCGGTCTCAGG-
(mouse) TATCAAACTAGC-3'
GAPDH  5'- CATGAGAAGTATGACAACAGCCT-3" 5~ AGTCCTTCCAC-
(human) GATACCAAAGT-3’
GAPDH  5- CCTGCACCACCAACTGCTTA-3' 5'-TCAGATCCAC-
(mouse) GACGGACACA-3'

qRT-PCR, real-time reverse-transcriptase polymerase chain reaction; BMP4,
bone morphogenetic protein 4
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[27]. To determine high glucose-induced IR to promote
the proliferation of CRC cells, cells were serum starved
for 12 h and then treated with high glucose(50mM) and
recombinant Noggin (200nmol/L) for 48 h. To investi-
gate the effect of GLP-1RA, liraglutide, on the growth of
CRC cells, the cells were treated with serum starvation
for 12 h and then incubated with liraglutide (NovoNor-
disk, Bagsvaerd, Denmark) at 0, 10, 20, 50,100nM and
the combination of liraglutide(50nM) and recombinant
BMP4(Abcam, 100nM) for 48 h. After incubation, each
cell was added with 10 uL. CCK-8 solution and furtherly
incubated for 2 h at 37 °C and 5% CO2, and the absor-
bance was measured at 450 nm by an ELISA reader
(SpectraMax iD5, USA).

Transwell assay

Each cell culture insert (Corning, Tewksbury, MA) con-
taining culture media without serum was seeded with
1.5%10°cells, and the stimuli were added to the lower
chambers. After 24 h, take out the insert, and the wet
cotton swab was used to remove the non-migrated cells
on the top side of the filter. Next, 4% paraformaldehyde
(PFA) (Solarbio, China) was used to fix the migrated cells
on the bottom side of the filter for 30 min. Then stained
the migrated cells with 0.1% crystal violet solution (Solar-
bio, China) for 20 min and washed three times with PBS.
After thoroughly drying, visualized the migrated cells
under a microscope.

RNA isolation and quantitative real-time PCR (qRT-PCR)
Total RNA was derived from cells using RNAsimple Kit
(Tiangen) following the manufacturer’s instructions, and
complementary DNA (cDNA) was synthesized from
1000 ng of total RNA using the Reverse Transcription
Kit (Takara Bio) for qRT-PCR. qRT-PCR was performed
using a 7900 H T real-time PCR system (ABI, CA, USA)
to determine the expression of target genes according
to the instructions of SYBR Green Master Mix (KAPA
Japan) for quantitative PCR. In addition, Glyceraldehyde
3-phosphate dehydrogenase (GAPDH) was used as an
endogenous control for gene expression and was ana-
lyzed using the /A /\-Ct method. The primer sequences
for the genes analyzed are listed in Table 1.

Western blotting (WB)

Proteins of HCT116, SW480, SW620, SW1116, MC38,
and SW1116-shBMP4 cells and tumor tissues were
extracted and lysed in 10% SDS. Cell lysates were the first
subject to SDS-PAGE, transferred to polyvinylidene fluo-
ride membranes (Millipore, USA), and then blocked with
5% non-fat milk. Primary antibodies, including BMP4
(1:1000, ab124715, Abcam, USA), BMP4(1:1000, ab33973,
Abcam, USA), E-cadherin (1:5000, 20874-1, Proteintech,
China), Vimentin (1:5000, 60330-1, Proteintech, China),
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N-cadherin (1:5000, 66219-1, Proteintech, China),
cleaved-caspase3(1:1000, TA7022, Abmart, China), BCL-
2(1:1000, T40056, Abmart, China), Snail(1:1000, 13099-1,
Proteintech, China), GAPDH(1:50000, 60004-1, Protein-
tech, China), f-Tublin(1:5000, M20023, Abmart, China)
were added to the membranes at 4 °C overnight. The
next day, the secondary antibodies, including goat anti-
rabbit IgG-HRP (1:1000, ZB-2301, Zhongshan Chemi-
cal, China), goat anti-mouse IgG-HRP (1:1000, ZB-2305,
Zhongshan Chemical, China) were added for 1 h at room
temperature. The protein levels were assessed using the
enhanced chemiluminescence method.

Immunohistochemistry (IHC)

Detail procedure of IHC followed the previous study
[28]. First, paraffin-embedded tumor samples (5-pm)
were deparaffinized, hydrated, and treated with endog-
enous peroxidases. Then, the slides were subject to
antigen retrieval. Next, the slides were subject to 10%
normal goat serum to inactivate endogenous peroxidase
and treated overnight with rabbit monoclonal against
BMP4 antibody (ab124715, Abcam, USA) at 4 °C. Then
washed with PBS three times and subsequently incu-
bated with a secondary antibody at room temperature for
1 h. After incubation, furtherly performed hematoxylin
counterstain.

Flow cytometric analysis

The Annexin V-FITC/PI Apoptosis Detection Kit (Mul-
tisciences, Hangzhou, China) was used to assay the
apoptosis of the SW1116 cell line treated with different
concentrations of GLP-1RA. According to the manu-
facturer’s protocol, cells and cultural supernatants were
collected and centrifuged at 1000 rpm for 5 min. After
centrifugation, removed the supernatants carefully and
washed the cell twice with cold PBS. Re-suspended the
cell pellets in 500uL of binding buffer. Then, PI solution
(5uL) and FITC labeled Annexin V (5uL) were incubated
with cells in the dark for 5 min. A flow cytometer (Bec-
ton Dickinson, USA) was used to analyze the sample. The
proportion of cells in each quadrant was furtherly ana-
lyzed with FlowJo software.

High-fat diet/streptozotocin (HFD/STZ)-induced mouse
models of T”2DM

This study followed the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health.
The protocol was approved by the Institutional Animal
Care and Use Committee of the Shanghai Tenth People’s
Hospital. Male C57BL/6] mice (4—6 weeks old) were pur-
chased from the Shanghai Laboratory Animal Center
(Shanghai, China). They were housed under a 12/12-h
light/dark cycle at 19 to 23 °C. The mice were ran-
domly divided into a control group(n=5) and a diabetic
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group(n=5). Mice of diabetes received 5 weeks HFD (a
diet with 60% kcal from fat) (Medicience Ltd., Jiangsu,
China) firstly, then a consecutive five days intraperitoneal
injection with a freshly prepared solution of STZ (Sigma-
Aldrich, St Louis, MO, USA) at 40 mg/kg body weight.
Three days after the injection, we measured the random
blood glucose levels of the mice, and mice with a blood
glucose level of 16.7mmol/L or higher were considered
to have T2DM [29]. The mice in the control group were
fed a regular chow diet and intraperitoneal injection with
citrate-phosphate buffer.

In vivo xenograft studies

The process was referenced in the previous study
[30]. Log-phase cells were harvested with 0.05% tryp-
sin—0.02% EDTA in MC38 cells Hanks Balanced Salt
Solution (HBSS), washed three times with PBS, and sus-
pended in PBS at a final concentration of 5*107 cells/ml.
The C57BL/6 mice were anesthetized with an intraperi-
toneal injection of pentobarbital (Nembutal, Dainippon
Sumitomo Pharma Co., Ltd., Osaka) regulated to 75 mg/
kg. Then the mice were incised about 10 mm on the left
subcostal, the spleen was confirmed under the peri-
toneum, the peritoneum was opened for about 8 mm,
and the spleen was exposed over the peritoneum. Next,
a needle injected the cell suspension of 5*10°/100ul of
human colon cancer cells into the spleen. After 5 min, the
spleen was resected, the peritoneum was sutured with
one stitch, and the wound was closed with a clip [31].
The mice were killed two weeks after inoculation with
tumor cells, and the liver sample was resected for evalu-
ation. The tumor sections were paraffin-embedded and
preserved for immunohistochemical analysis. All mice
experiments were performed with the approval of the
Animal Ethics Committee of Tongji University (approval
number: SHDSYY-2021-2965a).

Statistical analysis

SPSS22.0 software was used to perform statistical anal-
ysis. For continuous variables, data were presented as
mean with standard deviation (normal distribution) and
median with interquartile range (IQR)(non-normal dis-
tribution). In addition, an independent-sample t-test and
relative values using a two-tailed Fisher exact test were
used for continuous data. For categorical variables, data
were summarized as counts with percentages, and the
Pearson correlation analysis was performed. All the tests
were two-sided, and the value of p<0.05 was considered
statistically significant.
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Results

Expression of BMP4 was upregulated in CRC and
associated with poor outcome

We conducted an intensive analysis of gene alterations
in CRC from the TCGA database using an easy-to-use,
interactive web portal, ALCAN, and the correlation
between BMP4 gene expression and colorectal cancer
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clinical features [32]. Through the online database, we
identified that the expression of BMP4 was significantly
high in colorectal tumor (Fig. 1A). And, BMP4 was sig-
nificantly upregulated in tumor tissues compared with
adjacent normal tissues of CRC (P<0.001) (Fig. 1B, C).
Meanwhile, high-level BMP4 was associated with poor
outcomes for CRC patients. Although, the percent of
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Fig. 1 The expression of BMP4 was increased in CRC according to the data from the TCGA database

(A) BMP4 expression was investigated in different types of cancer in the TCGA database

(B, C) The expression of BMP4 was significantly increased in COAD(B) and READ(C) tumor samples(all P <0.01) in the TCGA database

(D, E) The expression of BMP4 was negatively associated with overall survival probability and disease free survival probability(all p <0.05)

BLCA, Bladder Urothelial Carcinoma; BRCA, Breast invasive carcinoma; CESC, Cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL,
Cholangio carcinoma; COAD, Colon adenocarcinoma; ESCA, Esophageal carcinoma; GBM, Glioblastoma multiforme; HNSC, Head and Neck squamous cell
carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; LIHC, Liver hepatocellular car-
cinoma; LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; PAAD, Pancreatic adenocarcinoma; PRAD, Prostate adenocarcinoma; PCPG,
Pheochromocytoma and Paraganglioma; READ, Rectum adenocarcinoma; SARC, Sarcoma; SKCM, Skin Cutaneous Melanoma; THCA, Thyroid carcinoma;
THYM, Thymoma; STAD, Stomach adenocarcinoma; UCEC, Uterine Corpus Endometrial Carcinoma
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Table 2 The demographic characteristic of CRC patients

CA group DM+CAgroup P value
(n=23) (n=14)
Age, years, mean +SD 6726+1368  66.64+871 0.881
Sex, n(%) 11(47.83%) 5(35.71%) 0515
Male 12(52.17%) 9(64.29%)
Female
Height, cm, mean+SD 164.35+846 164.57+9.06 0.940
Weight, kg, mean+SD 62.07+1457 6576+15.76 0472
BMI, kg/mz, mean+SD 22811412 23.97+356 0387
Anemia, n(%) 15(65.22%) 9(64.29%) 1.000
Yes 8(34.78%) 5(35.71%)
No
Hypoproteinemia, n(%) 21(91.30%) 12(85.71%) 0.625
Yes 2(8.70%) 2(14.29%)
No
TNM stage, n(%) 15(65.22%) 8(57.14%) 0.732
/11 8(34.78%) 6(42.86%)
/v
Tumor size >5 cm, n(%) 15(65.22%) 9(64.29%) 1.000
Yes 8(34.78%) 5(35.71%)
No
Tumor differentiation, n(%)  10(43.48%) 7(50.00%) 0.481
Low 13(56.52%) 7(50.00%)

Moderate & High

BMI, body mass index; TNM, tumor node metastasis

overall survival(OS) did not have a significant difference,
the percent of disease free survival (DFS) of the higher

200 : CA+DM
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BMP4 group was significantly lower than the lower
BMP4 group(P=0.032) (Fig. 1D, E).

CRC patients with diabetes had higher expression of BMP4
Fourteen patients with T2DM were divided into the
CA+DM group, and 23 non-diabetic patients with age,
height, weight, and sex ratio matched (all P value>0.05)
belong to the CA group. Detailed information of these
patients was shown in Table 2. The CA+DM group had
significantly higher BMP4 level when compared with
the group of CA (103.83+68.54 vs. 51.97+16.39pg/ml,
P=0.015) (Fig. 2A).

The protein levels of BMP4 in tumor tissues (n==8) from
frozen tissue samples were analyzed by western blotting.
The results showed that the protein level of BMP4 was
higher in patients with diabetes than in patients with-
out diabetes (Fig. 2B). To further investigate the expres-
sion difference of BMP4, we also collected 32 CRC
tissue specimens for qRT-PCR, and the result showed
that BMP4 mRNA was upregulated in CRC patients with
diabetes (Fig. 2C). Typical IHC images of BMP4 in tumor
samples of colorectal cancer patients were shown in
Fig. 2D. The results of IHC showed that the expression of
BMP4 in tumor tissue was significantly higher in patients
with diabetes.
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Fig. 2 BMP4 expression was significantly higher in CRC patients with DM than in CRC patients without DM.
(A) The plasma level of BMP4 in CRC patients with DM (CA+ DM group) was significantly higher than patients without DM (CA group), *compared to the

CA group, P<0.05

(B, C) The upregulation of the protein and RNA expression of BMP4 was confirmed by western blotting and gRT-PCR in CRC specimens from patients with

or without DM, *compared to the CA group, P <0.05

(D) Immunohistochemical localization of BMP4 in tumor samples of CRC patients with or without DM (scale bar =50 pm)
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Glucose consumption in IR of CRC cell lines

To establish a high glucose-induced IR cell model, we cul-
tured CRC cell lines (MC38, HCT116, SW480, SW6200,
SW1116) with the 1640 medium containing 50 mM glu-
cose for 24 h in accordance with the previous protocol
[33]. As results shown in Fig. 3A, the glucose consump-
tion of five cell lines treated with high glucose(GS group)
was significantly decreased compared with the control
group(CON group)(all P<0.05). In order to diminish the
effect of cell viability on glucose consumption, we used
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the value of OD450 to rectify the glucose consumption,
and the results were showed in Fig. 3B. Compared with
the CON group, the GS group had significantly lower
glucose consumption/OD450 indicating the IR-CRC cell
model was established.

BMP4 was upregulated in IR-CRC cells and promoted the
migration of CRC cells

We first evaluated the baseline expression level of
BMP4 in one mouse-derived cell line (MC38) and four
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Fig. 3 High glucose promoted the proliferation and metastasis of CRC cells

A) Glucose consumption was measured in different types of CRC cell lines by glucose assay kit, *P <0.05, ***P <0.001

B) The result of glucose consumption was rectified by cell viability measured by CCK-8 kit (OD 450), *P < 0.05, ***P <0.001

C) Protein of BMP4 expression examined by western blotting in different types of CRC cell lines

D, E) Treated with high glucose(50mM) 48 h could upregulate the expression of BMP4 measured by western blotting(D) and gRT-PCR(E), *P < 0.05
F) Cell viability of SW1116 and MC38 cultivated by high glucose(50mM) and Noggin(200nM) for 48 h assessed by CCK-8kit, *P < 0.05, ***P <0.001

G) Transwell assays were performed to examine the potential migration of SW1116 and MC38 cells treated with or without high glucose(50mM) and
Noggin(200nM).
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human-derived cell lines (HCT116, SW480, SW620,
SW1116) (Fig. 3C). For further investigation, we chose
two cell lines in our study, SW1116 and MC38, as rep-
resented. The western blotting and qRT-PCR results
showed that high glucose-induced IR could elevate the
expression of BMP4, as shown in Fig. 3D, E.

To elucidate the effect of high glucose-induced IR
on CRC cell proliferation in vitro, cell viabilities were
examined by CCK-8 assay. The results showed that high
glucose(50mM) significantly promotes the proliferation
of MC38 and SW1116. And, this proliferative effect can
be significantly diminished by the addition of Noggin
(GS+Noggin group), the extracellular inhibitor of BMP4,
as shown in Fig. 3F. Furthermore, with the high glucose,
the migration of MC38 and SW1116 was significantly
improved by the results of Transwell assay (Fig. 3G). And,
compared with the GS group, the migration was reduced
in the GS+Noggin group. The results above indicated
that high glucose could promote the proliferation and
metastasis of CRC cell line through upregulated the
expression of BMP4.

High-glucose induced IR regulated the EMT of CRC cells
through BMP4/Smad pathway

We furtherly investigated the expression of markers asso-
ciated with EMT, a crucial biological step driving tumor
cell invasion and metastatic dissemination from pri-
mary tumors [34]. Compared with the CON group, the
GS group expressed higher protein levels of N-cadherin,
Vimentin and Snail while lower E-cadherin (Fig. 4A).
As the canonical signaling pathway of BMP4, we inves-
tigated whether high glucose induced IR activated
pSmad1/5/8 to mediate the EMT [35]. According to the
western blotting result, the expression of pSmadl/5/8
was upregulated upon high glucose treated in SW1116
and MC38(Fig. 4B). However, Noggin, the inhibitor of
BMP4, could deregulation the expression of pSmad1/5/8
and resistance EMT induced by high glucose (Fig. 4A, B).
Specific shRNAs (vector, sh-BMP4-1, 2, 3) were trans-
fected into SW1116 cells, and the transfection efficiency
was confirmed by the western blotting results of BMP4
(Fig. 4C). As shown in Fig. 4C, shBMP4-2 has the high-
est transfection efficiency, and the SW1116 cell line
transfected with it was further cultured with or without
high glucose (GS vs. CON group). In SW1116 cells trans-
fected with shBMP4-2, the intervention of high glucose
did not significantly change the expression of BMP4,
EMT markers and pSmad1/5/8 compared with the CON
group (Fig. 4D). These results indicated that high-glu-
cose induced IR of CRC cells upregulated the BMP4 and
mediated EMT through the canonical Smad pathway.

Page 8 of 15

GLP-1RA diminished the proliferative of CRC by decreasing
the expression of BMP4

Our previous study has illustrated that GLP-1 can
decrease the BMP4 levels in the liver [25]. And, in this
study, we first found a depressed expression of gluca-
gon-like peptide-1 receptor (GLP-1R) in high-glucose
treated CRC compared with the control group (Fig. 5A).
Hence, we treated CRC with liraglutide injection, a GLP-
1RA, to investigate whether GLP-1 affects the progres-
sion of CRC through medicating BMP4. As the results
presented by western blotting, the expression of BMP4
decreased when SW1116 and MC38 cells were treated
with GLP-1RA (Fig. 5B). Used the Calcein-AM/PI
Double Stain Kit (40747ES76, Yeasen, China), live CRC
cells were stained with red fluorescence and dead cells
were stained with green fluorescence. With the increase
of the concentration of GLP-1RA, the proportion of
dead cells also increased (Fig. 5C). The Same result was
proved by CCK-8 analysis, and we found that the GLP-
1RA restrained the proliferation of CRC cells and dem-
onstrated a dose-dependent growth inhibition (Fig. 5D,
E). Hence, the assumption that GLP-1RA suppressed the
proliferation of CRC cells was associated with decreasing
BMP4 be proposed.

Flow cytometric analysis of SW1116 cells after double
staining with annexin V-FITC and propidium iodide
fourthly showed the cytotoxicity of GLP-1RA (Fig. 6A).
GLP-1RA mainly promoted the later stage apoptosis.
We furtherly investigated whether BMP4 could oft-
set the inhibition effect of GLP-1RA. And, cell viability
assessed by CCK-8 kit, we found recombinant human
BMP4(rBMP4) could partly reverse the suppressing
effect induced by GLP-1RA (Fig. 6B). The expression of
cleaved-caspase3 was upregulated, and BCL-2 was down-
regulated when treated with GLP-1RA, which could be
reversed by rhBMP4 (Fig. 6C). These results showed that
GLP-1RA, liraglutide, promoted the apoptosis of CRC
cells mediated by the downregulation of BMP4.

High glucose interaction with BMP4 regulated the
metastasis of CRC in vivo

After disclosing that high glucose induced IR could pro-
mote the metastasis of CRC through canonical BMP4-
Smad pathway in vitro study, we further investigated
the role of BMP4 in mediating the metastasis and EMT
in CRC in vivo. We first established a diabetes mouse
model and then performed the experimental liver metas-
tasis model by injecting MC38 cells into the spleens of
mice and the mice were sacrificed two weeks later [31]
(Fig. 7A). Compared with the mice without diabetes
(CA group), the diabetes mice (DM +CA group) suffered
more metastatic nodules (Fig. 7B). To further determine
the role of BMP4 in EMT regulation in vivo, we evaluated
the expression levels of EMT markers in the metastatic
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Fig. 4 High glucose promoted the EMT of SW1116 and MC38 cells through the BMP4-Smad pathway
(A) Western blotting analysis of the expression of EMT markers in SW1116 and MC38 cells cultivated with or without high glucose(50mM) and

Noggin(200nM).

(B) High glucose activated the SMAD1/5/8 and this effect could be blocked by Noggin proved by western blot analysis
(C) Western blotting analysis of the efficiency of sh-BMP4 and vector transfection in SW1116 cells
(D) Western blotting analysis of the expression of BMP4, EMT markers and pSMAD1/5/8 in SW1116 transfected with sh-BMP4-2 treated with or without

high glucose(50mM) for 24 h

liver xenograft model. IHC pictures of tumor tissue sec-
tions from the flanks of the nude mice demonstrated that
diabetes mice upregulated BMP4, Vimentin and N-cad-
herin expression but downregulated E-cadherin expres-
sion compared to the control group (Fig. 7C), revealing
that IR may induce BMP4 to medicate the EMT of CRC.

Discussion

The prevalence of DM has been increasing over the past
decades, which diminishes the quality of patients and
increases the medical care cost and social burden [36].
Epidemiological studies have shown that diabetes is asso-
ciated with many kinds of cancer happening and can-
cer mortality [37-39]. Compared with patients without

diabetes, diabetes patients have a significantly higher
risk of CRC and a higher risk of early-onset CRC [40].
Besides, DM also increases the risk of BRAF-mutated
tumors and the proliferation and metastasis capacity of
tumors [41, 42]. Even for patients who accepted surgery
treatment, diabetes also increases the occurrence of post-
operative complications and poorly affects the outcomes
of CRC patients [43]. The presence of DM is associated
with the occurrence of CRC, and the presence of cancer
conversely increases the risk of death in CRC patients
with DM [4, 44, 45]. Hence, some indirect or direct rela-
tionships between CRC and DM may exist.

Until now, the detailed mechanism between DM and
cancer has not been clarified clearly. And, the abnormal
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(C) The dead cells of SW1116 and MC38 intervened with GLP-1RA for 48 h were detected by Calcein-AM/PI double staining (magnification, x100)
(D, E) Cell viability of SW1116 and MC38 cells treated with GLP-1RA for 48 h were measured by CCK-8 kit, *P < 0.05, ***P <0.001

accumulated glucose and insulin are instrumental in the
transformation and progression of cancer. Hyperglycemia
and IR can induce oxidative stress, promote cytokines
expression, and activate the inflammation pathway [46].
Hyperglycemia is associated with oxidative stress, further
triggering DNA damage and facilitating carcinoma [47].

IR induces the expression of IL-6, a pro-inflammatory,
and promotes tumorigenesis [48]. A study also showed
that DM and CRC share some common miRNAs, which
may partly explain the mechanism relationship between
DM and cancer [49]. Therefore, exploring the critical
molecule that links DM and CRC is needed.
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(C) Western blot analysis of the expression of BCL-2, Caspase-3, and cleave-Caspase-3 in SW1116 and MC38 cell lines treated with GLP-1RA and recom-

binant BMP4.

BMP4 is a member of the TGF-f superfamily, which
plays a vital role in adipocyte differentiation and ther-
mogenesis and regulates glucose homeostasis and insulin
sensitivity [10]. BMP4 is increased in patients with meta-
bolic disorders such as DM, obesity, and nonalcoholic
fatty liver disease(NAFLD), and its level is negatively
associated with insulin sensitivity [22, 50]. Besides, the
upregulated BMP4 also has been reported to be associ-
ated with many cancers and negatively associated with
overall survival [51, 52]. The aberrant activation of the
Wnt/B-catenin pathway could increase the expression
of BMP4, facilitating the invasiveness and tumorigenesis
of CRC [15]. There also has study investigated the gene
expression difference in CRC patients with or without
KRAS mutation, and found that BMP4 elevated with the
mutation of KRAS, which provided a novel treatment
target for these patients [53]. However, no study has
investigated the expression difference of BMP4 in CRC
with or without T2DM and the underlying mechanism of
BMP4 links to CRC and diabetes.

In this study, we demonstrated that high glucose
induced IR could activate the expression of BMP4 in

CRC cells and the tumor of CRC patients with DM.
CRC cell lines treated with high glucose showed a higher
capacity for proliferation and metastasis when compared
with the control group. And, these promotion effects
could be reduced by Noggin, the extracellular inhibitor of
BMP4. BMP4 played its role mainly through the canoni-
cal pathway, which combined with BMPR and increased
the affinity of intracellular receptor R-Smad proteins
(Smads-1/5/8) binding to Smad4. Then the complex
(Smad-4/R-Smads) is translocated into the nucleus and
combined with DNA to regulate gene expression [54]. In
our study, we found Smadl/5/8 was phosphorylated by
high glucose and the marker of EMT was dysregulated in
the high glucose group, the E-cadherin downregulated,
and the N-cadherin, Vimentin, Snail upregulated. These
results showed that high glucose induced IR mediated
the metastasis of CRC through the BMP4-Smad-EMT
pathway.

Metastasis is one of the properties of cancer, and the
cancer cells shed from the primary tumor is a vital step
in this progress. EMT, where cancerous epithelial cells
lose their cell-to-cell contact and develop a more motile
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and less differentiated mesenchymal phenotype, has
been reckoned as a crucial biological step driving tumor
cell invasion and metastatic dissemination from primary
tumors [34, 55]. The liver is recognized as the most com-
mon site of CRC metastasis because most of the intesti-
nal mesenteric drainage enters the hepatic portal venous
system. More than 50% of patients with CRC will develop
metastatic disease to their liver throughout their life,
ultimately resulting in death for more than two-thirds
of these patients. The liver is the most common site of
metastasis for colorectal cancer, and only 15-20% of
patients with liver metastases are suitable candidates for
surgical resection [56, 57]. Growing evidence proved that
elevated expression of BMP4 is associated with the EMT
of various epithelial malignant carcinomas [17]. And, the
result of our study verified that BMP4 induced by high
glucose has an effect on EMT that may be helpful in

finding a novel therapeutic target for CRC patients with
metastasis.

We have reported that GLP-1RA could suppress the
expression of BMP4 in liver and adipose tissue. And,
GLP-1RA is a commonly used second-line therapy in
clinical to manage T2DM [58]. However, due to the
concerns about safety for cancers, the clinical usage for
CRC complicated by T2DM was relatively limited [58].
A cohort study reported that using GLP-1RA would
not increase the risk of CRC [59]. In addition, there are
emerging reports on the anti-cancer effects of GLP-1RA,
but the mechanisms require further elucidation. GLP-
1RA attenuates the proliferation of pancreatic cancer by
inhibiting PI3K/Akt and the nuclear factor-kappa B(NF-
kB) signaling pathway [60, 61]. Decreased expression of
GLP-1R has been reported in pancreatic B cells of dia-
betes and pancreatic cancer tissues [62, 63]. Our study
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also found that the expression of GLP-1R was down-
regulated in CRC cells treated with high glucose. Hence,
we investigated whether GLP-1RA mediates the growth
of CRC cells through BMP4. And, we found that BMP4
was decreased by GLP-1RA, which promotes cleaved-
caspase3 generation and BCL-2 downregulation and sup-
presses the growth of CRC cells. These results indicated
that BMP4 mediated by GLP-1RA induces the apoptosis
of CRC cells and provided new proof for the safe use of
GLP-1RA in CRC patients.

Our study focused on the effect and underlying mecha-
nism of DM on CRC and our findings indicated oppor-
tunities for BMP4 as a novel therapeutic target to reduce
metastatic burden in patients and provided evidence that
GLP-1RA could be safely used for CRC patients with
comorbidity of diabetes.

Conclusions

The upregulation of BMP4 induced by high glucose pro-
motes the proliferation and metastasis of CRC cells. High
glucose induced IR promotes the EMT of CRC mainly
through the upregulation of BMP4, which activates the
canonical pathway. Additionally, GLP-1RA has a strong
inhibition effect on the growth of CRC cells by inhibit-
ing the expression of BMP4. Therefore, BMP4 may repre-
sent a potential treatment target, and further studies are
required to elucidate the therapeutic potential in colorec-
tal cancer patients with T2DM.
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