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Introduction
Primary liver cancer, ranking as the second leading 
cause of cancer mortality in China, is a common malig-
nant tumour of the digestive system [1, 2]. Normally, 
the majority of liver cancer patients are diagnosed at an 
advanced stage, which contributes to a higher rate of 
postoperative relapse and metastasis [3]. Insulin resis-
tance (IR), a chronic pathological process, is character-
ized by decreased glucose uptake and utilization and 
excessive insulin secretion in individuals [4]. Numer-
ous studies have shown that high levels of insulin, espe-
cially in patients with IR, are significantly associated 
with an increased risk of various tumours, including 
liver cancer [5–7]. A variety of pathological conditions, 
such as liver cancer, lead to dysfunction of the insulin 
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Abstract
Background  Primary liver cancer is a malignant tumour of the digestive system, ranking second in cancer mortality 
in China. In different types of cancer, such as liver cancer, microRNAs (miRNAs) have been shown to be dysregulated. 
However, little is known about the role of miR-5195-3p in insulin-resistant liver cancer.

Methods and results  In this study, in vitro and in vivo experiments were conducted to identify the altered biological 
behaviour of insulin-resistant hepatoma cells (HepG2/IR), and we proved that HepG2/IR cells had stronger malignant 
biological behaviour. Functional experiments showed that enhanced expression of miR-5195-3p could inhibit the 
proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) and chemoresistance of HepG2/IR cells, 
while impaired expression of miR-5195-3p in HepG2 cells resulted in the opposite effects. Bioinformatics prediction 
and dual luciferase reporter gene assays proved that SOX9 and TPM4 were the target genes of miR-5195-3p in 
hepatoma cells.

Conclusions  In conclusion, our study demonstrated that miR-5195-3p plays a critical role in insulin-resistant 
hepatoma cells and might be a potential therapeutic target for liver cancer.
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signalling pathway in liver cells, which reduces their sen-
sitivity to insulin and leads to IR [8]. However, IR can 
increase the level of hepatic glucose to form a vicious 
cycle, aggravating the progression of IR [9]. In previous 
studies, we employed a high concentration of insulin to 
induce HepG2 cells to establish a stable insulin-resistant 
cell model (HepG2/IR) and explored the relationship 
between IR and chemoresistance in liver cancer cells 
[10]. However, few studies have focused on the relation-
ship and mechanism between IR and the malignant bio-
logical behaviour of liver cancer cells.

microRNAs (miRNAs) are highly conserved short-
chain endogenous noncoding RNAs that bind to the 
3′-UTR (untranslated region) of target mRNAs and reg-
ulate gene expression [11]. A majority of studies have 
shown that miRNAs are associated with the occurrence 
and development of tumours [12, 13]. Growing evidence 
has also shown that miRNAs play an important role in 
liver cancer. miR-21, for example, was found to be upreg-
ulated in hepatocellular carcinoma (HCC), and interfer-
ence of miR-21 inhibited its proliferation [14]. However, 
the mechanism of miRNAs in insulin-resistant hepato-
carcinoma remains unclear. Our previous study showed 
that miR-5195-3p was differentially downregulated in 
HepG2/IR cells using miRNA expression profiling [15]. 
Only a few studies on miR-5195-3p have been reported, 
which indicated that it could inhibit cell proliferation, 
metastasis and invasion in non-small cell lung cancer and 
triple-negative breast cancer [16, 17]. However, the rela-
tionship between miR-5195-3p and insulin-resistant liver 
cancer cells remains unclear. There is an urgent need to 
explore the underlying regulatory mechanisms.

In the present study, we found that elevated expression 
of miR-5195-3p could inhibit growth, migration, inva-
sion, drug resistance, and epithelial-mesenchymal tran-
sition (EMT) in vitro and in vivo in HepG2/IR cells, in 
contrast to its downregulation. Further studies showed 
that miR-5195-3p negatively regulated malignant bio-
logical behaviour in HCC by targeting sex determin-
ing region Y-box 9 (SOX9), which could interact with a 
variety of downstream proteins and exhibit stimulatory 
or inhibitory activity in different types of cancer cells 
[18], and tropomyosin 4 (TPM4), which is abnormally 
expressed in a variety of cancers [19]. Thus, this study 
provides new potential biomarkers and therapeutic tar-
gets in liver cancer.

Materials and methods
Cell culture and induction to IR
HepG2 and 293T cells were purchased from the Ameri-
can Tissue Culture Collection (ATCC) and cultured with 
Dulbecco’s modified Eagle’s medium (DMEM, HyClone, 
USA) with 10% foetal bovine serum (FBS, HyClone, USA) 
at 37 °C in a 5% CO2 incubator. The induction process of 

insulin-resistant cells was as follows: cells were synchro-
nized in serum-free DMEM for 6  h (h) after they had 
completely adhered. DMEM containing 5% calf serum 
was replaced, and 0.2 µmol/L insulin (Sigma, USA) was 
added to induce 72 h. The induced insulin-resistant cells 
were named HepG2/IR cells [10].

Cell transfection
For the miR-5195-3p functional analysis, miR-5195-3p 
mimic and NC mimic (Ruibo, China) were transfected 
into HepG2/IR cells using Lipofectamine 2000 (Invitro-
gen, USA) according to the manufacturer’s protocols. In 
the same way, HepG2 cells were transfected with miR-
5195-3p inhibitor or NC inhibitor (Ruibo, China) for 
48  h. Then, these cells were collected and subjected to 
further analysis.

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide) assay
Cells from different groups were plated in 96-well plates 
at a density of 1.2 × 104 cells per well. The viability of the 
cells was determined by MTT assays 1, 2, 3, 4, 5 and 6 
days (d) following seeding, followed by 4  h incubation 
with MTT solution. DMSO was added to each of the 
wells. The absorbance values of each well were measured 
at 490 nm, and the readings were quantified using a Pow-
erwave X plate reader (Bio-Tek Instruments, USA).

The 50% inhibitory concentration (IC50) values were 
determined as the drug concentration causing 50% cell 
growth inhibition. The MTT assay was performed to 
assess cell sensitivity to mitomycin (MMC), oxaliplatin 
(OXA), vincristine (VCR) and sorafenib. Briefly, cells 
from different groups were seeded in 96-well plates at a 
density of 1.5 × 104 cells per well and incubated with the 
above drugs for 48 and 72 h, and the cells were treated in 
a similar fashion as described above.

Ethynyl-2’-deoxyuridine (EdU) proliferation assay
An EdU proliferation assay (Yeasen, China) was per-
formed to measure cell proliferation. In brief, cells were 
plated in 96-well plates (2 × 103 cells/well) with 100 µL of 
10% serum-containing DMEM per well for 24  h. Then, 
the cells were cultured with 50 µM EdU in serum-free 
DMEM for 2 h at 37 °C, followed by fixation in 4% form-
aldehyde for 30 min on the second day. Glycine was used 
to neutralize formaldehyde. After permeabilization with 
0.5% Triton X-100 for 10  min at room temperature, 1× 
Apollo reaction cocktail (100 µL) was added to the wells 
for 30 min. Nuclei were stained with 1× DAPI (100 µL). 
Finally, the cells were imaged under a fluorescence micro-
scope (Olympus BX 60 fluorescence microscope, Japan).
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Scratch wound healing assay
Cell migration was determined using a scratch wound-
healing assay. In brief, cells were cultured in 6-well 
plates to 80% confluence. Subsequently, the supernatant 
was discarded, and the cells in the 6-well plates were 
scratched with a 10 µL tip and incubated with serum-free 
DMEM for 24  h. Then, the cells were further cultured 
for 48 and 72  h. Cell migration was analysed by count-
ing migrated cells under an inverted microscope (Olym-
pus X51 Inverted Microscope, Japan) using ImageJ 1.8.0 
(National Institutes of Health, USA).

Colony formation unit assay
Cells were seeded in 6-well plates at a density of 1 × 103 
cells/well. DMEM was replaced every 4 d. After culture 
for 14 d, the cells were fixed with 4% paraformaldehyde 
for 15 min at room temperature and stained with crystal 
violet for 15 min at room temperature.

Transwell assay
Cells (2 × 105 cells/well) were added to the apical cham-
ber, and 600 µL of 20% FBS-containing medium was 
added into the basolateral chamber. Next, the chambers 
were incubated at 37  °C for 48  h. The plate was rinsed 
and subsequently stained using 0.1% crystal violet at 
room temperature for 30 min. For the cell invasion assay, 
40 µL of Matrigel (Shanghai YuBo Biological Technology, 
China) was added to the chamber of the transwell unit at 
37 °C for 4.5 h to form a basement membrane, and cells 
were treated in a similar fashion as that in the cell migra-
tion assay.

Flow cytometry assay
Apoptotic analysis was performed using an Annexin V/
PI cell apoptosis kit (Invitrogen, USA). Samples were 
gently suspended in 100 µL of binding buffer contain-
ing 2.5 µL of Annexin V-FITC and 2.5 µL of propidium 
iodide (PI) and further incubated for 15 min in the dark 
at room temperature. Finally, cells were suspended in 
500 µL of binding buffer and detected by flow cytometry 
using FACSVerse (BD Biosciences, USA). Flow cytometry 
data were analysed using FlowJo 10 (FlowJo). The apop-
totic rate was determined for each condition as follows: 
apoptotic rate = (early apoptotic rate + late apoptotic rate) 
× 100%.

Prediction of target genes of miR-5195-3p
miR-5195-3p target genes were analysed using Tar-
getScan (http://www.targetscan.org/vert_80/). The func-
tions of all these target genes were further screened by 
GenBank.

RNA isolation and RT‒qPCR assay
Total RNA from the cells was isolated using TRIzol® 
reagent (Invitrogen, USA). For miRNA levels, detec-
tion and quantification of miRNAs from total RNA 
samples were performed using the Hairpin-it™ 
miRNA qPCR Quantitation Kit (Shanghai GenePh-
arma, China) according to the manufacturer’s pro-
tocol. RT‒qPCR was performed using a Rotor-Gene 
3000 quantitative PCR amplifier (Corbett Life Science, 
USA). The primers were purchased from Shanghai 
GenePharma (Shanghai, China): miR-5195-3p mimic, 
AUCCAGUUCUCUGAGGGGGCU, NC mimic, UUU-
GUACUACACAAAAGUACUG; and miR-5195-3p inhib-
itor, AACCCCUAAGGCAACUGGAUGG, NC inhibitor, 
CAGUACUUUUGUGUAGUACAAA. The miRNA con-
centration was normalized to the endogenous control U6. 
SOX9 (F: 5’-CGAGCTCGTATTCCTCACCCTAGATTTG-3’; 
R: 5’-CGACGCGTACAATATAAGGCAGCCCAA-3’) 
and TPM4 (F: 5’-CGAGCTCTCCATACTTCAGGGAA-
CAGCAA-3’; R: 5’-CGACGCGTTAAGC-
CAGAAGCAGGGTG-3’) sequences were used.

For gene mRNA detection, total RNA was reverse tran-
scribed to cDNA using a PrimeScript RT reagent kit pur-
chased from TaKaRa Bio (Otsu, Japan) according to the 
manufacturer’s protocol. qPCR was performed using a 
SYBR Premix Ex Taq II kit (Toyobo, Japan). β-Actin was 
used as the internal control. The relative expression levels 
of the genes were determined by the 2−ΔΔCt method.

Western blot assay
After cells were lysed with RIPA lysis buffer (Beijing 
Solarbio Science & Technology, China), proteins were 
collected, and their concentrations were determined 
using the BCA method. The proteins (30 µg) were sepa-
rated on 10% sodium dodecyl sulphate‒polyacrylamide 
gel electrophoresis (SDS‒PAGE) gels and were subse-
quently transferred onto polyvinylidene membranes 
(EMD Millipore, USA). Following blocking in 0.1% 
TBS-Tween 20 containing 5% nonfat milk at room tem-
perature for 1  h, the membranes were incubated over-
night at 4  °C with primary antibodies against SOX9 
(1:2000; cat. no. ab185966; Abcam, UK), TPM4 (1:2000; 
cat. no. ab181085; Abcam, UK), E-cadherin (1:1000; 
cat. no. ab40772; Abcam, UK), N-cadherin (1:1000; cat. 
no. ab76011; Abcam, UK), Vimentin (1:1000; cat. no. 
ab92547; Abcam, UK), Snail (1:1000; cat. no. ab216347; 
Abcam, UK) and β-actin (1:1000; cat. no. TA-09; Zhong-
shan Jinqiao Bio-Technology, China). The following 
morning, the membranes were incubated at room tem-
perature for 1 h with horseradish peroxidase-conjugated 
goat anti-mouse (1:5000; cat. no. SA00001-1; Protein-
tech Group, USA) or goat anti-rabbit (1:5000; cat. no. 
SA00001-2; Proteintech Group, USA) secondary anti-
bodies and subsequently developed using an Amersham 

http://www.targetscan.org/vert_80/
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Enhanced Chemiluminescence Western blot detection 
system (GE Healthcare Life Sciences, USA) according to 
the manufacturer’s protocols.

Dual luciferase reporter assay
Both the 3’-UTR of SOX9 and the 3’-UTR of TPM4, 
containing miR-5195-3p binding sites, were amplified, 
cloned and inserted into a pMIR-REPORT luciferase 
vector in sense or antisense directions using MluI and 
SacI at the restriction enzyme cutting sites. Then, 293T 
cells were seeded in 96-well plates 1 d before transfec-
tion. The 293T cells were cotransfected with SOX9 or 
TPM4 3’-UTR pMIR-REPORT luciferase vector, pRL-TK 
reporter vector and miR-5195-3p mimic or NC mimic 
using Lipofectamine 2000. Forty-eight hours after trans-
fection, firefly and Renilla luciferase activities were mea-
sured using the Dual-Glo® Luciferase Assay System on a 
FlexStation 3 Multi-Mode Microplate Reader (Molecular 
Devices, USA) according to the manufacturer’s instruc-
tions. Relative luciferase activity was normalized to 
Renilla luciferase activity.

In vivo xenograft mouse model
Male BALB/c nude mice (specific pathogen-free grade, 5 
weeks old, 18–22 g) used in these experiments were pur-
chased from Vital River Laboratories (Beijing, China). 
The experiments with animals were conducted in accor-
dance with the Care and Use of Laboratory Animals pub-
lished by the US National Institutes of Health. Mice were 
randomly divided into twelve groups (HepG2, NC inhibi-
tor, miR-5195-3p inhibitor, HepG2 + OXA, NC inhibi-
tor + OXA, miR-5195-3p inhibitor + OXA, HepG2/IR, 
NC mimic, miR-5195-3p mimic, HepG2/IR + OXA, NC 
mimic + OXA, miR-5195-3p mimic + OXA) and injected 
with transfected cells (2 × 106 cells) through subcuta-
neous axillary injection and treated with 7  mg/kg OXA 
through intraperitoneal injection every week. After 30 
d, the mice were euthanized with CO2, and the tumours 
were harvested, measured and weighed. The volume of 
the tumour was estimated by a ruler as follows: tumour 
volume = 0.5 × tumour length × tumour width2 [20].

Statistical analyses
The data are presented as the mean ± standard devia-
tion from at least triplicate experiments performed three 
times. Statistical analyses were performed using Graph-
Pad Prism (version 6.07; GraphPad Prism Software, San 
Diego, CA). The difference between two groups was ana-
lysed using Student’s t test. Multiple comparisons were 
performed using ANOVA. P < 0.05 was considered to 
indicate a significant difference.

Results
HepG2/IR cells displayed enhanced proliferation, 
migration, invasion, EMT and chemoresistance
MTT, EdU and colony formation unit assays were used 
to detect the proliferation of HepG2/IR cells and their 
parental cells (control group). The MTT absorbance at 
1–6 d indicated that the HepG2/IR cells showed enhanced 
proliferation compared with HepG2 cells (Fig.  1A). 
Moreover, colony formation assays showed that the pro-
liferation increased in HepG2/IR cells (224.33 ± 12.66) 
compared with their parental cells (78.67 ± 8.74) (Fig. 1B). 
Additionally, an increased EdU-positive rate was 
observed in HepG2/IR cells (78.2 ± 11.12%) (Fig.  1C). 
To investigate the effects of IR on cell migration, inva-
sion and EMT, we assessed HepG2 and HepG2/IR cells 
by wound-healing assays, transwell assays and Western 
blots. The transwell assay with or without Matrigel dem-
onstrated that IR significantly induced the migration and 
invasion of HepG2/IR cells compared with those of the 
control group (Fig. 1D). The 48 and 72 h wound-healing 
assays revealed that the migratory capacity of HepG2/
IR cells was increased significantly compared with that 
of the control group (Fig. 1E). As shown in Fig. 1F, com-
pared with that of the control group, the protein expres-
sion of N-cadherin, Vimentin and Snail was significantly 
increased, while the protein E-cadherin was suppressed 
in HepG2/IR cells. Enhanced proliferation, migration, 
invasion and EMT ability in HepG2/IR cells indicated 
that IR could promote proliferation, migration, invasion 
and EMT in hepatoma cells.

To investigate and illuminate the relationship between 
IR and chemoresistance in HepG2 cells, cell viabil-
ity assays, EdU assays, apoptotic analyses, and in vivo 
and animal experiments were performed to detect drug 
sensitivity. The IC50 values for MMC, VCR, OXA and 
sorafenib in HepG2/IR cells were significantly higher 
than those in HepG2 cells at 48 and 72 h (Fig. 2A). The 
positive rate of EdU was significantly higher than that in 
the NC group (Fig.  2B). Moreover, flow cytometry with 
the Annexin V/PI double staining assay (Fig. 2C) revealed 
that HepG2/IR cells exhibited a significantly decreased 
cell apoptosis rate. Animal experimental results showed 
that the tumour volume of the HepG2/IR cell group was 
larger than that of the control group. In particular, mice 
in the HepG2 cell group treated with OXA had the mini-
mum tumour volume (Fig. 2D), suggesting that IR could 
significantly inhibit OXA sensitivity in hepatoma cells.

Overexpressed mir-5195-3p inhibited proliferation, 
migration, invasion, EMT and chemoresistance in HepG2/
IR cells
As shown in Fig. 3A, the expression of miR-5195-3p was 
significantly increased after transfection with the miR-
5195-3p mimic in HepG2/IR cells compared with that 
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of the NC mimic group. The results of the MTT assay 
indicated that the overexpression of miR-5195-3p inhib-
ited HepG2/IR cell proliferation (Fig.  3B). Moreover, a 
colony formation assay was performed. Decreased pro-
liferation was found in the miR-5195-3p-overexpressing 
HepG2/IR cells (70.67 ± 2.52) compared with the NC 
controls (211.33 ± 4.04) (Fig.  3C). A reduced EdU-pos-
itive rate was found in the miR-5195-3p-overexpressing 
HepG2/IR cells (42.55 ± 1.23%) compared with the con-
trol cells (65.66 ± 2%) (Fig. 3D). To investigate the effects 
of miR-5195-3p on cell migration, invasion and EMT, we 
assessed HepG2/IR cells by wound-healing assays, tran-
swell assays and Western blots. The transwell assay with 
or without Matrigel demonstrated that the miR-5195-3p 
mimic group showed significantly suppressed migra-
tion and invasion of HepG2/IR cells compared with the 
control groups (Fig. 3E). The 48 and 72 h wound-healing 
assays revealed that the migratory capacity was decreased 
significantly with the miR-5195-3p mimic compared with 
that of the control cells (Fig.  3F). As shown in Fig.  3G, 
miR-5195-3p overexpression significantly inhibited the 

protein expression of N-cadherin, Vimentin and Snail 
and promoted the protein expression of E-cadherin in 
HepG2/IR cells compared with the mimic NC cells. These 
results suggested that upregulation of miR-5195-3p inter-
fered with proliferation, migration, invasion and EMT in 
HepG2/IR cells.

To investigate and illuminate the relationship between 
miR-5195-3p and chemoresistance in HepG2/IR cells, 
we performed cell viability assays, EdU assays, apoptotic 
analyses, and in vivo animal experiments to assess the 
sensitivity of drug-resistant HepG2/IR cells to OXA after 
miR-5195-3p was upregulated. The IC50 values for OXA 
in HepG2/IR cells were significantly lower in the mimic 
group than in the miR-NC group (Fig. 4A). The positive 
rate of EdU was also remarkably lower than that in the 
NC group (Fig.  4B). Moreover, flow cytometry with the 
Annexin V/PI double staining assay (Fig.  4C) revealed 
that miR-5195-3p mimic transfection significantly 
increased cell apoptosis in HepG2/IR cells in comparison 
with the results of the miR-NC transfected group. Ani-
mal experimental results showed that the tumour volume 

Fig. 1  HepG2/IR cells displayed enhanced proliferation, migration, invasion and EMT. (A) MTT assays were performed with HepG2 and HepG2/IR cells. (B) 
Colony formation assays were performed with HepG2 and HepG2/IR cells. (C) DNA replication was detected by EdU assays in HepG2 and HepG2/IR cells. 
(D) Representative image of migration and invasion in HepG2 and HepG2/IR cells. (E) The migration of HepG2 and HepG2/IR cells was determined by 
scratch wound-healing assays. (F) The protein expression of E-cadherin, N-cadherin, Vimentin and Snail in HepG2 and HepG2/IR cells was determined by 
Western blotting; the membranes were cut prior to hybridization with antibodies. The experiments were independently repeated three times. (* P < 0.05, 
** P < 0.01)
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of the miR-5195-3p mimic group was smaller than that 
of the mock or control group. In particular, mice in the 
miR-5195-3p mimic group treated with OXA had the 
minimum tumour volume (Fig. 4D). These findings sug-
gested that miR-5195-3p could significantly elevate the 
OXA sensitivity of HepG2/IR cells.

Inhibited mir-5195-3p promoted proliferation, migration, 
invasion, EMT and chemoresistance in HepG2 cells
As shown in Fig.  5A, the expression of miR-5195-3p 
was significantly decreased after transfection with the 

miR-5195-3p inhibitor in HepG2 cells compared with 
that of the NC inhibitor group. (Fig. 5A) An MTT assay 
was employed to detect the proliferation of HepG2 
cells transfected with miR-5195-3p inhibitor or NC 
inhibitor. The results indicated that downregulating 
the expression of miR-5195-3p elevated proliferation 
of HepG2 cells (Fig.  5B). Moreover, colony formation 
assays showed increased proliferation of miR-5195-3p-
downregulated HepG2 cells (145.67 ± 13.05) compared 
with the NC controls (76.33 ± 4.51) (Fig.  5C). In addi-
tion, an enhanced EdU-positive rate was found in the 

Fig. 2  HepG2/IR cells displayed enhanced chemoresistance. The IC50 value (A) and EdU-positive rate (B) of MMC, VCR, OXA and sorafenib in HepG2/IR 
cells and their parental cells. (C). Representative images of apoptosis. D. The tumours dissected from all groups were photographed. (* P < 0.05, ** P < 0.01)
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miR-5195-3p-downregulated HepG2 cells compared 
with the controls (Fig.  5D). To investigate the effects of 
miR-5195-3p on cell migration, invasion and EMT, we 
assessed cells by wound-healing assays, transwell assays 
and Western blots, respectively. Transwell assays with 
or without Matrigel demonstrated that the miR-5195-3p 
inhibitor group exhibited significantly increased migra-
tion and invasion compared with the control group 
(Fig.  5E). The 48 and 72  h wound-healing assays also 
revealed that the migratory capacity was elevated signifi-
cantly (Fig. 5F). As shown in Fig. 5G, downregulation of 
miR-5195-3p significantly increased the protein expres-
sion of N-cadherin, Vimentin and Snail and suppressed 
the expression of E-cadherin in HepG2/IR cells com-
pared with those of the inhibitor NC group. These results 

suggested that downregulated miR-5195-3p induced 
enhanced proliferation, migration, invasion and EMT in 
HepG2 cells.

To investigate and illuminate the relationship between 
miR-5195-3p and chemoresistance in HepG2 cells, we 
performed a cell viability assay, an EdU assay, apoptosis 
analysis, and in vivo animal experiment to detect sensi-
tivity to OXA in HepG2 cells after downregulating the 
expression of miR-5195-3p. The IC50 value of OXA in 
HepG2 cells was clearly higher in the inhibitor group 
than in the miR-NC group (Fig. 6A). The positive rate of 
EdU was also significantly higher than that in the miR-
NC group (Fig.  6B). Moreover, flow cytometry with the 
Annexin V/PI double staining assay revealed that inhi-
bition of miR-5195-3p could remarkably decrease cell 

Fig. 3  Overexpressed miR-5195-3p inhibited proliferation, migration, invasion, and EMT in HepG2/IR cells. (A). Relative miR-5195-3p expression levels 
in HepG2/IR cells were detected using qRT‒PCR after transfection with miR-5195-3p mimic or its control (NC mimic). MTT assays (B), colony formation 
assays (C), and EdU assays (D) were employed to detect the proliferation of HepG2/IR cells after transfection with the NC mimic or the miR-5195-3p 
mimic. Representative images of migration and invasion (E) and scratch wound healing assays (F) of HepG2/IR cells transfected with miR-5195-3p mimic 
or NC were determined. G. The protein expression of E-cadherin, N-cadherin, Vimentin and Snail in HepG2/IR cells transfected with miR-5195-3p mimic 
was determined by Western blots; the membranes were cut prior to hybridization with antibodies. The experiments were independently repeated three 
times. (* P < 0.05, ** P < 0.01)
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apoptosis in HepG2 cells in comparison with the results 
for miR-NC transfection (Fig.  6C). Animal experimen-
tal results showed that the tumour volume of the miR-
5195-3p inhibitor group was larger than that of the mock 
or control group (Fig. 6D). These findings suggested that 
miR-5195-3p could significantly decrease the OXA sensi-
tivity of HepG2 cells.

Mir-5195-3p regulated the expression of SOX9 and TPM4 
by directly targeting their 3′-UTRs
To identify the potential targets of miR-5195-3p, we used 
bioinformatics strategies. The SOX9 and TPM4 3′-UTRs 
that were predicted by TargetScan had target sites for 
miR-5195-3p (Fig.  7A, B). The luciferase reporter assay 
results exhibited significantly decreased luciferase activ-
ity in the wild-SOX9-3′UTR (WT) and WT-TPM4-
3′UTR groups compared with the control groups, 
but the mutant reporters (MT) were not repressed by 

miR-5195-3p (Fig.  7C, D). In addition, Fig.  7E not only 
shows that SOX9 and TPM4 were upregulated in HepG2/
IR cells compared with HepG2 cells but also reveals that 
overexpression of miR-5195-3p suppressed the expres-
sion of SOX9 and TPM4 in HepG2/IR cells, which sug-
gested that miR-5195-3p targeted the 3′UTR of SOX9 
and TPM4 directly and regulated the expression of SOX9 
and TPM4.

Discussion
Liver cancer is one of the most common types of cancer. 
During the past decades, surgery, chemotherapy, and 
immunotherapy have shown major advances in treating 
hepatoma. However, the majority of HCC patients have 
already developed distant metastases and do not respond 
to the treatments mentioned above, resulting in a poor 
prognosis and long-term survival rate following surgi-
cal resection [21]. To develop more effective diagnosis 

Fig. 4  Overexpressed miR-5195-3p inhibited chemoresistance in HepG2/IR cells. The IC50 value (A) and EdU-positive rate (B) to OXA in HepG2/IR cells 
transfected with mimic or miR-NC. (C). Representative images of apoptosis. (D). The tumours dissected from all groups were photographed. The experi-
ments were independently repeated three times. (* P < 0.05, ** P < 0.01)
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and treatment strategies, researchers must gain a deeper 
understanding of the mechanisms of malignancy in liver 
cancer.

Chronic IR conditions occur when the sensitivity to 
insulin decreases, as well as the ability to absorb and uti-
lize glucose within organisms or cells. It has been proven 
that IR is an independent risk factor that accelerates the 
progression of liver cancer [22]. The mechanism leading 
to the enhancement of malignant biological behaviour of 
IR HCC is still unclear. In this study, HepG2 cells were 
induced with a high concentration (0.2 µmol/L) of insu-
lin for a long time (72  h) to produce stable IR. After a 
series of in vitro functional experiments, such as MTT 
analysis, cell scratch tests and flow cytometry, as well as 
in vivo nude mouse xenograft experiments, it was found 

that the proliferation, migration, invasion, EMT ability 
and chemoresistance of HepG2/IR cells were significantly 
enhanced, indicating that IR could promote stronger 
malignant biological behaviour in HCC.

Studies have shown that miRNAs can participate in 
various biological processes, such as proliferation, inva-
sion, EMT and drug tolerance, in numerous cancers 
through negative regulation of gene expression [23–25]. 
It was confirmed that miR-5195-3p inhibited the prolifer-
ation and invasion of bladder cancer cells by targeting the 
oncogene KLF5.21 and inhibited the activity of HCT116 
cells by inhibiting the expression of TGFβR1, TGFβR2, 
SMAD3 and SMAD4 [26]. Numerous studies have shown 
that miR-5195-3p plays a significant role in several can-
cers [27–29]. However, the regulatory mechanism of 

Fig. 5  Inhibited miR-5195-3p promoted proliferation, migration, invasion, and EMT in HepG2 cells. (A). Relative miR-5195-3p expression levels in HepG2 
cells were detected using qRT‒PCR after transfection with miR-5195-3p inhibitor or its control (NC inhibitor). MTT assays (B), colony formation assays 
(C), and EdU assays (D) were employed to detect the proliferation of HepG2 cells after transfection with the NC inhibitor or the miR-5195-3p inhibitor. 
Representative images of migration and invasion (E) and scratch wound healing assays (F) of HepG2 cells transfected with miR-5195-3p inhibitor or NC 
were determined. (G). The protein expression of E-cadherin, N-cadherin, Vimentin and Snail in HepG2 cells transfected with miR-5195-3p inhibitor was 
determined by Western blotting; the membranes were cut prior to hybridization with antibodies. The experiments were independently repeated three 
times. (* P < 0.05, ** P < 0.01)
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miR-5195-3p in IR liver cancer cells remains unclear. 
Oxaliplatin (OXA), the anticancer drug we have chosen, 
is an extensively used anticancer medicine worldwide, 
and the clinical activity of several schemes containing it 
in advanced HCC has been demonstrated in recent stud-
ies [30, 31]. Consistent with other studies, we proved that 
impaired expression of miR-5195-3p in IR hepatoma cells 
was involved in malignant biological processes such as 
proliferation, migration, EMT and drug resistance, and 
the results were contrary. To clarify the function of miR-
5195-3p in vivo, we performed tumour formation experi-
ments in nude mice in HepG2/IR cells transfected with 
miR-5195-3p mimics and HepG2 cells transfected with 
miR-5195-3p inhibitors. The same results were observed 
in vitro.

We also verified that SOX9 and TPM4 were the targets 
of miR-5195-3p. Thus, we speculated that miR-5195-3p 

regulates the malignant behaviour of IR hepatoma cells. 
SOX9 is expressed in a variety of cancers, including pan-
creatic cancer, breast cancer, and prostate cancer [18]. 
Studies have shown that SOX9 can interact with a variety 
of downstream proteins and exhibit stimulatory or inhib-
itory activity in different types of tumour cells [32, 33]. It 
was also reported that SOX9 could activate the Wnt/β-
catenin pathway to drive the growth and metastasis of 
gastric cancer [34]. In addition, studies have shown that 
SOX9 can be negatively regulated by microRNAs and 
regulate the development of cancer. For example, miR-
216b inhibited the proliferation and invasion of non-
small cell lung cancer (NSCLC) cells by directly targeting 
SOX9, and miR-145 reduced the adhesion and invasion 
of glioblastoma cells by inhibiting the carcinogenic pro-
teins of SOX9 and ADD3 [35, 36]. As an actin-binding 
protein, TPM4 belongs to the protomyosin family, which 

Fig. 6  Inhibition of miR-5195-3p promoted chemoresistance in HepG2 cells. The IC50 value (A) and EdU-positive rate (B) for OXA in HepG2 cells trans-
fected with inhibitor or miR-NC. (C). Representative images of apoptosis. (D). The tumours dissected from all groups were photographed. The experiments 
were independently repeated three times. (* P < 0.05, ** P < 0.01)
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can enhance the migration of tumour cells by chang-
ing the actin cytoskeleton [19]. TPM4 was found to be 
abnormally expressed in a variety of cancers, and it was 
considered to be a potential biomarker for liver cancer, 
ovarian cancer, colon cancer, etc. [37–39]. Studies have 
shown that enhanced TPM4 could promote the migra-
tion of certain types of cancer cells without participating 
in cell proliferation and EMT progression [40]. Our pre-
vious study also found that TPM4 was highly expressed 
in HCC tissues and HCC cells with high invasiveness. In 
addition, TPM4 positivity was closely related to clinical 
pT grade, pathological grade and clinical stage [41].

Conclusions
In summary, we found that downregulated miR-5195-3p 
could participate in the proliferation, invasion, EMT and 
chemoresistance of HepG2/IR cells by upregulating the 
expression of the target genes SOX9 and TPM4. Our 
findings provide new insights into the molecular function 
of miR-5195-3p and a potential therapeutic target in liver 
cancer. Finally, this study is limited, as we restricted our 
work to HepG2 liver cancer cells. Further studies should 
be performed on liver cancer cells with miR-5195-3p.

Fig. 7  miR-5195-3p directly targeted the 3′-UTR of SOX9 and TPM4. The predicted targeting sites of SOX9 and TPM4 (A and B). A dual luciferase reporter 
assay was performed to verify the direct target of miR-5195-3p (C and D). (E). Western blotting was performed to detect the protein expression levels of 
SOX9 and TPM4 in HepG2 cells transfected with NC inhibitor or miR-5195-3p inhibitor, and HepG2/IR cells were transfected with the NC mimic or miR-
5195-3p mimic; the membranes were cut prior to hybridization with antibodies. The experiments were independently repeated three times. (* P < 0.05, 
** P < 0.01)
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