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Abstract 

Background Cuproptosis is a regulated cell death form associated with tumor progression, clinical outcomes, and 
immune response. However, the role of cuproptosis in pancreatic adenocarcinoma (PAAD) remains unclear. This study 
aims to investigate the implications of cuproptosis-related genes (CRGs) in PAAD by integrated bioinformatic meth-
ods and clinical validation.

Methods Gene expression data and clinical information were downloaded from UCSC Xena platform. We analyzed 
the expression, mutation, methylation, and correlations of CRGs in PAAD. Then, based on the expression profiles of 
CRGs, patients were divided into 3 groups by consensus clustering algorithm. Dihydrolipoamide acetyltransferase 
(DLAT) was chosen for further exploration, including prognostic analysis, co-expression analysis, functional enrich-
ment analysis, and immune landscape analysis. The DLAT-based risk model was established by Cox and LASSO 
regression analysis in the training cohort, and then verified in the validation cohort. Quantitative reverse transcriptase 
polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC) assays were performed to examine the expres-
sion levels of DLAT in vitro and in vivo, respectively.

Results Most CRGs were highly expressed in PAAD. Among these genes, increased DLAT could serve as an inde-
pendent risk factor for survival. Co-expression network and functional enrichment analysis indicated that DLAT was 
engaged in multiple tumor-related pathways. Moreover, DLAT expression was positively correlated with diverse 
immunological characteristics, such as immune cell infiltration, cancer-immunity cycle, immunotherapy-predicted 
pathways, and inhibitory immune checkpoints. Submap analysis demonstrated that DLAT-high patients were more 
responsive to immunotherapeutic agents. Notably, the DLAT-based risk score model possessed high accuracy in pre-
dicting prognosis. Finally, the upregulated expression of DLAT was verified by RT-qPCR and IHC assays.
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Conclusions We developed a DLAT-based model to predict patients’ clinical outcomes and demonstrated that DLAT 
was a promising prognostic and immunological biomarker in PAAD, thereby providing a new possibility for tumor 
therapy.

Keywords Pancreatic adenocarcinoma, Cuproptosis, DLAT, Immunotherapy, Prognosis

Introduction
Pancreatic cancer is a highly malignant tumor with 
extremely poor prognosis. In 2023, approximately 64,050 
new cases will be detected, leading to estimated 50,550 
deaths [1]. Pancreatic adenocarcinoma (PAAD) is the 
most common histological subtype of pancreatic can-
cer, accounting for approximately more than 85% of all 
cases [2]. The prevalence of PAAD is relevant to smoking, 
obesity, diabetes, alcohol use, chronic pancreatitis, and 
genetic factors [3]. Patients with PAAD are commonly 
unable to receive early diagnosis and treatments due to 
their non-specific symptoms and aggressive behaviors 
[4]. They generally result in poor outcomes with a 5-year 
survival rate as low as 9% [5]. At initial diagnosis, more 
than half of the patients suffer from metastatic diseases, 
exhibiting an average survival time of less than one year 
[6]. Multiple therapeutic approaches, such as surgery, 
chemotherapy, radiotherapy, targeted therapy, and immu-
notherapy have been developed to increase patients’ sur-
vival rates [7]. Nevertheless, PAAD continues to threaten 
human life and health seriously. Therefore, it is impera-
tive to detect novel prognostic biomarkers to overcome 
the clinical dilemma in PAAD treatment.

Immunotherapy has provided more therapeutic opin-
ions for cancer patients in recent years. Immune check-
points inhibitors that target programmed cell death-1 
(PD-1), programmed cell death-ligand 1 (PD-L1), and 
cytotoxic T-lymphocyte antigen-4 (CTLA-4) have been 
approved for the treatment of PAAD [8, 9]. Unfortu-
nately, the immunosuppressive tumor microenvironment 
(TME) in PAAD that consists of dense fibrotic stromal, 
suppressed effector T cells, activated myeloid-derived 
suppressor cells, and insufficient secreted cytokines 
strongly limits the efficacy of immunotherapy [10]. Thus, 
it is crucial to identify useful immunological indicators to 
promote individualized immunotherapy in PAAD.

Cuproptosis, a newly defined cell death program, has 
attracted much attention due to its unique mechanism 
[11]. Unlike other cell death forms, such as apoptosis, 
autophagy, pyroptosis, and ferroptosis, cuproptosis is a 
copper-dependent pathway related to the tricarboxylic 
acid (TCA) cycle in mitochondria [12]. As an essential 
trace metal, copper is vital in regulating enzyme func-
tions and body homeostasis. However, copper accumula-
tion will induce cell death [13]. Tsvetkov et al. elucidated 
this lethal mechanism that excessive copper ions could 

directly bind to the lipoylated mitochondrial proteins, 
leading to lipoylated proteins aggregation and iron-sulfur 
cluster proteins reduction, eventually causing cell death 
[11]. Most researchers made explorations on the role of 
cuproptosis in tumors, and discovered that cuproptosis-
related genes (CRGs) could function as prognostic bio-
markers with the potential to guide immunotherapy in 
hepatocellular carcinoma [14], kidney cancer [15], breast 
cancer [16], and other tumors [17–19]. It was considered 
that cuproptosis might open the area of tumor treatment 
and provide new therapeutic targets in the future. Thus, 
we performed this analysis to explore the prognostic and 
therapeutic implications of cuproptosis in PAAD.

Herein, we conducted a comprehensive analysis to 
assess the function of CRGs in PAAD, including expres-
sion profiles, mutation and methylation status, corre-
lation analysis, and consensus clustering analysis. We 
chose DLAT for further exploration and performed sur-
vival analysis to determine its prognostic value. To fur-
ther investigate its biological function, we established the 
protein–protein interaction (PPI), gene–gene interaction, 
and co-expression network, then identified differentially 
expressed genes (DEGs) for enrichment analysis. We also 
uncovered the positive correlations between DLAT and 
immunological characteristics. In summary, our research 
indicated that DLAT could be a potential prognostic and 
immunological biomarker in PAAD.

Materials and methods
Data collection
Thirteen CRGs were obtained from the research of Tsvet-
kov et  al., including 7 positive regulatory genes (FDX1, 
LIPT1, LIAS, DLD, DLAT, PDHA1, and PDHB), 3 nega-
tive regulatory genes (MTF1, GLS, and CDKN2A), and 
3 copper transport-related genes (SLC31A1, ATP7A and 
ATP7B) [11]. The gene expression data of PAAD samples 
collected in the Cancer Genome Atlas (TCGA) database 
and normal samples saved in the genotype-tissue expres-
sion (GTEx) database were obtained from the UCSC 
Xena platform (http:// xena. ucsc. edu/). The fragments 
per kilobase million (FPKM) sequencing data were trans-
formed to transcripts per million (TPM) data and nor-
malized by log2 (TPM + 1). Then, the TPM data of TCGA 
and GTEx databases were integrated using the "normalize 
between array" function of "limma" package (v3.52.4). To 
verify the differential expression of DLAT between tumor 

http://xena.ucsc.edu/
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and normal tissues, GSE62452, GSE71729, GSE15471, 
and GSE16515 datasets were downloaded from the Gene 
Expression Omnibus (GEO) database (https:// www. ncbi. 
nlm. nih. gov/ geo/).

Mutation and methylation analysis
Copy number variation (CNV) data were collected using 
the UCSC Xena platform. The location of CNV changes 
on chromosomes was visualized through "RCircos" pack-
age (v1.2.2). The promoter methylation levels of CRGs 
were analyzed by the UALCAN database (http:// ualcan. 
path. uab. edu/) [20].

Consensus clustering analysis
Patients in TCGA cohort were clustered using "Con-
sensusClusterPlus" package (v1.60.0) according to their 
expression levels of CRGs. In the consensus clustering 
analysis, the maximum number of clusters was defined as 
6, and 80% of the total samples were drawn 1000 times, 
clusterAlg = "pam", innerLinkage = "ward.D". The optimal 
number of clusters was determined by consensus matrix 
heat map, consensus cumulative distribution function, 
and delta area plot together. Following that, we compared 
the age, gender, histologic grade, clinical stage, and sur-
vival status among different clusters. Survival differences 
were analyzed based on Kaplan–Meier curves using "sur-
vminer" package (v0.4.9). The "DESeq2" package (v1.36.0) 
was employed to identify DEGs between cluster A and 
cluster C on the basis of count data, with the threshold 
set at fold change > 2 and adjusted p < 0.05.

Functional enrichment analysis
The "ClusterProfiler" package (v4.4.4) was utilized to 
explore the function of potential targets, including 
Gene Ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways [21], and Gene Set Enrich-
ment Analysis (GSEA). The "HALLMARK" gene set was 
downloaded from the Molecular Signatures Database. 
The "GSVA" package (v1.44.5) was used to perform Gene 
Set Variation Analysis (GSVA) for analyzing pathways 
activities between different groups. The volcano map, 
box plot, and bubble plot were completed by "ggplot2" 
package (v3.3.6). The "pheatmap" package (v1.0.12) was 
used to draw the heatmap.

Survival analysis
To assess the overall survival (OS) differences, we con-
ducted Kaplan–Meier analysis based on log-rank test 
through "survival" package (v3.4–0) and "survminer" 
package (v0.4.9). The comparison of objective response 
rates between DLAT-high and DLAT-low groups was 
carried out by chi-square test. We then evaluated haz-
ard ratio (HR) with 95% confidence interval (CI) using 

univariate and multivariate Cox proportional hazards 
regression. Forest plot was performed by "forestplot" 
package (v.3.0.0) to visualize p value, HR, and 95% CI of 
each variable.

Construction of PPI, gene–gene interaction, 
and co‑expression network
The STRING database (https:// string- db. org/) was used 
to create the PPI network [22]. The GeneMANIA data-
base (http:// genem ania. org/) was utilized to establish 
the gene–gene interaction network [23]. Pearson’s cor-
relation analysis was applied to evaluate the correlations 
between DLAT and other genes for co-expression net-
work construction.

Immunological characteristics evaluation
Immunological characteristics were composed of 
immune cell infiltration, TME score, immunother-
apy-predicted pathways, cancer-immunity cycle, and 
inhibitory immune checkpoints. We first analyzed the 
correlation between DLAT CNV and immune cell infil-
tration in TIMER database (https:// cistr ome. shiny apps. 
io/ timer/) [24]. Immune infiltrating cells included B 
cells, CD8 + T cells, CD4 + T cells, macrophages, neu-
trophils, and dendritic cells. Following that, we evalu-
ated the relationship between DLAT expression and the 
abundance of immune cells in the TIMER database. We 
also assessed the association between DLAT expression 
and the infiltration levels of 24 immune cells, which were 
generated by single sample Gene Set Enrichment Analy-
sis (ssGSEA). The "IOBR" package (v0.99.9) was used to 
calculate the TME score [25].

The relationships between DLAT and immunotherapy-
predicted pathways, as well as cancer-immunity cycle 
were also investigated. The 18 immunotherapy-predicted 
pathways included IFN-gamma signature, APM signal, 
base excision repair, cell cycle, DNA replication, Fanconi 
anemia pathway, and other pathways. The signature genes 
were acquired from previous studies [26, 27]. Moreover, 
the 7 steps of cancer-immunity cycle were described in 
2013, including release of cancer antigens, cancer antigen 
presentation, priming and activation, trafficking of T cells 
to tumors, infiltration of T cells into tumors, recognition 
of cancer cells by T cells, and killing of cancer cells [28]. 
The signature gene set was obtained from the TIP web-
site (http:// biocc. hrbmu. edu. cn/ TIP/) [29]. All the cor-
relations were calculated through Pearson’s correlation 
analysis.

We integrated 5 frequently used immunological algo-
rithms, including TIMER [30], CIBERSORT [31], MCP-
COUNTER [32], QUANTISEQ [33], and EPIC [34] to 
obtain the immune cell infiltration matrix. The heat-
map was carried out by "pheatmap" package (v1.0.12) to 

https://www.ncbi.nlm.nih.gov/geo/
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visualize the distribution of tumor-infiltrating immune 
cells.

Furthermore, we assessed the associations between 
DLAT and common inhibitory immune checkpoints, 
such as PD-L1, PD-L2, CTLA-4, TIM-3, TIGIT and so 
on. To investigate the role of DLAT in guiding immuno-
therapy, we analyzed the response to immune checkpoint 
blockade (ICB) by comparing our data with a meaningful 
melanoma dataset of 47 patients who received anti-PD-1 
and anti-CTLA-4 treatments by subclass mapping algo-
rithm [35–37]. Moreover, IMvigor210 [27], CheckMate 
[38], GSE78220 [39], and GSE91061 [40] cohorts were 
also used to predict the clinical prognosis of patients 
under immunotherapy.

Construction of risk score model
The "DESeq2" package (v1.36.0) was used to determine 
the DEGs (fold change = 1.5, adjusted p < 0.05) between 
DLAT-high and DLAT-low groups. Next, we conducted 
the univariable Cox regression analysis to obtain the 
DEGs with prognostic value. The risk score model was 
then developed on the basis of the prognostic DEGs. The 
"survival" package (v3.4–0) and "glmnet" package (v4.1–
4) were employed to perform Cox and LASSO regression 
analysis, respectively. All patients in the TCGA-PAAD 
cohort were included in the training set. They were clas-
sified into low- or high-risk groups using the median 
risk score. Survival differences were evaluated by log-
rank test. The accuracy of model was estimated by 
time-dependent receiver operating characteristic (ROC) 
curves with corresponding areas under the curve (AUC) 
values using "survivalROC" package (v1.0.3).

Cell culture
Human pancreatic cancer cell lines (BxPC-3 and PANC-
1) and normal pancreatic cell line (HPDE6-C7) were 
obtained from the Chinese Academy of Sciences (Shang-
hai, China) and cultured with complete growth medium, 
as recommended by the manufacturer. All cells were 
incubated at 37℃ in a 5% of  CO2 environment.

Quantitative reverse transcriptase polymerase chain 
reaction (RT‑qPCR)
Total RNA was extracted of cells using TRIzol rea-
gent. Next, the RNA was reverse transcribed into 
cDNA using a PrimeScript RT Reagent Kit with gDNA 
Eraser (Takara, Japan) according to the manufacturer’s 
instructions. RT-qPCR was conducted using TB Green 
Premix Ex Taq II (Takara, Japan). The reaction con-
ditions were set as follows: 95℃ for 30  s, 40 cycles of 
95 ℃ for 3  s and 60 ℃ for 30  s. Relative mRNA levels 
were determined by the  2−∆∆Ct method using GAPDH 
mRNA as an internal control. The primer sequences 

were shown as follows. DLAT-forward: ACT CCC CAG 
CCT TTA GCT C, DLAT-reverse: CAA TCC CTT TCT 
CTA CTG CCAAC, GAPDH forward: GCT GAG AAC 
GGG AAG CTT GT, GAPDH reverse: GCC AGG GGT 
GCT AAG CAG TT.

Immunohistochemistry (IHC)
Human pancreatic cancer tissues were collected from 
12 patients in Harbin Medical University Cancer Hospi-
tal. Patients have not received any anti-cancer treatment 
before tissue collection. Tissues were fixed in formalin, 
embedded in paraffin, and cut into 3  μm sections. The 
2-step plus Poly-HRP Anti-Rabbit IgG detection system 
with DAB solution (Elabscience, E-IR-R217) was used to 
perform IHC staining. Sections were incubated with pri-
mary antibody against DLAT (1:500, Proteintech, 13,426-
1AP) overnight at 4℃, followed by secondary antibody 
polyperoxidase-anti-rabbit IgG for 30  min at 37℃, and 
finally stained by DAB reagent.

Statistical analysis
The comparison between 2 groups was analyzed by 
Wilcoxon test, and the comparison among 3 groups 
was evaluated by Kruskal–Wallis test. Chi-square test 
was used for the comparison of objective response rate. 
Kaplan–Meier analysis was utilized to assess the sur-
vival differences through log-rank test. Pearson’s corre-
lation analysis was employed to examine the correlation 
between 2 variables. All statistical analyses were per-
formed using R (v4.2.1). p < 0.05 was considered statisti-
cally significant.

Results
Expression profiles and mutation status of CRGs in PAAD
Tsvetkov et  al. have defined 13 CRGs which were 
expected to serve as novel targets in cancer treatment. 
We analyzed their expression levels in PAAD tissues 
and normal tissues, and found that all genes were dif-
ferently expressed (Fig.  1A-B). In detail, FDX1, LIAS, 
LIPT1, DLD, DLAT, PDHB, MTF1, GLS, CDKN2A, 
SLC31A1, ATP7A, and ATP7B were highly expressed 
in tumor tissues, while PDHA1 was upregulated in nor-
mal tissues. Moreover, we examined the CNV altera-
tions and revealed that GLS had the most significant 
copy number gain, whereas CDKN2A showed the most 
significant copy number loss (Fig.  1C). The location of 
CNV alterations on chromosomes was visualized in 
Fig.  1D. Promoter methylation levels of FDX1, LIAS, 
GLS, CDKN2A, and ATP7B were upregulated in tumor 
tissues, whereas the level of DLD was upregulated 
in healthy tissues (Fig.  1E). In addition, most CRGs 
were positively correlated with each other (Fig.  1F). 
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The log-rank analysis depicted 5 prognostic genes, of 
which FDX1, DLAT, and ATP7A were associated with 
poor outcomes, while LIAS and LIPT1 were related to 
favorable outcomes (Fig. 1F).

Identification and biological characteristics of CRG clusters 
in PAAD
Based on the expression of CRGs, patients were clustered 
using consensus clustering algorithm. The results showed 

Fig. 1 Characteristics of CRGs in PAAD. A Heat map and B box plot of 13 CRGs in tumor tissues and normal tissues. C CNV frequency of CRGs in 
PAAD. D Location of CNV alterations on chromosomes. E Promoter methylation levels of CRGs in tumor tissues and normal tissues. F Correlation 
analysis and prognostic values of CRGs in PAAD. Positive correlation, red; negative correlation, green (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001)
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that consensus matrix k = 3 can produce the best result 
(Fig.  2A-C). Patients were classified into 3 subgroups, 
termed cluster A (n = 37), cluster B (n = 80), and clus-
ter C (n = 54). The associations between 3 clusters and 
clinical features were presented in Fig.  2D. Five genes 
(DLAT, PDHA1, GLS, CDKN2A, and ATP7B) were dif-
ferentially expressed among clusters. PDHA1 and ATP7B 
were increased in cluster A, CDKN2A was upregulated 
in cluster B, while DLAT and GLS were highly expressed 
in cluster C (Fig. 2E). Survival analysis indicated a signifi-
cant difference on OS (log-rank test, p = 0.042) (Fig. 2F). 
Patients in cluster A exhibited the best median OS of 
44.4  months, whereas those in cluster C showed the 
worst OS of 17.2 months, implying that patients in clus-
ter C had higher degree of malignancy than those in clus-
ter A.

We identified 224 upregulated genes (including ITLN1, 
CLCA1, SPINK4, NPHS2, GAST, and MUC2) and 194 
downregulated genes between cluster A and cluster C 
(Fig. 2G-H). To explore their function, we conducted the 
enrichment analysis based on upregulated DEGs. The 
results of GO, KEGG, and GSVA together uncovered that 
upregulated DEGs were closely associated with tumor 
metabolic regulation, such as olefinic compound meta-
bolic process, retinol metabolism, and xenobiotic metab-
olism (Fig. 2I-K).

Expression profiles and prognostic values of DLAT in PAAD
In this research, DLAT possessed the lowest p value 
(p < 0.001) in prognostic analysis, indicating that DLAT 
was strongly associated with clinical outcomes in PAAD. 
(Fig. 1F). Moreover, we found that the survival time was 
increasingly shortened in cluster A, B, and C (Fig.  2F). 
Meanwhile, the expression levels of DLAT were getting 
higher (Fig.  2E). This result further suggested that high 
expression of DLAT was correlated with poor prognosis. 
Thus, we selected DLAT for further analysis.

We downloaded the external datasets GSE62452, 
GSE71729, GSE15471, and GSE16515 to confirm the dif-
ferential expression of DLAT. In accordance with previ-
ous results, DLAT was significantly increased in tumor 
tissues than normal tissues (Fig.  3A). To further exam-
ine its prognostic signification, patients in TCGA cohort 
with the survival time of more than 30  days were sepa-
rated into DLAT-high (n = 71) and DLAT-low (n = 100) 
groups. We found that DLAT-high patients exhibited 
a shorter OS (log-rank test, p < 0.001) (Fig.  3B) and a 
lower objective response rate (chi-square test, p = 0.043) 
(Fig.  3C) than DLAT-low patients. Moreover, increased 
DLAT expression was considered as an independent risk 
factor for survival (univariable Cox, HR = 2.100, p < 0.001; 
multivariable Cox, HR = 2.287, p < 0.001) (Fig. 3D-E).

Construction of PPI, gene–gene interaction, 
and co‑expression network
In order to analyze the biological function of DLAT, we 
first established the PPI network in the STRING database 
(Fig. 4A). Then, the DLAT-associated gene–gene interac-
tion network was built using the GeneMANIA database 
(Fig. 4B). It was observed that the CRGs, including PDHB, 
PDHA1, and DLD were involved in the PPI and gene–gene 
interaction network. Additionally, we performed correla-
tion analysis to construct DLAT co-expression network. 
A total of 5474 genes were found to be positively related 
to DLAT (Fig.  4C) (Supplementary Table  1). Among 
them, 6 genes exhibited the strongest correlation, namely 
RAB6A (r = 0.73, p < 0.001), ARCN1 (r = 0.70, p < 0.001), 
PRKDC (r = 0.67, p < 0.001), RBM7 (r = 0.67, p < 0.001), 
ARMC1 (r = 0.66, p < 0.001), and ZW10 (r = 0.66, p < 0.001) 
(Fig. 4D). GSEA of DLAT co-expression network indicated 
the top 6 enriched hallmark terms, including G2/M check-
point (NES = 3.255, p < 0.001),  E2F targets  (NES = 3.153, 
p < 0.001), mTORC1 signaling (NES = 2.948, p < 0.001), 
MYC targets (NES = 2.943, p < 0.001), epithelial-mesen-
chymal transition (NES = 2.908, p < 0.001), and protein 
secretion (NES = 2.903, p < 0.001), which were associated 
with cell proliferation and tumor metastasis (Fig. 4E). The 
detailed description of GSEA was shown in Supplemen-
tary Table 2.

Identification of DEGs and enrichment analysis
We identified 144 upregulated genes (such as LCT, 
MUC21, PAX7, and C6orf15) and 680 downregulated 
genes (such as C6orf58, GAST, DBET, FGL1, and OXT) 
in DLAT-high group when compared with DLAT-low 
group (Fig.  5A) (Supplementary Table  3). The top 200 
DEGs were shown in Fig. 5B. We then carried out enrich-
ment analysis to clarify the function of DLAT. GO anal-
ysis consisted of biological process, cell component, 
and molecular function. The results showed that DEGs 
were involved in nuclear pore organization, condensed 
chromosome outer kinetochore, and annealing activ-
ity (Fig. 5C-E). KEGG analysis demonstrated that DEGs 
were primarily engaged in cell proliferation and DNA 
repair, such as mismatch repair, DNA replication, and 
cell cycle (Fig.  5F). The following GSVA revealed the 
enrichments in G2/M checkpoint, E2F targets, mTORC1 
signaling, TGF-β signaling, and complement, which 
were related to cell proliferation and immune response 
(Fig. 5G). In conclusion, DLAT may promote the tumor 
progression through these tumor-related pathways.

Immunological analysis of DLAT in PAAD
We first investigated the impact of DLAT on immune 
cell infiltration in the TIMER database, and observed 
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Fig. 2 Consensus clustering analysis of CRGs in PAAD. A‑C Consensus matrix heatmap defining 3 clusters and their correlation area. D Associations 
between 3 clusters and clinical features. E Box plot of 5 differentially expressed CRGs among 3 clusters. F Kaplan–Meier curves for patients in 
different subgroups. G Volcano plot and H heatmap of DEGs between cluster A and C. I GO, J KEGG, and K GSVA of upregulated DEGs between 
cluster A and C (*p < 0.05; **p < 0.01;  ****p < 0.0001)
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that DLAT CNV has a significant association with 
the infiltration levels of CD4 + T cell and neutrophil 
(Fig.  6A). Meanwhile, DLAT expression was positively 
correlated with the infiltration levels of B cell (r = 0.352, 

p < 0.001), CD8 + T cell (r = 0.589, p < 0.001), macrophage 
(r = 0.482, p < 0.001), neutrophil (r = 0.409, p < 0.001), 
and dendritic cell (r = 0.548, p < 0.001) (Fig. 6B). In addi-
tion, DLAT expression exhibited positive correlations 

Fig. 3 Expression profiles and prognostic values of DLAT in PAAD. A Box plot of DLAT expression between tumor and normal tissues in GSE62452, 
GSE71729, GSE15471, and GSE16515 datasets. B Kaplan–Meier curves for patients in DLAT-high and DLAT-low groups. C Comparison of clinical 
response rates (CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease) in DLAT-high and DLAT-low groups. 
D Univariate and E multivariate Cox analysis of DLAT expression and clinical factors (*p < 0.05; **p < 0.01; ***p < 0.001)
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Fig. 4 Integrated analysis of PPI, gene–gene interaction, and co-expression network. A Construction of PPI network. B Construction of 
gene–gene interaction network. C Volcano map of co-expression genes associated with DLAT. D Correlation analysis of DLAT expression with 
RAB6A, ARCN1, PRKDC, RBM7, ARMC1, and ZW10. E Hallmark terms enriched in G2/M checkpoint, E2F targets, mTORC1 signaling, MYC targets, 
epithelial-mesenchymal transition, and protein secretion based on GSEA
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with most immune cells analyzed by ssGSEA algorithm 
(Fig.  6C). We then calculated the TME scores based on 
"ESTIMATE" package, and revealed close associations 
between DLAT and stromal score (r = 0.26, p < 0.001), 
ESTIMATE score (r = 0.18, p = 0.02), as well as tumor 

purity (r = -0.17, p = 0.03) (Fig. 6D). Moreover, DLAT was 
positively related to steps 1–6 of cancer-immunity cycle 
and the enrichment scores of immunotherapy-predicted 
pathways gene signatures, such as cell cycle, Fanconi 

Fig. 5 Identification of DEGs between DLAT-high and DLAT-low groups and functional enrichment analysis. A Volcano plot of DEGs. B Heatmap 
plot of the top 200 DEGs. C‑F GO and KEGG pathway analysis of DEGs. G Differences in pathway activities scored per patient by GSVA between 
DLAT-high and DLAT-low groups
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Fig. 6 Correlation analysis between DLAT expression and immune cell infiltration. A Immune cell infiltration under various copy numbers of DLAT. 
B Correlations between DLAT and immune cell infiltration based on TIMER database. C Correlations between DLAT and immune cell infiltration 
calculated by ssGSEA algorithm. D Correlations between DLAT and stromal, immune, ESTIMATE scores, as well as tumor purity. E Correlations 
between DLAT and immunotherapy-predicted pathways (left) and cancer-immunity cycle (right) (***p < 0.001)
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anemia pathway, homologous recombination, and others 
(Fig. 6E).

According to previous results, DLAT was likely 
to produce a favorable effect on anticancer immune 
response in PAAD. Immune cell infiltration in DLAT-
high and DLAT-low groups was shown in Fig. 7A. We 

integrated 5 main stream immunoinformatic meth-
ods, including TIMER, CIBERSORT, MCPCOUNTER, 
QUANTISEQ, and EPIC, to elucidate tumor-infiltrating 
immune cell types in different groups. The infiltration 
levels of immune cells were different between DLAT-
high and DLAT-low groups (Fig. 7B).

Fig. 7 Immunological characteristics in DLAT-high and DLAT-low groups. A Proportions of 22 immune cell types in DLAT-high and DLAT-low 
groups. B Heatmap of immune cell infiltration in DLAT-high and DLAT-low groups. C Correlations between DLAT and inhibitory immune 
checkpoints. D Correlations between DLAT and PD-L1 expression. E Comparison of PD-L1 expression in DLAT-high and DLAT-low groups. F Submap 
algorithm evaluated the expression similarity between TCGA-PAAD patients and melanoma patients receiving anti-PD-1 and anti-CTLA-4 therapies 
(R represents responsive, while noR represents no responsive; ***p < 0.001)
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Immune checkpoints played an immunosuppressive 
role in immune response by inhibiting immune cell acti-
vation. In this research, we found that DLAT expression 
was positively related to common inhibitory immune 
checkpoints, such as PD-L1, PD-L2, CTLA-4, TIM-3, 
and TIGIT (Fig.  7C). PD-L1 expression was an impor-
tant biomarker to predict immunotherapy response. We, 
therefore, examined the relationship between DLAT 
and PD-L1, and demonstrated a positive correlation 
between them (r = 0.57, p < 0.001) (Fig. 7D). Compared to 
DLAT-low group, PD-L1 was statistically upregulated in 
DLAT-high group (Fig. 7E). Subsequently, we compared 
the expression profile of TCGA-PAAD patients with a 
melanoma dataset containing 47 patients who received 
anti-PD-1 and anti-CTLA-4 treatments [35–37]. It was 
observed that DLAT-high patients were more respon-
sive to anti-CTLA-4 therapy than DLAT-low patients 
(Nominal p = 0.008) (Fig.  7F). In addition, patients in 
DLAT-high group were more promising to respond to 
anti-PD-L1 therapy (Supplementary Fig.  1A). However, 
when comparing the expression profile of DLAT-high 
group with PD-1-response group, the results showed 
insignificant differences, indicating that DLAT exhib-
ited little impact on the anti-PD-1 therapeutic response 
(Supplementary Fig.  1B-D). The diverse results may be 
attributed to the stronger correlation between DLAT and 
PD-L1/CTLA-4 than it between DLAT and PD-1 (Sup-
plementary Fig. 1E).

Development and validation of DLAT‑based risk score 
model
To create the DLAT-based model, we defined 427 
prognostic DEGs by univariate Cox regression analy-
sis (Supplementary Table  4) and selected 13 optimal 
genes through LASSO regression analysis (Fig.  8A-B). 
According to the 13-gene model, patients were scored 
using the following formula and then split into high-
risk and low-risk groups based on the median risk 
score. Risk score = TSPOAP1 * (-0.02367876) + ANLN 
* 0.011937625 + TLE2 * (-0.08933642) + GNB3 * 
(-0.036416417) + GLTPD2 * (-0.018670796) + BPIFB4 * 
(-0.003192766) + FAM111B * 0.102912035 + INSYN2B * 
0.070370212 + RNU6-892P * (-0.017035372) + LINC01940 
* 0.044119945 + ANKRD18B * 0.034310234 + CCDC188 * 
(-0.012306307) + HNRNPD-DT * (-0.037777293).

The risk score increased along with the death rates 
in the training cohort (the whole dataset, n = 171) 
(Fig. 8C). Moreover, the OS was significantly prolonged 
in low-risk group (log-rank test, p < 0.0001) (Fig.  8D). 
The ROC analysis demonstrated that this model had a 
high accuracy in predicting 1-, 3-, 5- year survival sta-
tus, with the AUC values of 0.746, 0.801, and 0.878, 
respectively (Fig.  8E). Additionally, this risk model 

performed well in the validation cohort (randomly 
selected, n = 85) (Fig. 8F-H).

The Sankey diagram displayed the proportions of 
patients with different CRG clusters, DLAT expression, 
risk scores, and survival outcomes (Fig.  8I). Patients in 
cluster C showed higher risk scores than those in other 
clusters, however, the difference was not significant 
(Fig.  8J). Furthermore, DLAT-high patients exhibited 
statistically higher risk scores than DLAT-low patients 
(Fig. 8K).

Validation of the expression of DLAT in PAAD
We performed RT-qPCR to further confirm the differen-
tial expression of DLAT. The results exhibited that DLAT 
mRNA was significantly increased in tumor cell lines 
compared to normal cell line (Supplementary Fig.  2). 
Moreover, we collected pancreatic tumor tissues and 
adjacent normal tissues from 12 patients. Their clini-
cal characteristics were summarized in Supplementary 
Table  5. The IHC assays demonstrated that DLAT was 
highly expressed in pancreatic cancer tissues (Fig. 9).

Discussion
PAAD is a common malignant tumor worldwide with 
an augmented incidence over the past decades. Despite 
advances in the treatment of PAAD, there was very lit-
tle improvement in OS, with a 5-year survival rate of 9% 
[41]. Thus, it is ultimate to discover novel therapeutic tar-
gets to improve the clinical outcomes of PAAD patients.

Tsvetkov et  al. revealed a novel cell death pathway 
termed "cuproptosis" induced by intracellular copper. 
Unlike other forms, cuproptosis occurs when excessive 
copper ions bind to mitochondrial lipoylated compo-
nents, causing cell death by proteotoxic stress. However, 
the role that cuproptosis plays in PAAD remains to be 
illuminated.

In this work, we carried out the bioinformatic analy-
sis of CRGs using public data acquired from TCGA, 
GTEx, and GEO databases. We examined the expression 
of CRGs and found that most genes exhibited increased 
expression levels in PAAD tissues. Subsequently, 
patients were classified into 3 subgroups using consen-
sus clustering analysis. Patients in cluster A showed the 
most favorable behaviors with the longest OS time. The 
enrichment analysis indicated that upregulated DEGs in 
cluster A were mainly enriched in cellular metabolism 
pathways (such as retinol metabolism, drug metabolism 
by cytochrome P450, and xenobiotics metabolism by 
cytochrome P450), and tumor-related signaling path-
ways (such as Wnt/β catenin pathways, DNA repair, 
p53 pathways, and unfolded protein response). Previ-
ous researches have fully uncovered that these path-
ways played a significant role in cancer development 
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Fig. 8 Construction and validation of risk score model. A, B Thirteen modeling genes determined by LASSO Cox regression. C Distribution 
of risk score and survival status in TCGA training cohort. D Kaplan–Meier curves for high-risk and low-risk patients in TCGA training cohort. 
E Time-dependent ROC curves for predicting the 1-, 3-, and 5-year survival status in TCGA training cohort. F Distribution of risk score, G Kaplan–
Meier curves, and H Time-dependent ROC curves in TCGA validation cohort. I Sankey diagram of different CRG clusters, DLAT subgroups, risk scores, 
and survival outcomes. J Comparison of risk scores in cluster A, B, and C. K Comparison of risk scores between DLAT-high and DLAT-low groups (ns 
represents no significance, ****p < 0.0001)
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by regulating cellular metabolism [42], cell growth [43], 
apoptosis [44], and tumor immunity [45]. Accordingly, 
CRGs may participate in the development of PAAD via 
these classical pathways.

The "Warburg effect" is a unique metabolic fea-
ture in tumors, that is, the energy required for can-
cer cellular processes is primarily generated by aerobic 
glycolysis rather than mitochondrial oxidative phospho-
rylation [46]. A newly developed viewpoint showed that 
the changes in tumor metabolism may be partly con-
nected to impaired mitochondrial function caused by 
the inhibition of pyruvate dehydrogenase complex (PDC) 
[47]. PDC is an enzyme complex responsible to regulate 
glucose oxidative metabolism. It is composed of pyru-
vate dehydrogenase (E1), dihydrolipoamide acetyltrans-
ferase (E2), and dihydrolipoamide dehydrogenase (E3) 
[48]. These components work orderly in the inner mito-
chondrial membrane to catalyze the conversion of oxida-
tive decarboxylation of pyruvate to acetyl coenzyme A, 
thereby interconnecting glycolysis and TCA cycle. Nev-
ertheless, the inactivation of PDC controlled by pyruvate 
dehydrogenase kinase limits the synthesis of acetyl coen-
zyme A, so that glucose oxidation is blocked and meta-
bolic disorders are developed [49].

The dihydrolipoamide acetyltransferase (PDC-E2) is 
encoded by DLAT gene. Dihydrolipoamide acetyltrans-
ferase has been widely described in an autoimmune liver 
disease, primary biliary cholangitis, in which patients lost 

their immune tolerance to PDC-E2 [50, 51]. Autoreactive 
T lymphocytes were increased in primary biliary chol-
angitis and destroyed bile duct epithelial cells, leading to 
destructive lymphocytic cholangitis, ultimately result-
ing in cirrhosis and even liver failure. Moreover, pyru-
vate dehydrogenase deficiency, a disease characterized 
by primary lactic acidosis and neurological dysfunction, 
was related to DLAT gene mutation [52]. As for its role 
in tumor development, Shan et  al. reported that DLAT 
emerged as an upstream acetyltransferase for K76 and 
activated oxidative pentose phosphate pathway, finally 
promoting cell growth in cancer cells [53]. In addition, 
DLAT was increased in gastric cancer, and siRNA-medi-
ated knockdown of DLAT could increase the pyruvate 
levels [54]. DLAT-mediated glycolysis reprograming also 
contributed to the carcinogenesis of non-small cell lung 
cancer [55]. Furthermore, DLAT exhibited prognostic 
values in hepatocellular carcinoma patients based on 
public databases and clinical samples [56].

Although CRGs have been studied in PAAD, DLAT 
has hardly been considered as a special gene for systemic 
analysis. Researchers generally analyzed the CRGs as a 
whole rather than focusing on one gene [57–60]. Com-
pared to other genes, DLAT possessed the lowest p value 
in prognostic analysis, indicating that it may play a more 
important role in the prognosis of PAAD. Therefore, a 
comprehensive analysis of DLAT was needed. In this 
work, we found that DLAT served as an independent risk 

Fig. 9 Representative IHC images of DLAT staining in pancreatic tumor and adjacent normal tissues
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factor for OS in PAAD. KEGG pathway analysis revealed 
that DLAT was primarily correlated to TCA cycle and 
pancreatic cancer pathways, which was in accordance 
with the fact that cuproptosis was related to lipoylated 
TCA cycle proteins, further demonstrating the rationality 
and feasibility of our work. Functional enrichment analy-
sis also revealed that DLAT was engaged in cell division, 
indicating that DLAT might promote tumor progression 
by activating proliferative processes, such as mismatch 
repair, DNA replication, nucleotide excision repair, and 
cell cycle.

As an essential trace element, copper is required for 
maintaining enzyme functions and body homeosta-
sis [13]. The levels of copper were usually increased in 
malignant tumors [61, 62]. Copper was involved in the 
regulation of cellular and humoral immunity, and both 
excessive or insufficient copper ions will impair cel-
lular functions [63, 64]. We evaluated the relationship 
between DLAT and multiple immunological character-
istics in PAAD. As a result, DLAT showed significantly 
positive correlations with immune cell infiltration, most 
cancer-immunity cycle steps, multiple immunotherapy-
predicted pathways, and common inhibitory immune 
checkpoints. Voli et  al. reported that copper could 
enhance PD-L1 expression and promote cancer immune 
evasion in  vitro, while copper chelators could increase 
CD8 + T cell infiltration and prolong survival time in vivo 
[65]. Similarly, DLAT-high patients with increased PD-L1 
expression had worse survival status than DLAT-low 
patients. Furthermore, DLAT-high patients were more 
sensitive to respond  to anti-CTLA-4/PD-L1 treatment 
than DLAT-low patients, implying that DLAT may func-
tion as a biomarker to predict immunotherapy response.

In actual clinical practice, with the help of risk score 
model, doctors can better comprehend the status of 
patients to make precise treatment decisions. Since the 
introduction of cuproptosis, many researchers have 
developed the risk score models to predict the clinical 
outcomes of patients with PAAD. However, the reported 
models exhibited relatively lower AUC values (range from 
0.68–0.84) [57–59]. Therefore, a more effective model 
was needed. Considering the potential effect of DLAT on 
clinical outcomes, we constructed a risk model based on 
DLAT to assess the individual survival risks. It was found 
that the model we built showed higher AUC values than 
others (Supplementary Table  6). Thus, the DLAT-based 
model possessed better effectiveness in predicting prog-
nosis and could be more useful in clinical practice.

Overall, we comprehensively evaluated the prognos-
tic values and biological function of DLAT in PAAD. In 
addition, we revealed the relationship between DLAT 
and multiple immunological characteristics, which could 
provide new ideas for tumor immunotherapy. We also 

constructed a DLAT-based model to predict patients’ 
prognosis. However, our study still has certain limita-
tions. Firstly, the prognostic and immunotherapeutic 
implications of DLAT were analyzed using public data-
bases, which may cause a certain bias. Secondly, the 
impact of DLAT on tumor progression needs to be fur-
ther validated by cell function experiments. In conclu-
sion, more experimental and clinical data are required in 
the future to verify the above conclusions.

Conclusion
We conducted a systematic analysis of DLAT in PAAD 
by integrated bioinformatic methods and clinical vali-
dation. It was identified that DLAT could emerge as an 
independent risk factor for survival, with the potential to 
guide personalized immunotherapy in PAAD. Moreover, 
the DLAT-based model exhibited high accuracy in prog-
nosis prediction. Our findings could help illuminate the 
function of DLAT and contribute to accurate treatment 
of PAAD.
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