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Abstract
Background  The treatment of non-small cell lung cancer (NSCLC) is challenging due to immune tolerance and 
evasion. Salidroside (SAL) is an extract in traditional Chinese medicine and has a potential antitumor effect. However, 
the mechanism of SAL in regulating the immunological microenvironment of NSCLC is yet to be clarified.

Methods  The mouse model with Lewis lung cancer cell line (3LL) in C57BL/6 mice was established. And then, the 
percentage of tumor-infiltrating T cell subsets including Treg was detected in tumor-bearing mice with or without 
SAL treatment. In vitro, the effect of SAL on the expression of IL-10, Foxp3 and Stub1 and the function of Treg were 
detected by flow cytometry. Network pharmacology prediction and molecular docking software were used to predict 
the target of SAL and intermolecular interaction. Furthermore, the effect of SAL on the expression of Hsp70 and the 
co-localization of Stub1-Foxp3 in Treg was confirmed by flow cytometry and confocal laser microscopy. Finally, Hsp70 
inhibitor was used to verify the above molecular expression.

Results  We discovered that SAL treatment inhibits the growth of tumor cells by decreasing the percentage of 
tumor-infiltrated CD4+Foxp3+T cells. SAL treatment downregulates the expression of Foxp3 in Tregs, but increases 
the expression of Stub1, an E3 ubiquitination ligase upstream of Foxp3, and the expression of Hsp70. Inhibiting the 
expression of Hsp70 reverses the inhibition of SAL on Foxp3 and disrupts the colocalization of Stub1 and Foxp3 in the 
nucleus of Tregs.

Conclusions  SAL inhibits tumor growth by regulating the Hsp70/stub1/Foxp3 pathway in Treg to suppress the 
function of Treg. It is a new mechanism of SAL for antitumor therapy.
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Background
Non-small cell lung cancer (NSCLC) accounts for 
approximately 85% of all lung cancer cases [1] and is the 
leading cause of cancer-related deaths in humans [2, 3]. 
Despite several advances in the treatment of NSCLC, 
the mortality of lung cancer remains high [4, 5]. Thus, 
seeking effective treatment approaches for NSCLC is an 
urgent requirement.

Salidroside (SAL), a glycoside of tyrosol, is isolated 
from Rhodiola rosea. It has antioxidation, anti-inflam-
matory effects [6], and anticancer functions [7, 8]. Recent 
studies have reported that SAL inhibits the proliferation 
and metastasis of lung cancer [9]. SAL on anticancer 
decreases proliferation and induces apoptosis in A549 
cells through its ability to inhibit oxidative stress and p38 
[10]. It also suppresses the proliferation and migration 
of human lung cancer cells through AMPK-dependent 
NLRP3 inflammasome regulation [11]. Previous stud-
ies have shown that SAL regulates the immune response 
[12]. However, the effect and the mechanism of SAL on 
the tumor microenvironment of NSCLC are yet to be 
clarified.

The tumor microenvironment is known to be immu-
nosuppressive [13–15] and includes multiple immuno-
suppressive factors, such as regulatory T (Treg) cells and 
some inhibitory cytokines [16–18]. Tregs expressing the 
X chromosome-linked and linage-specific transcrip-
tion factor forkhead box protein P3 (Foxp3) are potent 
immunosuppressive cells and can serve as brakes during 
immune responses. Several studies on cancer diseases 
have emphasized that Treg cells recruited in tumor tis-
sues help the cancer cells escape from immunological 
surveillance. Heterogenetic Tregs with high frequencies 
in tumor tissues, bone marrow, lymph nodes, or periph-
eral blood from NSCLC patients is the predictors of dis-
ease outcomes [19–21]. Accumulating evidence suggests 
that suppressing the function of Tregs inhibits the pro-
gression of tumors by regulating the tumor micro-envi-
ronment [22]. Thus, how to regulate immune balance in 
the tumor microenvironment remains a research hotspot 
in antitumor therapy.

Foxp3 is a key transcription factor of Tregs. Regulat-
ing the expression of Foxp3 inhibits the activation and 
function of Tregs [23]. The mechanism of how antitumor 
drugs regulate Tregs’ function is still unclear. Herein, we 
investigated the antitumor effect of SAL and its effect on 
the immune microenvironment in mice bearing NSCLC 
and explored the putative mechanism of SAL on regulat-
ing Tregs.

Methods
Animals and animal model
Specific pathogen-free C57BL/6 mice (approximately 
8–10-weeks-old, with an average weight of 25  g) were 

obtained from Beijing Vital River Laboratory Animal 
Technology Co., Ltd (Beijing, China). The mice were 
acclimatized in our animal facility and maintained under 
specific pathogen-free barrier conditions. All animal 
experiments were approved by Animal Care and Use 
Committee of the First Affiliated Hospital of Shandong 
First Medical University & Shandong Provincial Qian-
foshan Hospital and Shandong First Medical University 
&Shandong Academy of Medical Sciences (Jinan, China, 
SYXK20180007) and procedures for animal experiments 
were carried out in accordance with relevant guidelines 
and regulations.

On day 0, C57BL/6 mice were inoculated subcutane-
ously in the right flank with 3LL cells (1 × 106cells/mice) 
and randomly divided into three groups: phosphate-
buffered saline (PBS), paclitaxel treatment (PTX), and 
treatment (SAL) groups. After 2 weeks, the mice were 
administered SAL (6  mg/kg·d) or PTX (2  mg/kg·d) by 
intraperitoneal injection every day to reduce the tumor 
size and increase the survival of mice bearing 3LL 
cells (Fig. S1). Primary tumor development was moni-
tored by palpation. The largest perpendicular tumor 
diameters were measured with calipers at 4  day inter-
vals. The volume of the tumors was calculated (largest 
diameter×smallest diameter2)/2. Then, the animals were 
sacrificed by cervical dislocation on day 21 or with sub-
cutaneous tumor volumes exceeding 3,000 mm3. When 
the tumors became palpable with a maximum diam-
eter > 3  cm on days 10–12, the mice received subcuta-
neous injections of SAL, PTX, or PBS at 4 day intervals 
for 2 weeks. Single-cell suspensions were prepared from 
the tumor tissues in a single-cell suspension dissociator 
(DSC-400, RWD Lifescience Co., Ltd, China) for further 
analysis.

Cell culture
3LL Lewis lung carcinoma (clone D122) cell line was a 
kind gift from Professor Chu (Fudan University, Shang-
hai, China). The cells were cultured in Dulbecco’s Modi-
fied Eagle Medium (DMEM) (Gibco BRL, Carlsbad, CA, 
USA) with 10% fetal bovine serum (Thermo Fisher Sci-
entific Inc., Waltham, MA, USA) at 37 °C in a humidified 
atmosphere containing 5% CO2.

The spleen obtained from female tumor-bearing mice 
aged 6–8 weeks. The splenic single-cell suspension was 
prepared First, CD4+T cells were purified by LD enrich-
ment column (Redd system), incubated with anti-biotin 
microbeads, and then collected on Auto MACS (Miltenyi 
Biotec GmbH, Bergisch Gladbach, Germany). Subse-
quently, CD4+T cells were incubated with labeled anti-
CD25 PE for 20 min, washed, and incubated with anti-PE 
beads for 15 min. The cells were selected on LS column 
and purified on Auto MACS. The purity of CD4+CD25+ 
sorted cells detected by flow cytometry was estimated as 
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80–90% (Fig. S2A). The purified Treg cells from tumor-
bearing mice were expanded with anti-CD3/CD28 beads 
(Invitrogen, USA) and 500 U/mL IL-2 (PeproTech, USA). 
Then, the cells were rested with 100 U/mL IL-2 for 2 days 
and stimulated with the drugs. The effect of drug concen-
tration on Treg activity was determined by flow cytom-
etry to select the appropriate drug concentration (Fig. 
S2B).

The cells were stimulated by 2.5 µM HSP70-IN-1 [24] 
(Hsp70 inhibitor) (MedChemExpress, USA) for 32 h, we 
found that the Hsp70 inhibitor inhibited Hsp70 expres-
sion in Treg (Fig. S3). And then, the intervention groups 
were supplemented with 0.05  mg/mL SAL (Solarbio, 
China) or 200 ng/mL lipopolysaccharide (LPS) (Sigma, 
USA).

Flow cytometry and antibodies
The tumors were weighed, minced into small fragments, 
and digested in a medium containing 0.1 mg/mL DNase 
(Sigma-Aldrich) and 1  mg/mL collagenase IV (Sigma-
Aldrich) at 37  °C for 1 h [25] to prepare single-cell sus-
pension for analysis by flow cytometry.

Antibodies targeting CD3, CD4, CD8, CD80, CD86, 
CD25, I-A/I-E, CD11c, and Foxp3 conjugated to the cor-
responding fluorescent dyes were purchased from eBio-
science (San Diego, CA, USA). Single-cell suspensions 
(1 × 106 cells) were stained with different monoclonal 
antibodies according to the manufacturer’s instructions. 
Finally, the samples were analyzed on a FACS Suite using 
the Cell Quest data acquisition and analysis software (BD 
Biosciences, CA, USA).

Fig. 1  SAL reduces tumor progression and prolongs 3LL-bearing mice survival and decreases tumor-infiltrating immune cells. Tumor size A and survival 
rate B were recorded after PBS, SAL, or PTX treatment on tumor-bearing mice. Proportion of CD4+T, CD8+T C, DC D, and Treg cells E from the tumors was 
detected by flow cytometry. Three independent assays were performed; * P < 0.05, ** P < 0.01, *** P < 0.001
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Network pharmacology and molecular docking analyses
The chemical constituents and potential targets of SAL 
were obtained from traditional Chinese medicine data-
base (HERB) (http://herb.ac.cn/). DisGeNET (https://
www.disgenet.org/) and GeneCards (https://www.
genecards.org/) databases were used to determine the 

target genes in NSCLC. And then the network topol-
ogy between potential targets of SAL and the target 
genes in NSCLC is analyzed by using STRING database 
(http://string-db.org/) to select the target of SAL act-
ing on NSCLC. The Metascape bioinformatics database 
was used to analyze the GO molecular function. Finally, 

Fig. 2  Effect of SAL on DCs and T cells in the in vitro experiments. A Expression levels of CD80, CD86, and I-A/I-E on isolated CD11c+MHC-II+ cells, treated 
with PBS, SAL, and LPS. B Percentage of CD4+CD25−and CD4+CD25+T cells from isolated CD4+T cells treated with PBS, SAL, and LPS. C Number of CD8+T 
cells treated with SAL, PBS, or LPS was counted. Expression of CD69 D, Ki67 E on CD4+CD25−T cells and the number of CD4+CD25−T cells F cocultured 
with SAL-, PBS-, or LPS-treated CD4+CD25+T cells. * P < 0.05, ** P < 0.01, ***P < 0.001

 

http://herb.ac.cn/
https://www.disgenet.org/
https://www.disgenet.org/
https://www.genecards.org/
https://www.genecards.org/
http://string-db.org/
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Fig. 3  Effect of SAL on the expression and localization of Foxp3 and Stub1 in Tregs. A Expression of CD69 and Ki67 in Tregs stimulated by SAL, PBS, or 
LPS. B Concentration of IL-10 from SAL-, PBS-, or LPS-treated CD4+CD25+T cells. C Protein expression of Foxp3 in SAL-, PBS-, or LPS-treated Treg cells was 
analyzed by MFI. D MFI of Stub1 in SAL-, PBS-, or LPS-treated Tregs was measured by flow cytometry. E Stub1 enters into the nucleus and colocalizes with 
Foxp3 under SAL and LPS stimulation. Cell samples were harvested at the indicated time points and stained with APC-conjugated anti-Foxp3 antibody 
(Red) and anti-Stub1 antibody, followed by 488-labeled anti-rabbit antibody (Green) and nuclei stained with Hoechst (Blue). Scale bar is 3 μm. Represen-
tative findings are shown from at least three independent experiments. Three independent assays were performed; * P < 0.05, ** P < 0.01, *** P < 0.001
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PyMOL software was used to predict the binding ability 
of drug ligands and targets for molecular docking [26].

Immunofluorescence
Primary Treg cells were collected and fixed in 4% formal-
dehyde, permeabilized with 0.5% Triton-X 100, blocked, 

and incubated with Stub1 and Foxp3 antibodies. Subse-
quently, cell nuclei were stained with Hoechst dye, and 
slides were imaged on a laser confocal microscope (Zeiss 
with LSM 900).

Fig. 4  Hsp70 is a potential target of SAL. Prediction of HSP70 as the upstream target of SAL regulating Foxp3 by network pharmacology A and molecular 
docking technology B. C The expression of Hsp70 in SAL-, PBS-, or LPS-treated Tregs was measured by flow cytometry. * P < 0.05, ** P < 0.01
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Statistical analysis
Data were analyzed using GraphPad Prism 5 (Graph-
Pad Software, San Diego, CA, USA) and represented as 
mean ± standard deviation (SD) of three independent 
experiments. Two-tailed Student’s t-test and one-way 
analysis of variance (ANOVA) were used as parametric 
tests. P < 0.05 (*), 0.01 (**), and 0.001(***) indicated a sta-
tistically significant difference.

Results
SAL treatment inhibits tumor growth, upregulates T cells 
and dendritic cells (DCs), and inhibits Tregs
To assess the anti-tumor effect of SAL in lung cancer, 
SAL or PTX was used to treat the C57BL/6 mice bear-
ing 3LL cells. At 12 days after SAL or PTX treatment, the 
tumor volume was decreased (Fig. 1A) compared to PBS 
treatment. SAL treatment prolonged the survival time 
of mice, which was similar to PTX treatment (Fig.  1B). 
These data showed the anti-tumor effect of SAL.

Furthermore, single-cell suspensions were prepared 
from the tumor tissues, and the cell types were analyzed 
by flow cytometry on day 21. The results showed that 
SAL treatment decreases the number of CD4+Foxp3+ 
T cells (Tregs) but increases the number of DCs and 
CD8+T cells infiltrating into tumor cells (Fig. 1C–E). The 
effect of SAL on tumor and tumor-infiltrating lympho-
cytes was similar to the effect of PTX (a positive control).

SAL treatment downregulates Tregs by inhibiting Foxp3 
expression
In vitro studies showed that SAL treatment promotes 
the maturation of DCs (Fig. 2A) and increases the num-
ber of CD4+CD25−T cells and CD8+T cells compared 
to PBS treatment, which is similar to the effect of LPS 
(a positive control) (Fig.  2B, C). However, the percent-
age of CD4+CD25+T cells is decreased in CD4+T cells 
(Fig.  2B). Moreover, CD4+CD25+T cells stimulated by 
SAL or LPS were cocultured with CD4+CD25−T cells in a 
ratio of 1:10 for 48 h. The expression of CD69 and Ki67 in 
CD4+CD25−T cells cocultured with SAL or LPS treated 
CD4+CD25+T cells was higher than that cocultured 
with PBS group (Fig.  2D-E). On the other hand, Tregs 
treated with SAL could not inhibit the proliferation of 
CD4+CD25−T cells compared to those treated with PBS 
(Fig.  2F), suggesting that SAL suppresses the inhibitory 
effect of Tregs.

SAL treatment inhibited the expression of CD69 and 
Ki67 expression in Tregs (Fig.  3A). IL-10 secretion in 
SAL-treated Tregs was lower than those treated with PBS 
(Fig. 3B). The effect of SAL on Tregs was similar to that of 
LPS, which is a positive inhibitor on Tregs. Thus, it could 
be deduced that SAL activates immunity by inhibiting 
Tregs directly.

The X chromosome-linked, linage-specific transcrip-
tion factor Foxp3 is a key transcription factor of Tregs. 
To analyze whether SAL treatment affects the expression 
of Foxp3 in Tregs, the expression of Foxp3 was detected 
in isolated Tregs post-SAL treatment. Subsequently, SAL 
treatment, but not PBS, decreased the protein expression 
of Foxp3 in Tregs (Fig. 3C). Thus, SAL treatment inhibits 
the protein expression of Foxp3 in Tregs.

SAL treatment promotes the expression and intranuclear 
localization of Stub1 in Tregs
Because a stress-activated E3 ubiquitin ligase termed 
“Stub1” promoted the degradation of Foxp3 [23], the 
expression and localization of Stub1 in SAL-treated Treg 
were detected to find whether Stub1 could influence the 
expression of Foxp3. Stub1 expression was upregulated in 
SAL-treated mouse Treg cells, compared to PBS-treated 
mouse Treg (Fig.  3D). This phenomenon was similar to 
the previous finding of LPS effect in Treg cells [27].

Next, we characterized the colocalization of Foxp3 
with Stub1 in Tregs. SAL treatment revealed that Stub1 
is translocated into the nucleus and co-localized with 
Foxp3 (Fig.  3E), which was similar to LPS treatment. 
However, with PBS stimulation, Foxp3 is mainly localized 
in the nucleus, yet Stub1 in the cytoplasm (Fig. 3E). The 
translocation of Stub1 from the cytoplasm to the nucleus 
and the colocalization of Stub1 and Foxp3 in Treg after 
SAL treatment, suggested that SAL treated might pro-
mote Stub1-mediated Foxp3 degradation.

SAL treatment regulates the expression of Hsp70
To analyze how SAL regulates the Stub1-mediated 
Foxp3 degradation, network pharmacology methods 
were used to analyze the target of SAL in NSCLC. GO 
enrichment analysis revealed that SAL exerted its anti-
tumor effect by affecting the HSP binding sites (Fig. 4A). 
Hsp70 is known to recruit Stub1 to regulate the degra-
dation of Foxp3 [23]. In addition, the docking results of 
SAL and Hsp70 molecules show that the SAL can enter 
and bind with the active pocket of Hsp70, and the bind-
ing of two proteins is high. The active sites of SAL and 
Hsp70 showed a compact binding pattern in the active 
pocket and interacted with amino acid residues LYS-356, 
ALA-355, LYS-250, and GLU-222 in Hsp70 via hydrogen 
bonds (Fig. 4B). The results of AutoDock docking showed 
that the binding energy of SAL and Hsp70 is -1.82 kcal/
mol. When the binding energy is < 0 kcal/mol, the energy 
can be released in the docking process, and the docking 
can be completed without external intervention. These 
results showed that the binding energy of SAL with 
receptor protein Hsp70 is large, and the binding con-
formation is stable, thereby indicating a potential role of 
SAL in targeting Hsp70.
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Furthermore, the effect of SAL on Hsp70 was detected. 
With SAL treatment on Tregs, the expression of Hsp70 
increased, which was similar to LPS treatment. However, 

PBS could not upregulate the expression of Hsp70 in 
Tregs (Fig. 4C).

Fig. 5  Inhibiting Hsp70 influences the expression of stub1 and Foxp3 in SAL-, PBS-, or LPS-treated Tregs or untreated Tregs. A MFI of Stub1 and Foxp3 in 
Tregs after 2.5 µM HSP70-inhibitor-1 (HSP70-IN-1) treatment for 48 h. B MFI of Stub1 and Foxp3 on SAL-, PBS-, or LPS-treated Tregs pre-treated with HSP70-
IN-1. Three independent assays were performed: * P < 0.05, ** P < 0.01. C The same method was used to detect the intranuclear localization of Foxp3 and 
Stub1 in each group with HSP70 inhibitor. Scale bar is 3 μm
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Inhibiting Hsp70 reversed the inhibition of SAL on Foxp3
To analyze the role of Hsp70 on SAL-treated Tregs, the 
expression of Hsp70 was inhibited by HSP70-IN-1, and 
the expression and localization of Stub1 and Foxp3 in 
Treg with or without SAL treatment was detected.

Inhibiting Hsp70 decreased the expression of Stub1 
and increased the expression of Foxp3 (Fig.  5A). How-
ever, after inhibiting Hsp70, SAL or LPS treatment could 
not influence the expression of Foxp3 and Stub1 in Treg 
(Fig.  5B), and could not promote the translocation of 
Stub1 into nucleus (Fig.  5C). Taken together, SAL pro-
motes the colocalozation of Stub1 and Foxp3 in Tregs by 
stimulating the expression of Hsp70.

Discussion
In this study, we reported that SAL treated NSCLC by 
regulating the tumor microenvironment. SAL treatment 
increases the percentage of tumor-infiltrating DCs, CD4, 
and CD8+T cells, but decreases the percentage of Treg by 
inhibiting the expression of Foxp3 through Hsp70/Stub1/
Foxp3 pathway. To the best of our knowledge, this is the 
first study showing that SAL promotes the expression of 
Hsp70 and Stub1 to downregulate the number and func-
tion of Tregs by degrading Foxp3 and further relieves the 
inhibition of effector T cells. Our previous findings have 

shown that SAL promotes the activation and expansion 
of DC and T cells, which might inhibit tumor growth 
[28]. Previous studies have mainly focused on the anti-
tumor activity of SAL, such as inhibiting tumor cell 
migration, tumor cell proliferation, and oxidative stress 
response and activating apoptosis-related pathways [9, 
29]. Although several studies have described SAL as an 
activator of monocytes and an antigen-presenting cell 
and activate the natural and Th1 immune response [12, 
30], none of them reported the inhibitory effect of SAL 
on Tregs, which provides a novel idea for the application 
of SAL in antitumor therapy.

Several studies have focused on how Foxp3 is induced 
in Treg cells, but the negative regulation of Foxp3 protein 
is yet to be elucidated. In this study, we explored how SAL 
downregulated the expression of Foxp3 in Tregs by regu-
lating the post-translational modification of the protein, 
further promoting the degradation of Foxp3 in Treg. Pre-
vious studies have shown that the expression of E3 ligase 
Stub1 can ubiquitinate Foxp3 with the help of chaperone 
Hsp70, which leads to the degradation of the transcrip-
tion factor in Treg [31, 32]. In the immune system, Hsp70 
can activate the innate immune system [33, 34]. It also 
recruits Stub1 under inflammatory conditions to pro-
mote its transfer to the nucleus, further ubiquitinating 

Fig. 6  Schematic of the mechanism of salidroside-regulated tumor microenvironment by downregulating the expression of Foxp3 on regulatory T cells. 
SAL increases the expression of Hsp70 and Stub1 and transfers Hsp70 and Stub1 from outside into the nucleus, promotes the degradation of Foxp3, and 
inhibits the function of Tregs and tumor growth
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and degrading Foxp3. Next, we determined that SAL 
treatment affected the expression of Hsp70. It might be 
SAL enters into the Treg through pinocytosis, and bind 
with the active region of Hsp70 to activate Hsp70. Inhib-
iting the expression of Hsp70 eliminated the effect of SAL 
on the expression of stub1 and Foxp3. Hence, SAL inhib-
its Tregs through Hsp70/Stub1/Foxp3 pathway (Fig. 6).

Consistent with previous reports [9, 11, 29], SAL 
directly inhibits the proliferation of tumor cells and 
induces tumor cell apoptosis, suggesting that SAL is an 
ideal drug for antitumor therapy. Moreover, SAL directly 
inhibits the proliferation of tumor cells [9, 11, 29] and 
regulates the activity and function of immune cells in the 
tumor microenvironment. In the mouse model of lung 
injury, SAL also regulated the secretion of inflammatory 
factors and the number of neutrophils and macrophages, 
further protecting LPS-induced lung injury [35]. These 
studies suggested that SAL has a regulatory effect on the 
immune response. It is possible that SAL can remission 
the tumor by regulating other immune cells. Whether 
SAL has other regulatory effects in tumor remains to be 
further studied. Nonetheless, the pharmacological mech-
anism of SAL on the disease needs to be studied further.

Above all, SAL is a traditional Chinese medicine extract 
that inhibits tumor growth by regulating the tumor 
immune microenvironment. Hsp70/Stub1/Foxp3 path-
way promotes SAL-mediated Treg inhibition, thereby 
providing a new perspective for the antitumor effect and 
a novel strategy for the clinical treatment of SAL. It has 
been reported that Hsp70 and Hsp90 regulate TGF-β sig-
naling by participating in Stub1-mediated ubiquitination 
and degradation of Smad3 [36]. Our previous study also 
found that SAL inhibited TGF-β secretion in Treg [37]. 
Whether SAL regulates TGF-β through Hsp70, and its 
possible mechanism, will be further investigated.

Conclusions
This study describes the novel immunological mecha-
nism of salidroside (SAL) on anti-tumor treatment. 
SAL regulates the tumor immune microenvironment 
by inhibiting the activation and function of Tregs and 
downregulating the expression of Foxp3 but increasing 
the number of CD8+T cells and effector CD4+T cells. 
SAL also stimulates the expression of Hsp70 and Stub1, 
further promoting the degradation of Foxp3. Thus, this 
study would contribute to assessing the immuno-phar-
macological value of SAL in the treatment of non-small 
cell lung cancer.
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