
Wang et al. BMC Cancer          (2023) 23:601  
https://doi.org/10.1186/s12885-023-11032-9

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Cancer

The coagulation-related genes for prognosis 
and tumor microenvironment in pancreatic 
ductal adenocarcinoma
Di Wang1†, Song‑ping Cui1†, Qing Chen1†, Zhang‑yong Ren1, Shao‑cheng Lyu1, Xin Zhao1 and Ren Lang1* 

Abstract 

Background Pancreatic ductal adenocarcinoma (PDAC) is a malignancy characterized by challenging early diagnosis 
and poor prognosis. It is believed that coagulation has an impact on the tumor microenvironment of PDAC. The aim 
of this study is to further distinguish coagulation‑related genes and investigate immune infiltration in PDAC.

Methods We gathered two subtypes of coagulation‑related genes from the KEGG database, and acquired transcrip‑
tome sequencing data and clinical information on PDAC from The Cancer Genome Atlas (TCGA) database. Using 
an unsupervised clustering method, we categorized patients into distinct clusters. We investigated the mutation 
frequency to explore genomic features and performed enrichment analysis, utilizing Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes (KEGG) to explore pathways. CIBERSORT was used to analyze the relationship between tumor 
immune infiltration and the two clusters. A prognostic model was created for risk stratification, and a nomogram 
was established to assist in determining the risk score. The response to immunotherapy was assessed using the 
IMvigor210 cohort. Finally, PDAC patients were recruited, and experimental samples were collected to validate the 
infiltration of neutrophils using immunohistochemistry. In addition, and identify the ITGA2 expression and function 
were identified by analyzing single cell sequencing data.

Results Two coagulation‑related clusters were established based on the coagulation pathways present in PDAC 
patients. Functional enrichment analysis revealed different pathways in the two clusters. Approximately 49.4% of 
PDAC patients experienced DNA mutation in coagulation‑related genes. Patients in the two clusters displayed sig‑
nificant differences in terms of immune cell infiltration, immune checkpoint, tumor microenvironment and TMB. We 
developed a 4‑gene prognostic stratified model through LASSO analysis. Based on the risk score, the nomogram can 
accurately predict the prognosis in PDAC patients. We identified ITGA2 as a hub gene, which linked to poor overall 
survival (OS) and short disease‑free survival (DFS). Single‑cell sequencing analysis demonstrated that ITGA2 was 
expressed by ductal cells in PDAC.

Conclusions Our study demonstrated the correlation between coagulation‑related genes and the tumor immune 
microenvironment. The stratified model can predict the prognosis and calculate the benefits of drug therapy, thus 
providing the recommendations for clinical personalized treatment.
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Introduction
The mortality rate of pancreatic cancer is increasing 
and is a major contributor to tumor-related deaths due 
to its poor prognosis [1]. Pancreatic ductal adenocarci-
noma (PDAC) is the most common histological type of 
pancreatic cancer, accounting for over 90% of cases [2]. 
PDAC is often diagnosed at an advanced stage, making it 
a significant challenge for surgical therapy [3]. The esti-
mated postoperative 5-year overall survival (OS) rates 
range between 5 and 10% [4]. Patients with malignant 
tumors are at an increased risk of both venous thrombo-
embolism (VTE) and arterial thromboembolism [5–7]. 
The prevalence of VTE varies among different types of 
tumors, with PDAC and brain tumors having the high-
est rates [8, 9]. Thus, there may be specific pathways that 
increase the risk of VTE in these cases. However, the 
mechanism of thromboembolism in malignant tumor 
patients is complex and not fully understood. It is gener-
ally recognized that the destruction of the vascular wall 
can result in hemorrhage and intravascular thrombosis, 
which can also lead to extravascular thrombosis due to 
increased vascular permeability and intravascular sub-
stance overflow [10, 11]. In addition to the previously 
mentioned mechanisms, other biological processes, such 
as extracellular vesicle activity, activation of inflamma-
tory cells and formation of neutrophil extracellular traps 
also play a crucial role in cancer-related VTE in PDAC 
[12–14].

Emerging evidence suggests that coagulation is closely 
linked to the tumor microenvironment (TME) [15]. The 
TME is composed of various cell types, including malig-
nant cells, stromal cells and immune cells, which inter-
act with each other and contribute to tumor growth and 
migration [16]. A study by Saidak Z demonstrated that 
the coagulome interacts with the TME and that fibrinol-
ysis is useful in assessing the immune checkpoints or 
the immune status within the TME [17]. An increasing 
body of evidence suggests that microscopic intravascu-
lar thrombosis in glioblastoma can lead to remodeling of 
the TME, including the recruitment of immunosuppres-
sive cells, microvascular hyperproliferation and cancer 
cell migration [18]. Burzynski LC reported that throm-
bin could activate IL-1α, and pro-IL-1α on macrophages 
and platelets were also cleaved and activated by throm-
bin contributing to the inflammatory response [19]. 
Additionally, anticoagulants exhibit promising poten-
tial for enhancing the effectiveness of adjuvant therapy. 
Ruf W’s research indicated that antithrombotic ther-
apy with employing oral FXa inhibitors could mitigate 

tumor immune evasion and demonstrated the clinical 
advantages of immunotherapy through targeting innate 
immune cells [20]. These findings imply that coagula-
tion plays a crucial role in the tumor microenvironment, 
influencing tumor progression and the inhibition of the 
immune response.

The advancements in sequencing technology and bio-
informatics have brought about a new era in the realm of 
medical research, allowing us to investigate the correla-
tion between coagulation and TME in a more concrete 
and tangible way. Through the application of unsuper-
vised clustering algorithms, our study succeeded in iden-
tifying various subtypes of genes related to coagulation. 
We then proceeded to conduct a comparative analysis 
between two distinct gene clusters, assessing their differ-
ences in relation to TME and immunotherapy response. 
Finally, a comprehensive prognostic model was devel-
oped, which encompassed four pivotal genes that were 
screened using univariate Cox regression analysis, as 
well as difference and LASSO analysis. Our study delved 
deeper into the realms of predictive ability, immune infil-
tration, tumor mutation burden (TMB) and drug therapy 
benefits across various risk groups, with the aim of pro-
viding tailored and personalized recommendations for 
clinical treatment. Through our rigorous analysis, we 
successfully identified the hub gene ITGA2, which dis-
played a high expression level and was linked to poor 
prognosis in PDAC. Further analysis, conducted via Sin-
gle cell sequencing techniques, revealed that ITGA2 was 
primarily expressed by epithelial cells and was intricately 
involved in the metastatic process of PDAC tumors.

Materials and methods
Ethics statements
The study was conducted in accordance with the Decla-
ration of Helsinki (as revised in 2013) and was approved 
by the Ethics Committee of Beijing Chaoyang Hospital 
(No. 2020-D-301).

Data collecting
The coagulation pathways under investigation were 
derived from the KEGG database (https:// www. genome. 
jp/ kegg/), encompassing both Platelet activation and 
complement and coagulation cascades [21]. Follow-
ing an extensive screening process, a total of 203 genes 
associated with these pathways were identified and 
subsequently classified as coagulation-related genes 
(Supplementary Table  1). The transcriptome data and 
clinical records of 178 patients diagnosed with PDAC 

https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
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were collated from the TCGA database, with additional 
mutation and somatic copy number alteration data 
obtained from the same source. For further analysis, 
alteration data and clinical information were sourced 
from the cbioportal tool [22]. In order to supplement 
our findings, we also examined the IMvigor210 dataset, 
which comprised transcriptome data, clinical informa-
tion and immunotherapy response data for 348 patients 
diagnosed with urothelial cancer, sourced from the 
IMvigor210CoreBiologies R package [23].

Coagulation‑related genes molecular patterns
Our study utilized consensus clustering analysis, con-
ducted with the aid of the “ConsensusClusterPlus” R 
package, to investigate the molecular subtypes pre-
sent in PDAC [24]. In order to enhance the stability of 
our results, this analysis was performed a total of 1000 
times. Following this, we proceeded to examine the dis-
tributional differences present in coagulation clusters 
via principal component analysis (PCA). Additionally, 
we conducted a correlation analysis between coagula-
tion clusters and a variety of clinicopathological factors, 
including age, gender, T, N and histologic grade [25].

Functional enrichment analyses
Our study utilized Gene Set Enrichment Analysis (GSEA) 
analysis was conducted to explore the underlying bio-
logical pathways present in the data. This analysis was 
conducted using GSEA software [26]. Additionally, we 
performed biological process and pathway enrichment 
analyses through the use of the R clusterProfiler package, 
with Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and Gene Ontology (GO) analyses were performed by R 
clusterProfiler package. ClueGO can visualize and analy-
sis the genes function in the different risk groups [27].

Tumor microenvironment and immune infiltration
The evaluation of the tumor immune microenviron-
ment was conducted through single-sample Gene Set 
Enrichment Analysis (ssGSEA) using the “GSVA” algo-
rithm implemented in R software [28]. The infiltration 
of 16 immunocytes and 13 immune-related functions 
was analyzed across distinct coagulation clusters. The 
patients’ immune score, Stromal score, ESTIMATE score 
and Tumor purity were assessed utilizing the “estimate” 
R package and ESTIMATE algorithm. The ESTIMATE 
algorithm utilizes transcriptome sequencing data to esti-
mate the presence of tumor cells and other cell types in 
the analyzed sample [29].

Analysis of immune checkpoint and drug sensitivity
We assessed the expression levels of immune check-
point gene between two groups segregated by risk 

score. To evaluate the efficacy of ICB, we employed 
the TIDE score, which was calculated using the TIDE 
online tool [30]. We also measured the TMB in terms 
of the number of mutations per million bases in the 
tumor tissue, which was estimated using the ‘TMEs-
core’ R packages to determine the response to ICB [31]. 
Additionally, we explored the relationship between the 
prognostic genes and chemotherapy drugs using the 
Drug Gene Interaction Database (DGIdb). The 3D 
structures of drugs were visualized using the PubChem 
website [32].

The construction of the prognostic model
The present study employed LASSO analysis through the 
“glmnet” package in R software via 1000-folds cross-val-
idation. Clinical parameters were incorporated to exam-
ine their correlation with survival outcomes. Our results 
revealed that Age, LNM and risk score were identified as 
independent prognostic factors through univariable and 
a multivariable Cox regression analysis. To construct the 
nomogram, we utilized the “rms” R package. We assessed 
the predictive ability of the nomogram through calibra-
tion plots and ROC curve [33].

Single cell sequencing analysis and cell–cell 
communication
The single-cell transcriptome file of PDAC samples 
in GSE205013 was acquired from the Gene expres-
sion omnibus (GEO) database (http:// www. ncbi. nlm. 
nih. gov/ geo/). We selected PDAC specimens obtained 
through surgical resection of primary pancreatic lesions 
(n = 10) and isolated cells via centrifugation, which were 
subsequently loaded on a chromium controller (10X 
Genomics) for analysis [34]. Cells were subsequently 
filtered based on high-quality parameters, includ-
ing detection of > 500 genes, > 1500 unique molecular 
identifiers, and < 15% of transcripts coming from mito-
chondrial genes. Log-normalization was utilized to nor-
malize the data and the FindVariableFeatures function 
was employed to identify highly variable genes. Addi-
tionally, all genes were scaled using the ScaleData func-
tion, followed by principal component analysis (PCA) 
downscaling. The cells were subsequently clustered using 
the FindNeighbors and FindClusters, with a set resolu-
tion of 0.8, to obtain cell subgroups [35]. The cells were 
annotated using an annotation approach. To explore the 
communicating interactions between cells and identify 
the mechanism of the communicating molecules at the 
single-cell resolution, we utilized the R package “Cell-
Chat” (version 1.0.0) to analyze cells involved in nine cell 
groups [36].

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Immunochemistry
The present study employed immunohistochemical tech-
niques to evaluate ITGA2 expression in PDAC tissue sec-
tions. Prior to analysis, tissue samples underwent a series 
of preparatory steps including dewaxing, hydration, and 
immersion in methanol containing 0.3% hydrogen peroxide. 
Following washing with PBS, tissue samples were blocked 
using 1% blocking serum for 30 min, and subsequently incu-
bated overnight with primary antibodies against ITGA2 
that had been diluted 500 times using antibody dilution. 
The slides were washed with PBS thrice and subsequently 
incubated with biotinylated sheep anti-rat IgG for 15 min, 
followed by three additional PBS washes. The peroxidase 
reaction was visualized using DAB for 2 min.

Results
Identification of coagulation molecular patterns in PDAC
We present a novel unsupervised clustering method based 
on the expression of coagulation-related genes, which 
identified two distinct coagulation subtypes in 178 PDAC 
patients. Our analysis revealed that cluster 1 (99, 55.6%) 
and cluster 2 (79, 44.4%) (Fig. 1A) exhibit significant dif-
ferences in their transcriptomic profiles, as demonstrated 
by PCA (Fig. 1B) and a heatmap illustrating the correla-
tion two coagulation patterns and clinicopathological fac-
tors (Supplementary Fig.  1A). Moreover, we conducted 
enrichment analysis and found that cluster 1 was enriched 
in tumor and inflammatory pathways, including the Focal 
adhesion pathway, toll-like receptor signaling pathway, 

Fig. 1 Consensus clustering analysis and enrichment analysis and alterations analysis in PDAC. A Two clusters were identified in the TCGA cohort. 
B PCA analysis in two clusters. C Heatmap of the KEGG pathways between two clusters. D GSEA of 5 enriched pathways in PDAC patients with 
cluster1. E The waterfall graphs of mutated coagulation‑related genes. F The proportion different genes in altered group and unaltered group. G 
K‑M survival analysis of the different mutation group. H Lollipop chart of the CNA proportion in coagulation‑related genes
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T-cell receptor signaling pathway, and B-cell receptor 
signaling (Fig. 1C). Furthermore, GSEA confirmed signifi-
cant differences in the toll-like receptor signaling pathway, 
T-cell receptor signaling pathway and chemokine signal-
ing pathway (Fig. 1D). Our results provide novel insights 
into the coagulation subtypes in PDAC patients and offer 
potential targets for therapeutic intervention.

Mutation analysis of coagulation‑related genes
We report here the results of mutation analysis aimed at 
exploring genomic characteristic of coagulation-related 
genes in PDAC. Our findings, presented in Fig. 1E, show 
that the mutation rate in PDAC patients was 49.4%, with 
a ranged of 2–8% for coagulation-related genes. Among 
these genes, GNAS had the highest mutation frequency 
(8%), followed by CR2 (6%), C1S (5%), COL1A2 (5%) and 
COL3A1 (5%), with Missense_Mutation and Multi_Hit 
being the main mutation patterns. We observed that 
patients with altered group had a higher alteration fre-
quency rate of KRAS, TP53 and CDKN2A than unaltered 
group, as shown in Fig. 1F. Supplementary Fig. 1B indi-
cated that alteration and frequency were categorized into 
mutation (22.2%), amplification (21.5%), deep deletion 
(4.0%) and multiple alterations (32.9%), respectively. Fur-
thermore, we sorted the number of mutations for each 
patient and obtained the optimal cutoff value to divide 
patients into low and high mutation groups. Ultimately, 
we identified 50 patients in the low mutation group and 
134 patients in the high mutation group for survival 
analysis. Kaplan–Meier curve suggested patients with a 
high mutation had a poor prognosis compared with the 
low mutation group (Fig.  1G). Finally, ADCY8, AKT2, 
ROCK1 and TLN1 exhibited higher alterations frequency 
(6.0–10.9%) due to the amplification of coagulation-
related genes (Fig. 1H).

Immune infiltration and tumor microenvironment
The present study employs ssGSEA algorithm to inves-
tigate the tumor immune microenvironment in two 
distinct clusters. Cluster 1 showed higher levels of infil-
tration of various immunocytes, such as Neutrophils, 
Macrophage and B-cells (Fig.  2A), with a higher pro-
portion of inflammation promoting cells compared to 
cluster 2 (Fig.  2B). The study further reveals that the 
Immune score, Stromal score, ESTIMATE score of clus-
ter 1 were significantly higher, whereas Tumor purity 
was lower (Fig.  2C). We also compared tumor immune 
microenvironment in two clusters according to ssGSEA 
algorithm (Fig. 2D). In addition, HLA and MHC propor-
tions were higher in cluster 1 than in cluster 2 (Fig. 2E-F). 
The study also examined the association between clus-
ters and immunotherapy response by analyzing TMB, 
TIDE and immune checkpoint genes expression. TIDE 

score and TMB score were higher in cluster 2 compared 
to cluster 1 (Fig. 2G-H), while PD-1, PD-L1, CTLA4 and 
LAG3 expressions were higher in cluster 1 than cluster 2 
(P < 0.05) (Fig. 2I). Furthermore, the IC50 values for com-
mon drugs, such as Gemcitabine, Cisplatin and Doxoru-
bicin were calculated to evaluate drug response in both 
clusters. IC50 of Gemcitabine, Cisplatin, and Doxoru-
bicin was higher in cluster 2 than in cluster 1, whereas 
IC50 of Paclitaxel was higher in cluster 1 than in clus-
ter 2 (Fig. 2J). These findings suggest that cluster 1 may 
respond better to immunotherapy, whereas cluster 2 may 
benefit from chemotherapy treatment.

Screening the hub genes
A total of 65 and 83 genes were obtained through univar-
iate analysis and differential analysis, respectively. Using 
intersection analysis, we identified 31 genes (Fig. 3A) and 
performed GO analysis (Supplementary Table  2) and 
KEGG analysis (Supplementary Table  3) using ClueGo 
to explore potential molecular function. GO analysis 
revealed that the hub genes were significantly enriched 
in the integrin alpha2-beta1 complex, homotypic cell–
cell adhesion, blood coagulation and complement acti-
vation (Fig. 3B). The KEGG analysis indicated that these 
genes were mainly enriched in pathways, such as platelet 
activation, complement and coagulation cascades, long-
term depression and proteoglycans in cancer (Fig.  3C). 
To identify the key genes among these 31 genes, we per-
formed LASSO analysis with 1000-folds cross-validation 
and identified 9 hub genes, including PRKCI, RAP1B, 
PLAU, ITGA2, CFB, MYL12B, SERPINB2, GNAS and 
F5 (Fig.  3D). Supplementary Table  4 showed full names 
and functions of these hub genes. We further identified 
the top four genes (PRKCI, RAP1B, PLAU, and ITGA2) 
based on their value coefficient (Supplementary Table 5). 
K-M survival analysis revealed that all four genes were 
significantly associated with survival outcomes in PDAC 
(p < 0.05) (Fig. 3E). We also explored the protein expres-
sion level of PRKCI and ITGA2 in the Human Pro-
tein Atlas (HPA) database (Fig.  3F), and found that the 
expression level of both genes were significantly higher 
in tumor tissue than in normal tissues. Finally, we estab-
lished a prognostic model based on the expression level 
and corresponding regression coefficients of each opti-
mal PR-FRG. The formula for the risk score was: Risk 
score = Exp (PRKCI)*0.2606 + Exp(RAP1B)*0.2157 + Exp-
(PLAU)* 0.1600 + Exp(ITGA2)* 0.1007.

Establishment of the prognostic model
In this study, we investigated the relationship between 
risk score and survival outcome of patients with PDAC. 
We stratified the patients into high- and low-risk groups 
based on the median risk score (2.639) and analyzed 
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the survival status. As shown in Fig. 4A, PDAC patients 
in the high-risk group had a lower overall survival rate 
than those in the low-risk group. We further investi-
gated the relationship between risk groups, coagulation 
clusters and survival status using a Sankey plot (Supple-
mentary Fig.  2A). Our results indicated that the high-
risk group had a poorer prognosis than the low-risk 
group, as confirmed by the K-M survival analysis (Sup-
plementary Fig.  2B). Notably, this association remained 
significant across different clinical subgroups, including 
patients older than 65 years old, those with Lymph node 
metastasis, T3-4 stage and Grade1-2 tumors (Supple-
mentary Fig.  2C-F). Additionally, using univariable and 

multivariate Cox regression analysis (Fig. 4B-C), we iden-
tified age, lymph node metastasis, and risk score as inde-
pendent prognostic risk factors. To facilitate the clinical 
application of these findings, we constructed a nomo-
gram based on the three identified prognostic factors 
(Fig.  4D) and validated its performance through 1-, 2-, 
and 3-years calibration curves (Fig. 4E) and a ROC curve 
analysis (Fig.  4F). Our results showed that the nomo-
gram exhibited excellent performance in predicting sur-
vival outcomes in PDAC patients, with higher accuracy 
for 3-year prediction than for 1- and 2-year predictions. 
Overall, our findings suggest that the identified prognos-
tic risk factors and the constructed nomogram may serve 

Fig. 2 the analysis of tumor immune microenvironment analysis and estimation in immunotherapy and chemotherapy response between two 
clusters. A Comparison of immune cell types and (B) immune‑related functions. C Stromal score, Immune score, ESTIMATE score, Tumor purity 
in tumor immune microenvironment. D Heatmap of the immune cells between two clusters. E Gene expression of HLA in two clusters. F Gene 
expression of MHC between two clusters. V The TIDE (G) and TMB (H) between two clusters. I The level of immune checkpoint genes in two clusters. 
J The response of two clusters in four chemotherapy drugs
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Fig. 3 Enrichment analysis and screening out key genes. A Venn diagram between differential expression genes and genes associated with 
prognosis. The network of GO terms (B) and KEGG pathway (C) in ClueGO. D LASSO analysis of 31 genes. E The K‑M curves of four risk genes. F 
Expression pattern of the 4 optimal PR‑FRGs between tumor and normal specimens. F Immunohistochemistry staining of the 2 hub genes in tumor 
and normal tissues
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as valuable tools for personalized risk assessment and 
clinical decision-making in PDAC patients.

Correlation with immune cells and drugs sensitiveness
The study investigated the correlation between risk score 
and various immunocytes in PDAC. The results indicated 
a significant positive correlation between risk score and 
the infiltration of the neutrophils and macrophages M0, 
whereas T cells CD8 and B cells native showed an oppo-
site correlation pattern (Fig.  5A). Given the crucial role 
of neutrophils in tumor immune microenvironment, the 
study further confirmed a higher level of Neutrophils 
infiltration in PDAC tissues than normal tissues using 
immunohistochemistry (Fig.  5B). Notably, the K-M sur-
vival analysis revealed that the patients with high neu-
trophil infiltration levels had a poor prognosis (p < 0.05) 
(Fig. 5C). Compared with low-risk group, high-risk group 
tended to high TMB scores compared to the low-risk 
group (p < 0.05) (Fig. 5D). Correlation analysis showed a 

positive association between TMB and risk score (Sup-
plementary Fig.  3A). Additionally, the study demon-
strated that PDAC patients with low TMB had a better 
prognosis than those with high TMB (Fig.  5E). These 
findings provide novel insights into the complex inter-
play between the tumor microenvironment and immune 
response in PDAC, and further investigations are war-
ranted to uncover the underlying molecular mechanisms.

In addition, we have investigated the correlation 
between TIDE score and patient risk stratification, as well 
as the efficacy of anti-PD L1 immunotherapy in patients 
with different risk levels. Our findings revealed that the 
TIDE score was significantly higher in the high-risk 
group compared to the low-risk group (Fig. 5F). Further-
more, we utilized IMvigor210 to explore the effective-
ness of immunotherapy and found that patients with CR 
or PR had better prognoses compared to those with PD 
or SD (Supplementary Fig.  3B). Notably, the high-risk 
group patients tended to exhibit higher proportion of 

Fig. 4 The construction of risk stratification model. A The curve of risk score, survival status and heatmap of the expression in four risk genes. Forrest 
plot of univariable Cox regression analysis (B) and multivariable Cox regression analysis (C) in PDAD. D Nomogram including age, Lymph node 
metastasis, risk score. E The 1‑, 2‑ and 3‑year calibration plots of the nomogram. F The 1‑, 2‑ and 3‑year ROC curves
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SD/PD, while CR/PR were more frequently observed in 
the low-risk group (Fig. 5G). Additionally, the analysis of 
IMvigor210 revealed that patients in the low-risk group 
had better survival outcomes compared to those in the 
high-risk group (Fig. 5H). We also evaluated the response 
of patients to three common chemotherapeutic agents 

and observed that the low-risk group was more sensitive 
to traditional chemotherapeutic agents, including Gem-
citabine and Paclitaxel. However, the high-risk group 
exhibited higher sensitivity to some targeted drugs, such 
as Erlotinib (Fig.  5I). The 3D structure tomography of 
Gemcitabine and Erlotinib, as explored by PubChem, 

Fig. 5 The analysis of correlation with immune cells and benefits of drug therapy. A The correlations between the risk score and immune cells, 
including Neutrophils, T cells CD8, B cells native and Macrophages M0. B Immunohistochemistry staining Neutrophils in normal and tumor tissues. 
C K‑M survival curve of Neutrophils in PDAC. D The TMB analysis between high‑risk and low‑risk groups. E K‑M curve of the high‑TMB and low‑TMB. 
F The TIDE score in two groups. G Bar graph illustrated the SD/PD and CR/PR in high‑risk and low‑risk groups. H K‑M curve of high‑risk and low‑risk 
groups in IMvigor210. I The Drug sensibility of high‑risk and low‑risk groups for Gemcitabine, Paclitaxel and Erlotinib. J The 3D structure tomographs 
of the small‑molecule drugs for Gemcitabine and Erlotinib
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is presented in Fig.  5J. These results suggest that TIDE 
score and patient risk stratification could be useful pre-
dictors for selecting appropriate treatment strategies and 
improving patient outcomes.

Identify the hub gene ITGA2
The hub genes mentioned previously were visualized 
using Cytoscape, which enabled the acquisition of corre-
lation values and node counts (Fig. 6A). The cytoHubba 
algorithm identified the top 10 genes, with red nodes 
highlighting their significance. Notably, ITGA2 and 
ACTB emerged as crucial genes, as depicted in Fig. 6B. 
After intersecting with four risk genes, ITGA2 was iden-
tified as the prime candidate, and its expression was ana-
lyzed in different tumors using TIMER2. Notably, the 
expression of ITGA2 was significantly higher in tumor 
tissues of CESC, CHOL, COAD, ESCA, HNSC, LIHC, 
LUAD, LUSC, READ, STAD and THCA than in normal 
tissues. However, the expression levels of ITGA2 were 
lower in BRCA, KICH, KIRC, KIRP, PCPG, PRAD and 
UCEC tumors than in normal tissues (Fig. 6C). As shown 
Fig. 6D, the expression of ITGA2 was higher in TCGA-
PDAC patients than that in GTEx control. To assess the 
prognostic significance of ITGA2 in PDAC, we con-
ducted survival analysis, and our results demonstrated 
that high ITGA2 expression was associated with poor 
prognosis and short DFS (Fig. 6E-F). We also investigated 
the correlation between ITGA2 expression and clinico-
pathological features and observed that the high ITGA2 
expression was associated with late stage and high grade 
(p < 0.05) (Fig. 6G-H).

Single cell sequencing analysis and immunohistochemical 
validation
We analyzed single-cell RNA-seq data of 10 PDAC 
patients to resolve the architecture of the tumor micro-
environment. We set Resolution = 0.8 (Fig. 7A) to obtain 
cell subgroups, and identified 28 clusters using uni-
form manifold approximation and projection (UMAP) 
based on all gene expression levels (Fig. 7B). Clusters of 
all cells were annotated as T cells (CD3E, CD3D, CD2), 
B cells (CD79A, CD19, MS4A1), Macrophages (CD163, 
CD68), Neutrophils (S100A8, CSF3R, S100A9), NK cells 
(FGFBP2, PRF1, GZMB), Mast cells (CPA3, TPSB2), 
Fibroblasts (COL1A1, ACTA2), Ductal cells (KRT19, 
EPCAM), and Endothelial cells (PECAM1, VWF) 
(Fig. 7C). CellChat was used to delineate intricate cell-to-
cell communications and predict biologically significant 
findings from scRNA-seq data. Figure  7D showed the 
aggregated cell–cell communication network, suggesting 
the interaction strength and the cell types with significant 
changes, especially between ductal cells and fibroblasts. 
We further explored the expression profile of the ITGA2. 

We found that ITGA2 is primarily expressed in ductal 
cells, with a small amount of expression in endothe-
lial cells and fibroblasts (Fig.  7E-F). Further research is 
needed to determine its intercellular function. In order 
to further verify the expression of the ITGA2 in PDAC 
tissue, we collected five normal pancreatic tissues (from 
donors who died of cardiovascular disease) and 15 pan-
creatic cancer patients, and performed immunohisto-
chemistry. The results showed that the target gene was 
barely expressed in normal pancreatic tissue, but was sig-
nificantly upregulated in pancreatic cancer. One sample 
of normal tissue and two samples of pancreatic cancer 
tissue were selected for immunohistochemical staining 
and are presented in Fig. 7G.

Discussion
PC is a highly aggressive and lethal malignancies with 
poor prognosis, mainly due to the lack of sensitivity for 
Immunotherapy or chemotherapy and high recurrence 
post-operation [37]. Additionally, abnormal coagula-
tion in patients with cancer leads to an increased risk of 
venous and arterial thromboembolism, which is a sig-
nificant cause of death [38]. A study involving 1,015,598 
tumor patients reported a venous thrombosis incidence 
of 3.4% and pulmonary embolism incidence of 1.1%, 
with PC having the highest incidence of venous throm-
bosis [39]. A recent report by Frere C showed that 152 
PDAC patients (20.79%) had venous thromboembolism, 
with a median time of 4.49 months before its occurrence. 
Moreover, the study revealed that patients with venous 
thromboembolism had a poor prognosis and shorter 
disease-free survival [40]. Currently, PDAC is believed 
to be associated with various factors, such as system-
atic metabolism and gut microbiomes [41]. Hua Zhong 
conducted a large-scale MWAS analysis and discovered 
that five metabolites (alpha-glutamylglycine, glycylgly-
cine, X-21735, X-24309 and X-21849) showed significant 
associations with PDAC risk. In addition, they identified 
that Flavonifractor sp90199495 might be involved in the 
metabolic network, which also potentially contributes 
to the risk of PDAC [42]. PDAC specific risk factors for 
thrombosis included abdominal surgery, neoadjuvant 
therapy, chemotherapy and central vein catheter [43]. 
Gemcitabine, a chemotherapy drug, had been linked to 
increased tissue factor activity and decreased tissue fac-
tor inhibitor activity, which could lead to thrombosis. 
Kim JS found that the incidence of venous thromboem-
bolism was 10.6% in PDAC patients receiving gemcit-
abine chemotherapy and had a poor prognosis (p < 0.05) 
[44]. While deep vein thrombosis and pulmonary embo-
lism are the most common types of venous thrombo-
embolism in PDAC patients [45], there has been an 
increasing incidence of visceral thrombosis, which occurs 
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Fig. 6 Identify the hub gene ITGA2. A 31 genes screened out by differential expression genes and genes associated with prognosis. B The top 10 
genes by MCC algorithm in Cytoscape. C ITGA2 expression in pan‑cancer. D ITGA2 was higher in TCGA‑PDAC patients than that in GTEx control. E 
ITGA2 high expression had a poor survival outcome. F ITGA2 high expression had a short time in disease‑free survival. It had the significant ITGA2 
expression difference in tumor stage (G) and tumor grade H 
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in the hepatoportal venous system, including the portal, 
mesenteric and splenic vein. Mier-Hicks A reported that 
their study had an incidence of visceral thrombosis in 
PDAC patients as follows: portal vein (45%), mesenteric 
vein (26%), splenic vein (17%) [46].

It has been widely observed that malignant tumor and 
coagulation are closely linked [47]. A hypercoagulable 
state in PDAC arises due to elevated procoagulant fac-
tors and diminished anticoagulant factors, leading to 
an imbalance in the coagulation process. However, the 

underlying biological mechanisms responsible for this 
phenomenon remain elusive. it is perceived that tumor 
cells induce certain factors to maintain hypercoagulable 
state, such as tumor progression (KRAS and p53), pro-
coagulant factors (tissue factor and PAI-1), mucin pro-
duction and inflammatory factors. The activation of the 
coagulation cascade can facilitate tumor cell invasion and 
coagulation proteins also can also promote tumor migra-
tion and metastasis [48]. Mutations in oncogenes (e.g., 
TP53) can regulate several effectors of coagulation, and 

Fig. 7 Single cell sequencing analysis and immunohistochemical analysis. A Set Resolution = 0.8 to obtain cell subgroups. B The UMAP map of 
all cells after quality control and standardization revealed 28 cell clusters marked with different colors. C 9 cell clusters according to gene marker 
annotated cell types. D An overview of cell–cell interactions. E The ITGA2 high expression cell clusters. F ITGA2 was expressed by ductal cells. G 
immunohistochemical staining for ITGA2
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cancer driver genes (e.g., KRAS) may influence the risk 
of venous thromboembolism in various types of cancer 
[49]. Tissue factor, a receptor of FVII/FVIIa, activates 
the extrinsic coagulation progress. The TF-FVIIa com-
plex can activate the PAR2 signaling pathway, leading to 
increase VEGF expression that promotes cancer progres-
sion. TF has been linked to venous thromboembolism 
and poor prognosis in PC patients [50]. Tumor can prod-
uct multiple inflammatory factors, such as IL1, TNFα 
and VEGF, which can induce endothelial cell activation, 
promote leukocyte recruitment and platelet adhesion, 
and generate FVIII and TF that accelerate  thrombo-
sis [51]. However, little research has been conducted on 
the correlation between coagulation and tumor immune 
microenvironment in PDAC. Therefore, we aim to inves-
tigate the impact of coagulation-related genes on tumor 
progression, prognostic stratification, tumor immune 
microenvironment, and sensitivity to chemotherapy and 
immunotherapy.

A recent study has highlighted the significant role of 
the tumor immune microenvironment in the prolifera-
tion and metastasis of malignant tumors [52]. It is widely 
recognized that PD-1/PD-L1 plays a pivotal role in escap-
ing immunological surveillance in PDAC. However, the 
immunosuppressive microenvironment in PDAC limits 
the therapeutic efficacy of PD-1/PD-L1 checkpoint inhib-
itors [53]. PD-1 immune checkpoint blockades using 
agents such as pembrolizumab and nivolumab has shown 
promise as an immunotherapeutic strategy melanoma 
and non-small-cell lung cancer [54]. In this study, we 
investigated the relationship between coagulation clus-
ters and immune checkpoint. Our results demonstrated a 
significantly positive correlation between immune check-
points (including PD-1 and PD-L1) and cluster 1, sug-
gesting that PD-L1 inhibitors may be more beneficial for 
patients expressing cluster 1. Furthermore, our findings 
revealed significant differences in the abundance of vari-
ous immune cells, including Neutrophil, Dendritic cells 
activated and Macrophage M0. Neutrophils can produce 
neutrophil extracellular traps (NETs) through histone cit-
rullination, a post-translational modification catalyzed 
by peptidyl arginine deiminase-4 (PADI4) [55]. Stud-
ies have suggested that Neutrophil gelatinase-associated 
lipocalin is a prognostic biomarker for PDAC [56], while 
the CTSC-PR3-IL-1β axis can induce neutrophil reac-
tive oxygen species production and formation of NETs, 
thereby promoting the metastatic growth of cancer cells 
in the lungs [57]. In our study, we validated the higher 
infiltration of neutrophil in PDAC patients compared to 
normal patients, emphasizing the important roles of neu-
trophil in PDAC.

The crucial role of ITGA2 in tumor progression and its 
correlation with clinical factors prompted us to conduct 

further investigations. Integrins, the heterodimeric trans-
membrane proteins composed of α and β subunits, are 
known to have significant involvement in various biologi-
cal functions, such as inflammation, tumor progression 
and coagulation [58]. The α subunit is associated with 
the extracellular matrix, while the β subunit is correlated 
with the intracellular signaling cascades [59]. ITGA2, a 
glycoprotein of the integrin family, forms the heterodi-
mer α2β1 with ITGB1, resulting in diverse biological 
functions. Studies have demonstrated the critical role 
of ITGA2 in tumor metastasis, invasion and angiogen-
esis [60]. Recently, a study highlighted that high expres-
sion of ITGA2 promotes ovarian cancer cell proliferation 
and resistance to albumin paclitaxel through the AKT/
FOXO1 signaling axis [61]. Our analysis revealed that 
ITGA2 was overexpressed in various tumors and associ-
ated with poor overall survival and disease-free survival. 
Additionally, high expression of ITGA2 was correlated 
with late-stage tumors and high tumor grade.

Though this study identified two distinct cluster and 
investigated the correlation with tumor immune micro-
environment, it is important to acknowledge the limita-
tions that exist within the scope of the research. Firstly, 
the transcriptome data and clinical information obtained 
from public database, may not be entirely comprehensive, 
as incomplete follow-up information for some patients 
and a lack of standardization in tissues collection could 
impact the accuracy of the findings. Secondly, tumor 
heterogeneity was unavoidable due to the use of various 
platform and approaches in the data collection process, 
potentially influencing the conclusiveness of the study. 
Thirdly, in order to elucidate the biological mechanism 
and pathway in PDAC, it would be necessary to conduct 
additional in vitro and in vivo experiments.

Conclusions
In our study, we demonstrated the correlation the coagu-
lation-related genes with tumor immune microenviron-
ment. The two types of patients stratified by our model 
differ in prognosis, immune infiltrate features and immu-
notherapy. The stratified model can predict the prognosis 
and calculate the potential benefits of drug therapy, thus 
providing valuable recommendations for personalized 
clinical treatment. Finally, we identified the hub gene 
ITGA2 and the expression of ITGA2 in PDAC had been 
confirmed by immunohistochemical analysis.
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