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Abstract 

Background  Breast cancer is a malignant tumour that seriously threatens women’s life and health and exhibits high 
inter-individual heterogeneity, emphasising the need for more in-depth research on its pathogenesis. While inter-
nal 7-methylguanosine (m7G) modifications affect RNA processing and function and are believed to be involved in 
human diseases, little is currently known about the role of m7G modification in breast cancer.

Methods and Results  We elucidated the expression, copy number variation incidence and prognostic value of 24 
m7G-related genes (m7GRGs) in breast cancer. Subsequently, based on the expression of these 24 m7GRGs, consen-
sus clustering was used to divide tumour samples from the TCGA-BRCA dataset into four subtypes based on signifi-
cant differences in their immune cell infiltration and stromal scores. Differentially expressed genes between subtypes 
were mainly enriched in immune-related pathways such as ‘Ribosome’, ‘TNF signalling pathway’ and ‘Salmonella 
infection’. Support vector machines and multivariate Cox regression analysis were applied based on these 24 m7GRGs, 
and four m7GRGs—AGO2, EIF4E3, DPCS and EIF4E—were identified for constructing the prediction model. An ROC 
curve indicated that a nomogram model based on the risk model and clinical factors had strong ability to predict the 
prognosis of breast cancer. The prognoses of patients in the high- and low-TMB groups were significantly different 
(p = 0.03). Moreover, the four-gene signature was able to predict the response to chemotherapy.

Conclusions  In conclusion, we identified four different subtypes of breast cancer with significant differences in the 
immune microenvironment and pathways. We elucidated prognostic biomarkers associated with breast cancer and 
constructed a prognostic model involving four m7GRGs. In addition, we predicted the candidate drugs related to 
breast cancer based on the prognosis model.
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Introduction
Breast cancer is a malignant tumour that seriously threat-
ens women’s life and health. It is estimated that there 
are about 1.3 million new breast cancer cases worldwide 
each year, and 450,000 patients die of breast cancer [1]. 
The aetiology of breast cancer remains unclear but can be 
roughly divided into genetic, environmental and hormo-
nal factors, although genetic factors occupy a very impor-
tant part [2–4]. Epidemiological surveys have found that 
5% to 10% of breast cancers are familial and are related to 
genetic mutations inherited from a parent [5]. At present, 
the treatment of breast cancer is mainly based on clini-
cal staging, pathological typing and molecular typing. 
However, breast cancer is a highly heterogeneous disease 
[6, 7], and the traditional clinicopathological diagnostic 
approach to breast cancer has been associated with low 
accuracy and poor specificity. Therefore, more in-depth 
studies of the molecular mechanisms underlying the pro-
gression of breast cancer are needed.

Epigenetics is a process that does not involve altera-
tions in the gene sequence but heritable changes in gene 
expression and modification. In particular, epigenetic 
methylation by 7-methylguanosine (m7G) has attracted 
widespread attention. During transcription initiation, 
m7G is co-transcribed onto the 5’ cap [8]. This cap 
modification stabilises transcripts, prevents exonucleo-
lytic degradation and regulates nearly every stage of the 
mRNA life cycle, including transcription elongation, 
pre-mRNA splicing, polyadenylation, nuclear export and 
translation. In addition to being part of the cap structure, 
m7G is also present inside tRNA and rRNA [9], while 
internal m7G modifications affect RNA processing and 
function and are believed to be involved in human dis-
eases, especially cancer. m7G modification participates 
in the occurrence and progression of cancer by regulat-
ing the metabolism of various RNA molecules, as well 
as the expression of oncogenes and tumour suppressor 
genes [10]. Multiple studies have shown that the regula-
tory factors of m7G can effectively predict tumour prog-
nosis and the immune therapy response [11]. Indeed, 
based on m7G-related genes (m7GRGs), Li et al. identi-
fied prognostic biomarkers related to gastric cancer [12]. 
Therefore, the study of m7GRGs may provide promising 
potential biomarkers for the diagnosis, prognosis and 
treatment of breast cancer [13].

Current evidence suggests that the tumour immune 
microenvironment (TIME) plays an important role in 
cancer occurrence, development, invasion and metasta-
sis. The TIME includes immune cells in various tumour 
microenvironments (such as T and B lymphocytes), 
stromal cells and tumour cells, as well as their corre-
sponding expressed and secreted immune molecules 

[14, 15]. Their interaction has a dual effect on breast 
cancer: immune effector cells (such as CD8 + cyto-
toxic T cells) and molecules inhibit tumour cell growth 
and proliferation through different pathways, while 
immunosuppressive cells (such as regulatory T cells) 
and factors (such as IL-10) and inhibitors expressed 
or secreted by tumour cells inhibit immune responses 
through different pathways and participate in tumour 
escape and promote tumour occurrence, development 
and metastasis [16]. m7G regulates immune responses 
by participating in cellular processes such as immune 
cell development, differentiation, activation, migration 
and polarisation and is involved in cancer progression 
[17]. Research has confirmed that RNA methylation 
(such as m7G) can regulate RNA immunogenicity and 
innate immune components in the tumour immune 
system and affect the innate immunity of the tumour 
body [18]. Huang et al., through pan-cancer analysis of 
m7GRGs, found that m7G had an excellent ability to 
predict prognosis and the immunotherapy response, 
which may lead to innovative biomarkers for cancer 
immunotherapy and prognosis [19].

With developments in bioinformatics, research-
ers can analyse and interpret biological data with spe-
cific algorithms and software [20, 21]. To investigate 
the function of m7G modification in breast cancer, 
we explored the expression, copy number variation 
(CNV) incidence and prognostic value of 24 m7GRGs 
in breast cancer. We then performed consensus clus-
tering and divided tumour samples into four subtypes 
with significantly different immune cell infiltration 
and stromal scores based on the expression of the 24 
m7GRGs in the TCGA-BRCA dataset. Differentially 
expressed genes (DEGs) between subtypes were mainly 
enriched in immune-related pathways such as TNF 
signalling pathway and Salmonella infection. Multi-
variate Cox regression analysis was performed based 
on 21 prognostic-related m7G genes, and four genes 
(AGO2, EIF4E3, DCPS and EIF4E) were identified for 
constructing the prediction model. The samples were 
divided into high- and low-risk groups according to 
the median risk score, and survival analysis revealed a 
significant survival difference between the two groups. 
The four m7GRGs were able to independently predict 
the prognosis of BRCA patients. Based on the risk 
scores of the prognostic model and clinical factors, we 
constructed a nomogram model to predict the progno-
sis of breast cancer patients. Finally, we explored the 
association of m7GRG-related prognostic models with 
tumour mutational burden (TMB) and drug sensitivity. 
Accordingly, we report a hitherto undocumented m7G 
gene signature that can help to improve the prognosis 
of breast cancer patients in clinical practice.
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Materials and methods
Datasets
Gene expression profiling data of breast cancer patients 
were obtained from two independent patient cohorts, 
The Cancer Genome Atlas (TCGA) dataset TCGA-
BRCA and the Gene Expression Omnibus (GEO) data-
set GSE1456. The TCGA-BRCA cohort included 113 
normal samples and 1113 breast cancer samples. We 
used the ‘limma’ package to normalise gene expression 
data and remove genes with a mean expression level 
of 0. Somatic data for breast cancer were also obtained 
from TCGA. Somatic data were preprocessed through 
Perl-related code. TCGA-BRCA data were annotated 
with gene names using GENCODE22 annotation files, 
and TCGA-BRCA patient survival data and clinical data 
were obtained from UCSC Xena, including survival time, 
survival status, age, tumour stage and sex. CNV data 
for breast cancer were also obtained from UCSC Xena. 
In our study, patient samples with clinical information 
and a survival time greater than 30  days were retained. 
Finally, 1023 patient samples were included from TCGA-
BRCA and 159 from GSE1456; TCGA-BRCA was used 
for model construction, whereas GSE1456 was used for 
model validation.

Mutation analysis and prognostic analysis of m7GRGs
m7GRGs (DCP2, IFIT5, EIF3D, EIF4G3, NSUN2, 
GEMIN5, AGO2, NUDT10, EIF4E, EIF4E2, NCBP2, 
NUDT11, NUDT3, NCBP1, METTL1, LARP1, NUDT4, 
EIF4E3, SNUPN, WDR4, LSM1, NUDT16, DCPS and 
CYFIP1) were obtained from the existing literature [22] 
and related gene sets: GOMF_m7G_5_PPPN_DIPHOS-
PHATASE_ACTIVITY, GOMF_RNA_CAP_BINDING 
and OMF_RNA_7_METHYLGUANOSINE_CAP_BIND-
ING. We extracted the expression of 24 m7GRGs from 
the TCGA-BRCA queue and then used the ‘limma’ algo-
rithm to analyse the difference between normal samples 
and breast cancer samples. m7GRGs with a p-value less 
than 0.05 were considered differentially expressed. Next, 
we explored the CNV incidence of the 24 m7GRGs and 
mapped their altered locations on 23 chromosomes using 
the ‘RCircos’ package. To elucidate the correlation of the 
24 m7GRGs with breast cancer patients’ prognosis, we 
used the ‘igraph’, ‘psych’, ‘reshape2’ and ‘RColorBrewer’ 
packages to plot the prognosis-related network of the 24 
m7GRGs.

Consensus clustering of m7GRGs and functional 
enrichment analysis
Based on the expression profile data of these 24 genes, 
the K-means clustering algorithm of the ‘Consensus-
ClusterPlus’ package was used to perform consensus 
clustering on TCGA-BRCA patients to obtain breast 

cancer subtypes. The clustering was repeated 1000 times 
to ensure the accuracy and stability of the results. The 
optimal number (K-value) of breast cancer subtypes was 
calculated using the cumulative distribution function 
(CDF) and a consensus heatmap.

To explore the differences between different breast 
cancer subtypes, we used the ‘limma’ package to identify 
DEGs across the breast cancer subtypes, with thresholds 
set at p < 0.05 and |logFold Change|> 1. To identify the 
enriched pathways among the different subtypes, we con-
ducted Gene Ontology (GO) and Kyoto Encyclopaedia of 
Genes and Genomes (KEGG) enrichment analyses [23, 
24] for DEGs between subtypes and visualised the top 5 
pathways with the most significant enrichment results. 
Using the gene set enrichment analysis (c2.cp.kegg.
v7.5.1.symbols.gmt of the MSigDB reference gene set), 
the top 10 pathways were visualised. The above enrich-
ment analysis was conducted using the ‘clusterProfiler’ 
package.

Comparison of immune cell infiltration among m7G 
patterns
To explore the extent of immune cell infiltration among 
different subtypes, we used the ‘IOBR’ package to assess 
immune cell infiltration with the ESTIMATE algorithm 
and the CIBERSORT algorithm in the TCGA-BRCA 
dataset and obtained the immune cell infiltration of each 
sample in both algorithms. The indicators evaluated by 
the ESTIMATE algorithm include immune score, stro-
mal score and tumour purity. The CIBERSORT algorithm 
enables quantification of the relative abundance of 22 
types of immune cells. The abundance differences of 22 
immune cells among the different breast cancer subtypes 
were calculated using the Wilcoxon test. Differences in 
immune cell infiltration among different subtypes were 
considered significant at p < 0.05.

Support vector machines and multivariate Cox regression 
analysis
We used the support vector machine (SVM) algorithm 
of the ‘e1071’ package to select the prognosis-related fea-
tures in the TCGA-BRCA expression profiling data of the 
24 m7GRGs. Of the 24 prognosis-related genes, 21 were 
selected and used for survival analysis. Multivariate Cox 
analysis was used to construct predictive models, and 
survival analysis was performed using the ‘survival’ pack-
age. Subsequently, we validated the model in the GSE1456 
dataset, with p < 0.05 considered statistically significant. 
Kaplan–Meier analysis was used to evaluate the difference 
in survival between high- and low-risk groups. In addi-
tion, we integrated the risk scores and clinical features for 
univariate and multivariate Cox analyses to verify that the 
risk scores were predictive markers independent of other 
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clinical features and constructed nomograms based on 
the clinical features associated with prognosis using the 
‘rms’ package to more accurately predict patient prog-
nosis. The results of nomogram prediction were verified 
by calibration curve and ROC curve analysis to ensure 
the accuracy of the nomogram for predicting the 1-year, 
3-year and 5-year survival rates of patients.

TMB analysis and drug sensitivity prediction
The ‘maftools’ package was used to draw waterfall plots 
related to TMB. Kaplan–Meier analysis was applied to 
evaluate the effect of TMB on the prognosis of breast 
cancer patients. Moreover, we used t-tests to determine 
differences in TMB levels between the high- and low-risk 
groups. Spearman’s rank correlation was applied to cal-
culate the correlation between TMB and risk score. Then, 
we estimated each patient’s sensitivity to chemotherapeu-
tic drugs using the Genomics of Cancer Drug Sensitivity 
(GDSC) database. The half-maximal inhibitory concen-
tration (IC50) values for high- and low-risk groups were 
quantified with the ‘pRRophetic’ package. We conducted 
the Wilcoxon test to calculate the differences in the IC50 
of the drugs among the breast cancer risk subgroups. The 
CellMiner database was used to mine sensitive drugs to 
build a predictive model. In addition, Pearson analysis 
was used to calculate drugs related to risk scores. The 
overall flowchart of this study is shown in Fig. 1.

Cell culture and quantitative real‑time polymerase chain 
reaction
MDA-MB-231, MDA-MB-468, SKBR3 and MCF-
10A cells were purchased from Procell Life Science & 

Technology Co., Ltd. (Wuhan, China). MDA-MB-231 
cells were incubated in DMEM culture medium 
(Gibco, 11,965,092) with 10% foetal bovine serum 
(FBS). MDA-MB-468 cells were incubated in RPMI 
1640 culture medium (Gibco, 11,875,093) with 10% 
FBS. SKBR3 cells were cultured in special culture 
medium (Procell, CM-0211) containing McCoy’s 
5A, 10% FBS and 1% penicillin/streptomycin. MCF-
10A was cultured in special culture medium (Procell, 
CM-0525) containing DMEM/F12, 5% Horse serum, 
20  ng/mL EGF, 0.5  μg/mL Hydrocortisone, 10  μg/mL 
Insulin, 1% NEAA and 1% P/S. Total RNA was iso-
lated with the TRIzol reagent (Invitrogen). Comple-
mentary DNA was synthesized from 1  μg total RNA 
using MightyScript Plus First Strand cDNA Syn-
thesis Master Mix (Sangon Biotech). Quantitative 
real-time polymerase chain reaction (qRT-PCR) was 
performed with a PowerUp SYBR Green Master Mix 
(Thermo Fisher, A25742) after RNA extraction and 
reverse transcription from all four cell lines. Relative 
mRNA levels were calculated using the comparative 
Ct method (ΔCt). The primer sequences are listed in 
Supplementary Material S1.

Results
Landscape of m7GRG expression, genetic variation 
and prognostic relevance in breast cancer
First, we explored the expression of 24 m7GRGs in breast 
cancer tissues and normal tissues in the TCGA-BRCA 
cohort. Overall, 19 m7GRGs were differentially expressed 
between breast cancer tissues and normal tissues. In 
particular, the expressions of NSUN2, EIF4E, EIF4E2, 

Fig. 1  Flowchart of this study
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NCBP2, NUDT3, NCBP1, LARP1, WDR4 and LSM1 
were upregulated (Fig. 2A, Supplementary Material S2). 
Subsequently, we identified the CNV incidence of the 
24 m7GRGs. In the TCGA-BRCA cohort, CNV altera-
tions were found in all 24 m7GRGs. In addition, more 
than half of the m7GRGs had copy number amplification, 
while CYFIP1, NUDT4, DCPS, NCBP1, EIF3D, DCP2, 
EIF4E3, IFIT5 and EIF4G3 had CNV deletions (Fig. 2B). 
Figure 2C shows the locations of the CNV alterations of 
the 24 m7GRGs on chromosomes. Finally, to explore the 
association of the 24 m7GRGs with breast cancer prog-
nosis, we mapped the network of interactions among the 
24 m7GRGs and the effect of their expression on breast 
cancer prognosis. The results showed that 17 m7GRGs 
were risk factors and significantly impacted breast cancer 
prognosis, whereas NUDT10, NUDT3, EIF4E3, SNUPN, 
NUDT16, IFIT5 and EIF3D were favourable prognos-
tic factors (Fig. 2D). In addition, based on the MethSurv 
website (https://​biit.​cs.​ut.​ee/​meths​urv/), we explored the 
changes in DNA methylation in the 24 m7GRGs (Supple-
mentary Material S3).

Identification of breast cancer classification patterns 
mediated by the 24 m7GRGs
Correlation analysis of the 24 m7GRGs in the TCGA-
BRCA dataset showed a close correlation among these 
genes (Fig. 3A) (p < 0.05). Based on the expression of the 
24 m7GRGs, we used consensus clustering analysis to 
classify 1023 breast cancer samples into four subtypes: 
C1, C2, C3 and C4 (Fig.  3B-D, Supplementary Material 
S4). Principal component analysis (PCA) revealed that 
the four subtypes were clearly separated (Fig.  3E), indi-
cating there were significant differences in expression 
profiles among the different subtypes. At the same time, 
the expression levels of the 24 genes were significantly 
different among the four subtypes (Fig. 3F), showing that 
our typing results had good stability and accuracy.

To explore differences in immune infiltration levels 
among the four breast cancer subtypes, we performed 
immune infiltration analysis on the four subtypes. The 
CIBERSORT results showed that the infiltration degree 
of the 22 types of immune cells differed among the dif-
ferent samples (Fig.  4A), and a significant correlation 
was present between T cells and natural killer cells 
(Fig.  4B), indicating a synergistic effect between these 

Fig. 2  Characteristics and differences of 24 m7GRGs in breast cancer. A Expression of the 24 m7GRGs in breast cancer and normal tissues. 
B Mutation frequency and classification of the 24 m7GRGs in breast cancer. C Locations of the CNV alterations of the 24 m7GRGs on the 23 
chromosomes in the breast cancer cohort. D Circos graph for univariate Cox regression analysis, which represents the association of the expression 
of the 24 m7GRGs with breast cancer prognosis in the TCGA-BRCA cohort. *p < 0.05, **p < 0.01, ***p < 0.001

https://biit.cs.ut.ee/methsurv/
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cells in BRCA patients. Moreover, the expression of 
most immune cells differed significantly among differ-
ent subtypes. Specifically, Plasma_cells, T_cells_CD8, 
T_cells_follicular_helper, T_cells_regulatory_(Tregs), 
NK_cells_resting, NK_cells_activated, Macrophages_M0, 
Macrophages_M1, Dendritic_cells_resting, Dendritic_
cells_activated, Mast_cells_resting, Mast_cells_acti-
vated and Neutrophils exhibited significant differences 
in immune infiltration abundance among the four breast 
cancer subtypes (Fig.  4C). The ESTIMATE results 
showed that the stromal score significantly differed 
among the subtypes (p < 0.05) (Fig.  5A-D), indicating a 
significant difference in stromal cell composition among 
subtypes.

Functional enrichment analysis among breast cancer 
subtypes
To identify the biological functions and pathways 
involved in the DEGs among the four breast cancer 
subtypes in breast cancer, we performed enrichment 
analysis of DEGs between the different breast cancer 
subtypes (C1 vs C2, C1 vs C3, C1 vs C4, C2 vs C3, C2 
vs C4, C3 vs C4). GO enrichment analysis (Fig. 6A-F) 
revealed significant enrichment in ribosome biogen-
esis, RNA splicing and macrophage pathways. KEGG 
enrichment analysis results (Fig.  7A-F) showed that 
the DEGs were mainly enriched in Ribosome, TNF sig-
nalling pathway and Salmonella infection. The GSEA 
results (Fig.  8A-F) showed significant enrichment in 
KEGG_RIBOSOME, KEGG_VIBRIO_CHOLERAE_
INFECTION, KEGG_PROTEASOME and other path-
ways. These results suggest that m7GRGs may be 
involved in numerous biological processes and path-
ways related to immunity.

Construction of a prognostic model related to m7GRGs
To screen for m7GRGs associated with breast cancer 
patient survival time, we performed SVM analysis on 
the 24 m7GRGs. We obtained 21 m7GRGs associated 
with prognosis using the SVM (Fig. 9A and B) and sub-
jected them to multivariate Cox regression analysis. Four 
genes (AGO2, EIF4E3, DCPS and EIF4E) were identified 
and used to construct a prediction model (Fig. 9C) that 
could provide the risk score of each sample in the TCGA-
BRCA. Finally, the samples were divided into high- and 

low-risk groups according to the median risk score. The 
survival analysis showed a significant difference between 
the high- and low-risk groups (Fig. 9E). The difference in 
survival was also significant between high- and low-risk 
group samples in the validation set GSE1456 (Fig.  9G). 
The high-risk group was correlated with a lower survival 
rate (Fig. 9D, F). The expression levels of the four genes 
used to construct the predictive model were also signifi-
cantly different between the high- and low-risk groups 
(Fig.  9H). Single-gene survival analysis was performed 
in the GSE1456 (Fig. 10A, C, E and G) and TCGA-BRCA 
(Fig.  10B, D, F  and H) datasets based on the expres-
sion levels of the four genes. The results showed sig-
nificant differences in survival between the high- and 
low-expression groups, further indicating that these four 
genes were significantly correlated with the prognosis of 
BRCA. To more deeply evaluate the clinical impact of 
AGO2, EIF4E3 and EIF4E in breast cancer, we used the 
Kaplan–Meier plotter database to plot the DMFS (distant 
metastasis-free survival)-related Kaplan–Meier curves of 
AGO2, EIF4E3 and EIF4E. The results showed that the 
DMFS rates of AGO2 and EIF4E3 were significantly dif-
ferent, which may be related to the metastasis of breast 
cancer (Supplementary Material S5).

Assessment of four m7GRGs as independent BRCA 
prognostic factors
To assess the prognostic value of the risk score, we per-
formed a prognostic analysis of risk scores and other 
clinical characteristics in the TCGA-BRCA cohort. Uni-
variate Cox regression analysis (Fig.  11A) revealed that 
age, tumour stage and risk score were significantly asso-
ciated with prognosis (p < 0.05). Further multivariate 
Cox regression analysis confirmed (Fig.  11B) that age, 
tumour stage and risk score were independent predic-
tors of prognosis (p < 0.05). Therefore, we constructed a 
nomogram (Fig. 11D) based on these three clinical char-
acteristics to predict the 1-, 3- and 5-year survival rates 
of patients. Calibration and ROC curves were used to 
validate the accuracy of the nomogram in predicting 
survival time in breast cancer patients. The calibration 
curve results showed that the predicted values at 1, 3 and 
5 years slightly deviated from the diagonal line (Fig. 11C), 
indicating that the nomogram can satisfactorily predict 
the prognosis of breast cancer patients compared to the 

Fig. 3  Breast cancer subgroups related by the 24 m7GRGs. A Correlations among the 24 m7GRGs in breast cancer. B Consensus score matrix of 
breast cancer samples when k = 4 in TCGA-BRCA cohorts. C Census CDF curves for the TCGA-BRCA cohort. D The delta area under the CDF curve 
shows the change in cumulative risk with increases in the consensus clustering matrixes and demonstrated that three clusters were optimal (k = 4). 
E PCA plots for four clusters in the TCGA-BRCA cohort. F Expression of the 24 m7GRGs among the four breast cancer subtypes. *p < 0.05, **p < 0.01, 
***p < 0.001

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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ideal model. We conducted ROC curve analysis on the 
nomogram for 1 year, 3 years, and 5 years (Fig. 11E-G). 
The ROC curve showed that the AUC values at 1  year 
(AUC = 0.778, Fig.  11F) and 3  years (AUC = 0.678, 
Fig.  11G) were higher. Furthermore, we calculated the 
C-index of the column chart model, and the results fur-
ther confirmed its high predictive accuracy (Supplemen-
tary Material S6). Overall, both methods demonstrated 
that the nomogram has better accuracy for predicting 
patient prognosis.

TMB and drug sensitivity analysis of m7GRGs
Because genetic mutations are an essential cause of 
the development of BRCA-related breast cancer, we 
explored differences in the distribution of somatic muta-
tions between high- and low-risk populations. The 20 
most frequently mutated genes for these two groups are 
shown in Fig. 12A and B, respectively. There were no sig-
nificant differences in the mutation frequency of the top 
20 genes between the high- and low-risk groups. The 
expression levels of risk scores were statistically differ-
ent between the low- and high-TMB groups (Fig.  12C). 

Fig. 4  Landscape of immune infiltration among the four breast cancer subtypes. A Distribution of 22 immune cells in 1023 breast cancer samples. 
B Correlations among 22 immune cells in the TCGA-BRCA cohort. C Differences in the infiltration levels of 22 immune cells among the four breast 
cancer subtypes. *p < 0.05, **p < 0.01, ***p < 0.001. ns means no significance
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The correlation between the mutational burden of BRCA 
and the population risk score was weak but statistically 
significant (Fig.  12D). The Kaplan–Meier curve of OS 
indicated that the OS of the patients in the high-TMB 
group was significantly lower than that of the patients 
in the low-TMB group (p = 0.03) (Fig. 12E). In addition, 
the OS of patients with high/low mutational burden in 
the high-risk group was statistically different from that 

in the low-risk group with high/low mutational bur-
den (p = 0.03) (Fig.  12F). Therefore, high TMB may be 
an important factor leading to poor OS in breast cancer 
patients.

To evaluate the drug prediction ability of the 4-m7GRG 
prognostic risk model, we used the ‘pRRophetic’ pack-
age to compare the differences in the estimated IC50 
levels of six chemotherapeutic agents, namely, erlotinib 

Fig. 5  Results of ESTIMATE analysis among the four breast cancer subtypes. A ESTIMATEScore for the four breast cancer subtypes. B ImmuneScore 
for the four breast cancer subtypes. C StromalScore for the four breast cancer subtypes. D TumorPurity for the four breast cancer subtypes. A p-value 
less than 0.05 was considered statistically significant
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Fig. 6  GO enrichment analysis between the four breast cancer subtypes. A Functional pathways enriched between C1 and C2. B Functional 
pathways enriched between C1 and C3. C Functional pathways enriched between C1 and C4. D Functional pathways enriched between C2 and C3. 
E Functional pathways enriched between C2 and C4. F Functional pathways enriched between C3 and C4
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Fig. 7  KEGG enrichment analysis between the four breast cancer subtypes. A Pathways enriched between C1 and C2. B Pathways enriched 
between C1 and C3. C Pathways enriched between C1 and C4. D Pathways enriched between C2 and C3. E Pathways enriched between C2 and C4. 
F Pathways enriched between C3 and C4. A p-value less than 0.05 was considered statistically significant
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(Fig. 13A), gemcitabine (Fig. 13B), cytarabine (Fig. 13C), 
gefitinib (Fig.  13D), the Akt1/2/3 inhibitor MK-2206 
(Fig. 13E) and the PPM1D (WIP1) inhibitor CCT007093 

(Fig.  13F). Our data showed that the high-risk score 
group was more sensitive to gemcitabine and cytarabine 
than the low-risk group. The above results indicated that 

Fig. 8  GSEA enrichment analysis between the four breast cancer subtypes. A Pathways enriched between C1 and C2. B Pathways enriched 
between C1 and C3. C Pathways enriched between C1 and C4. D Pathways enriched between C2 and C3. E Pathways enriched between C2 and C4. 
F Pathways enriched between C3 and C4. A p-value less than 0.05 was considered statistically significant

Fig. 9  Construction of a prognostic model involving four m7GRGs. A and B Accuracy and error of fivefold cross-validation (CV) in SVM analysis. C 
Forest plot for hazard ratios of the four m7GRGs. D Distribution of patients in the TCGA-BRCA based on the risk score. E Kaplan–Meier curves for 
breast cancer patients in the high-/low-risk groups in the TCGA-BRCA. F Survival status for each patient in the TCGA-BRCA. G Kaplan–Meier curves 
for breast cancer patients in the high-/low-risk group in GSE1456. H Heatmap for the connections between the expression of the four m7GRGs and 
the risk groups in the TCGA-BRCA. A p-value less than 0.05 was considered statistically significant

(See figure on next page.)



Page 13 of 21Huang et al. BMC Cancer          (2023) 23:583 	

Fig. 9  (See legend on previous page.)
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Fig. 10  Kaplan–Meier curve of the four m7GRGs (AGO2, EIF4E3, DCPS and EIF4E) in breast cancer. The overall survival curve of AGO2 (A), EIF4E3 (C), DCPS 
(E) and EIF4E (G) in breast cancer patients in the high-/low-expression groups (GSE1456). Overall survival curve of AGO2 (B), EIF4E3 (D), DCPS (F) and 
EIF4E (H) in breast cancer patients in the high-/low-expression groups (TCGA-BRCA). A p-value less than 0.05 was considered statistically significant
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the 4-m7GRG prognostic model has good drug sensitiv-
ity. Furthermore, to screen possible therapeutic drugs for 
breast cancer, based on the CellMiner database, we iden-
tified the drugs related to the risk score of the prognostic 
model. The results indicated that the low-risk score group 
was more sensitive to gefitinib and CCT007093. Drug 
sensitivity analysis of the four-gene signature showed 
that the DCPS, EIF4E, EIF4E3 and AGO2 genes were sig-
nificantly associated with dasatinib, chelerythrine, E7820 
and imexon, respectively (Fig. 14A–P).

Expression of the signature m7GRGs
Breast cancer cell lines (MDA-MB-231, MDA-MB-468 
and SKBR3) and a normal breast cell line (MCF-10A) 
were used to validate the expression levels of the sig-
nature m7GRGs (AGO2, EIF4E3, DCPS and EIF4E). 
The results showed that the expression levels of AGO2 
(Fig.  15A) and EIF4E3 (Fig.  15B) were significantly 
lower in breast cancer cell lines than in the normal 
breast cell line, whereas the expression levels of DCPS 
(Fig.  15C) and EIF4E (Fig.  15D) were significantly 

Fig. 11  Construction of the nomogram. A and B Forest plot for hazard ratios of clinical parameters in breast cancer. C 1-, 3- and 5-year calibration 
curves for nomograms. The dashed diagonal line represents the ideal nomogram. D Nomogram to predict the 1-, 3- and 5-year overall survival (OS) 
rates of breast cancer patients. 1- (E), 3- (F) and 5-year (G) ROC curves for nomograms
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Fig. 12  Tumour somatic mutation analysis between the high- and low-risk scores. A and B are waterfall charts for high- and low-risk groups, 
respectively. C Boxplot of TMB scores in the high- and low-risk groups. D Scatter plot of the correlation between TMB score and risk score. E OS 
analysis of BRCA patients in the high- and low-TMB groups. F OS analysis of patients with high/low mutational burden in the high-risk group and 
patients with high/low mutational burden in the low-risk group
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higher. The above results were consistent with the 
results of the bioinformatics analysis. Therefore, further 
exploration of the exact mechanism of these four m7Gs 
in breast cancer would be of great significance for 
improving the prognosis and treatment of breast cancer 
patients. In addition, we also explored the expression of 
AGO2, EIF4E3, DCPS and EIF4E in pan-cancer (Sup-
plementary Material S7).

Discussion
Breast cancer is a solid tumour with high tumour het-
erogeneity, and effective treatments and prognostic 
biomarkers have not yet been found. Accordingly, the 
identification of innovative biomarkers is urgently 
required. m7G plays a major role in the occurrence, 
immune response and prognosis prediction of cancer 
and is a potential biomarker of cancer. Therefore, we 

aimed to clarify the role of m7G in breast cancer and 
identify biomarkers related to the disease.

First, to investigate the function of m7G modifica-
tion in breast cancer, we identified the expression, CNV 
incidence and prognostic value of 24 m7GRGs in breast 
cancer. We found that the expression levels of NSUN2, 
EIF4E, EIF4E2, NCBP2, NUDT3, NCBP1, LARP1, 
WDR4 and LSM1 were increased in breast cancer tis-
sues. Moreover, the results of prognostic analysis 
showed that more than half of the m7GRGs were risk 
factors for the prognosis of breast cancer patients. 
Therefore, it was deemed necessary to further explore 
the prognostic impact of m7GRGs in breast cancer.

Then, we performed consensus clustering and 
divided tumour samples into four subtypes based on 
the expression of the 24 m7GRGs in the TCGA-BRCA 
dataset. The expression of the 24 m7GRGs significantly 

Fig. 13  Differences in drug sensitivity between high- and low-risk groups. A Erlotinib. B Gemcitabine. C Cytarabine. D Gefitinib. E MK-2206. F 
CCT007093
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differed among different breast cancer subtypes. The 
results of immune correlation analysis showed that 
there were significant differences in the infiltration level 
of immune cells and matrix score among the different 
subtypes of breast cancer. The immune cells exhibiting 
differences included B_cells_naïve, T_cells_CD8, T_
cells_CD4_Naive, Macrophages (M0, M1 and M2), NK_
cells_resting, NK_cells_Activated and other immune 

cells. Several studies of breast cancer have shown that 
B cell infiltration can predict a better survival rate and 
response to treatment [25]. Buque et  al. found that 
NK cells have an inhibitory effect in the early stage of 
breast cancer [26]. Enrichment analysis results showed 
that the enrichment pathways also differed among dif-
ferent breast cancer subtypes, with some pathways 
related to immunity, such as T cell receptor complex, 

Fig. 14  Correlations between the four prognostic m7GRGs and drug sensitivity in breast cancer. Correlations of DCPS with dasatinib (A), vorinostat 
(B), pipobroman (E), chelerythrine (J), hydroxyurea (K) and nelarabine (N). Correlations of EIF4E with chelerythrine (C), nelarabine (F), amonafide (I) 
and everolimus (L). Correlations of EIF4E3 with E-7820 (D), hydrastinine HCl (G), buthionine sulfoximine (H) and nelfinavir (M). Correlations of AGO2 
with imexon (O) and teniposide (P)
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TNF signalling pathway and Salmonella infection. Most 
members of the TNF family and their receptors can 
affect the survival, proliferation, differentiation or acti-
vation of immune cells [27], and Salmonella can disrupt 
the host’s immune defence during antibiotic treatment 
[28]. The above results showed that the 24 m7GRGs can 
appropriately identify different breast cancer subtypes 
and that patients belonging to the different cancer sub-
types should undergo different treatment strategies.

Subsequently, based on the 24 m7GRGs, we screened 
21 prognosis-related m7GRGs using the SVM algorithm. 
Multivariate Cox regression analysis was performed 
based on these 21 prognostic-related m7G genes, and 
four genes for constructing the prediction model were 
identified: AGO2, EIF4E3, DCPS and EIF4E. In our study, 
the samples were divided into high- and low-risk groups 
according to the median risk score, and survival analy-
sis identified a significant survival difference between 
the two groups. Kaplan–Meier curve analysis revealed 
significant differences in OS between patients with high 
and low expression of AGO2, EIF4E3, DCPS and EIF4E. 
In addition, the DMFS rates of AGO2 and EIF4E3 were 
significantly different, which might be related to the 
metastasis of breast cancer. Multivariate Cox regression 
analysis showed that risk score, age and stage were inde-
pendent predictors of breast cancer. Therefore, we con-
structed a nomogram based on risk score, age and stage. 
The calibration curve, ROC curve and C-index curve 
showed that the nomogram adequately predicted the 
prognosis of breast cancer patients. Overall, we have pro-
vided compelling evidence that the m7G gene signature 
is associated with the prognosis of breast cancer patients.

Our study found that the high-risk group had higher 
TMB levels than the low-risk group and that patients 

with high TMB levels had higher survival rates than 
those with low TMB levels. The above results suggest that 
high TMB may be associated with a poorer prognosis in 
high-risk patients. Moreover, the four-gene signature was 
able to predict the response to chemotherapy. Pearson 
analysis was used to calculate and obtain drugs (such as 
dasatinib, vorinostat and pipobroman) related to the risk 
score, which may become potential therapeutic drugs for 
breast cancer. In addition, PCR results showed that the 
expression levels of the four m7Gs were significantly dif-
ferent between breast cancer cell lines and normal breast 
cells (p < 0.05).

The m7GRGs AGO2, EIF4E3, DCPS and EIF4E have 
been extensively studied, and some of them have been 
associated with tumour progression. AGO2 is the only 
catalytically active member of the Argonaute family; it 
is involved in small RNA-guided post-transcriptional 
gene silencing (including mRNA degradation and trans-
lational repression) [29]. In addition, AGO2 plays mul-
tiple roles in nuclear gene regulation, such as chromatin 
remodelling, double-strand break repair and alterna-
tive splicing transcriptional repression and activation 
[30]. AGO2 may play a role in double-strand break 
repair in tumour cells. eIF4E is a eukaryotic transla-
tion initiation factor and an oncogene with elevated 
expression in approximately 30% of human cancers [31, 
32]. Its elevation in mouse models is associated with 
tumorigenesis, and tissue culture experiments have 
shown that the expression of eIF4E is associated with 
oncogenic transformation. eIF4E functions in mRNA 
export and the translation of specific transcripts by 
binding to the methyl 7-guanosine cap found at the 5’ 
end of mRNAs. These transcripts often encode pro-
teins involved in proliferation, survival, invasion and 

Fig. 15  Expression of AGO2 (A), EIF4E3 (B), DCPS (C) and EIF4E (D) in breast cancer cell lines. *p < 0.05, **p < 0.01, ***p < 0.001
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metastasis. Unlike eIF4E1, eIF4E3 functions as a tissue-
specific tumour suppressor [33]. In this respect, it has 
been shown that eIF4E3 inhibits the expression of both 
the mRNA export and translation targets of eIF4E1. 
The protein encoded by the DCPS gene is an mRNA 
decapping enzyme scavenger and is believed to be key 
for AML cell survival. Mass spectrometry analysis has 
revealed that DCPS enzymes interact with and function 
via components of the pre-mRNA metabolic pathway, 
including the spliceosome [34].

To conclude, we identified four subtypes of breast 
cancer based on 24 m7GRGs and found significant dif-
ferences in the immune microenvironment and path-
ways among the different subtypes. This shows that 
different types of breast cancer patients need per-
sonalised treatment. Furthermore, we constructed a 
4-m7GRG prognostic model that can predict the prog-
nosis of breast cancer and clarified the differences in 
TMB level and drug sensitivity between risk subgroups. 
Importantly, our study provides a theoretical basis for 
applying the m7G gene signature for the personalised 
treatment of breast cancer patients and obtained novel 
insights into the mechanism underlying breast cancer 
progression and treatment.
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