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Abstract 

Background Hepatocellular carcinoma (HCC) is considered one of the most common cancers, characterized by low 
early detection and high mortality rates, and is a global health challenge. Immunogenic cell death (ICD) is defined as 
a specific type of regulated cell death (RCD) capable of reshaping the tumor immune microenvironment by releasing 
danger signals that trigger immune responses, which would contribute to immunotherapy.

Methods The ICD gene sets were collected from the literature. We collected expression data and clinical information 
from public databases for the HCC samples in our study. Data processing and mapping were performed using R soft‑
ware to analyze the differences in biological characteristics between different subgroups. The expression of the ICD 
representative gene in clinical specimens was assessed by immunohistochemistry, and the role of the representative 
gene in HCC was evaluated by various in vitro assays, including qRT‑PCR, colony formation, and CCK8 assay. Lasso‑Cox 
regression was used to screen prognosis‑related genes, and an ICD‑related risk model (ICDRM) was constructed. To 
improve the clinical value of ICDRM, Nomograms and calibration curves were created to predict survival probabilities. 
Finally, the critical gene of ICDRM was further investigated through pan‑cancer analysis and single‑cell analysis.

Results We identified two ICD clusters that differed significantly in terms of survival, biological function, and immune 
infiltration. As well as assessing the immune microenvironment of tumors in HCC patients, we demonstrate that 
ICDRM can differentiate ICD clusters and predict the prognosis and effectiveness of therapy. High‑risk subpopulations 
are characterized by high TMB, suppressed immunity, and poor survival and response to immunotherapy, whereas the 
opposite is true for low‑risk subpopulations.

Conclusions This study reveals the potential impact of ICDRM on the tumor microenvironment (TME), immune infil‑
tration, and prognosis of HCC patients, but also a potential tool for predicting prognosis.

Keywords Hepatocellular  carcinoma1, Immunogenic cell  death2, Tumor  microenvironment3, Prognostic  model4, 
Immunotherapy5

*Correspondence:
Zu‑Wei Wang
drzuwei123@163.com
Yi‑Feng Tian
yifeng0887@126.com
Shi Chen
wawljwalj@163.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-023-10992-2&domain=pdf


Page 2 of 21Lin et al. BMC Cancer          (2023) 23:522 

Background
Hepatocellular carcinoma (HCC), the sixth most com-
mon type of cancer and the fourth leading cause of 
cancer-related death, is the most common primary 
liver cancer [1]. More than 700,000 new cases of liver 
cancer are diagnosed worldwide each year, half of 
which are in China [2]. Several treatments are gener-
ally available for early diagnosis, including surgical 
resection, radiofrequency ablation, transarterial chem-
oembolization, or liver transplantation. However, a 
diagnosis of HCC at an advanced stage usually renders 
many treatment strategies ineffective, and immuno-
therapy has demonstrated powerful antitumor effects 
in these patients [3]. Cancer immunotherapy uses 
the immune system to induce an antitumor immune 
response. Stress-induced regulatory cell death can 
trigger an inflammatory response that may culminate 
in the activation of adaptive immunity driven by cyto-
toxic T lymphocytes (CTL) and the establishment of 
long-term immune memory [4].

In vitro, the treatment of cancer cell lines with 
anthracyclines, oxaliplatin, photodynamic therapy, or 
gamma irradiation followed by subcutaneous trans-
plantation into homozygous immunoreactive mice 
acted as cancer vaccines without any adjuvant or 
immunostimulatory substance [5]. The underlying 
mechanism is that these exogenous injuries activate 
tumor cells through signaling molecules that produce 
damage-associated molecular patterns (DAMPs), 
leading to the development of ICD. Key components 
include calreticulin, which is exposed on the cell sur-
face. High Mobility Histone 1 (HMGB1) is secreted 
by tumor cells, and ATP molecules are released from 
the cells and heat shock proteins. These danger sig-
nals activate the innate immune system, which fur-
ther enhances adaptive immunity [6], highlighting the 
critical role of the immune system in cancer treatment, 
and TME is considered to play a crucial role in HCC 
development [7].

This study first investigated ICD-associated 
genes(ICDs) expression in the TCGA-HCC cohort. 
Two clusters of ICDs were defined by an unsuper-
vised clustering algorithm and analyzed for differences 
in functional annotation and immune infiltration 
between the two clusters. We then used the ICDs to 
construct ICDRM for predicting survival and immu-
notherapy response. The stability and reliability of 
ICDRM were further validated on different plat-
form datasets. Exploring ICDs’ characteristics may 
help develop more precise cancer treatment strate-
gies. Finally, further investigated the critical gene of 
ICDRM.

Methods
Acquisition of gene sets and study population
A total of 34 ICDs were identified through literature 
[8]. Sequencing data and clinical information for HCC 
samples were collected from publicly available data-
bases. From the TCGA database (https:// portal. gdc. 
cancer. gov/), 374 HCC specimens were sequenced, 
and clinical information matched the training set. For 
the validation set, 115 HCC specimens from the GEO 
database(GSE76427) (https:// www. ncbi. nlm. nih. gov/ 
geo/) and 273 HCC specimens from the ICGC database 
(https:// dcc. icgc. org/) [9]. We drew a flow chart of the 
entire research procedure (Fig.  1). Ten patients with 
HCC were recruited from Fujian Provincial Hospital 
with the approval of the ethics committee, and the sur-
gically removed tissue was rapidly cryopreserved using 
− 80 °C liquid nitrogen.

Immunohistochemistry (IHC) staining
HSP90AA1 (Heat Shock Protein 90 Alpha Family Class 
A Member 1) protein levels were analyzed in tumor and 
peritumor using standard immunohistochemical meth-
ods. Briefly, slides were coated with primary antibody 
against HSP90AA1 (mouse ID:ab79849, Abcam) and 
incubated overnight at 4  °C, then incubated with sec-
ondary antibody for 30 min at room temperature. The 
slides were stained with DAB solution for 10 min, and 
the intensity of HSP90AA1 staining was scored, shown 
below. 0, 1, 2, 3 representing negative, weak, moder-
ate, and strong; The evaluation of the tumor cell posi-
tivity rate was as follows. 1, 2, 3, 4 representing 0-25%, 
26-50%, 51-75% and 76-100%. The staining intensity 
was multiplied by the positive rate score to obtain the 
IHC score. Two pathologists reviewed sections.

Hepatocellular carcinoma cell lines
Fujian Provincial Hospital provided the THLE-2 hepat-
ocyte line and the HepG2, Hep3B, and Huh-7 cell lines. 
Cells were frozen in liquid nitrogen, stored in a humidi-
fied incubator (5% CO2, 37  °C), DMEM medium con-
taining 1% antibiotics (100 U/ml cyanide and 100 ug/
ml streptomycin sulfate, Sigma, USA), and 10% heat-
inactivated fetal bovine serum (FBS, Gibco, USA) was 
used for culture.

Plasmid construction and cell transfection
We constructed and maintained the BAX knockout 
plasmid (BAX-sh) in our laboratory (Fujian, China). 
The THLE-2 cell line was used as an internal control. 
BAX-sh was transfected into human HCC cells using 
LipofectamineTM2000. Handle the HSP90AA1 (Heat 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://dcc.icgc.org/
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Shock Protein 90 Alpha Family Class A Member 1) pro-
tein similarly.

RNA isolation and qRT‑PCR
RNA was isolated from HCC cells and tissues and 
matched non-cancerous tissues using the TRIzol Rea-
gent (Thermo Fisher Scientific, Waltham, MA, USA) 
following the manufacturer’s protocol. Reverse transcrip-
tion was performed using the PrimeScript RT Reagent 
Kit (Takara, Dalian, China). Real-time PCR reactions 
were conducted using the StepOnePlus™ Real-Time 
PCR System (Thermo Fisher Scientific, MA, US) with 
temperature cycling settings as recommended by the 
manufacturer. The sequences of primers can be found in 
Supplementary Table S 1.

Colony formation assay
The cancer cells were placed in 12-well tissue culture 
plates for one week, thus allowing the cells to form colo-
nies. Specimens were treated with 10% neutral formalin. 
Staining was performed with 0.5% crystal violet solution, 

and the dye extract used 10% acetic acid. The visible 
colonies were quantified by counting them under a light 
microscope. The number of colonies was measured in 
triplicate wells for each treatment group.

CCK8 assay
Cell Counting Kit-8 (CCK8) was used to analyze cell via-
bility. Cells were seeded in 100 µL medium at a 5 ×  103/
well density and cultured in 96-well microplates (Corn-
ing, USA). Subsequently, treatment of cells with differ-
ent concentrations of Tan-I. After 24 h of processing, add 
10 µL CCK-8 reagent to each well and incubate for 2 h. 
Experiments were all performed with three replications. 
The absorbance of the cells at 450 nm was read using a 
microplate reader. The absorbance was then used to 
quantify the proliferation of cells.

Wound healing
We used 24-well plates to grow the wound-healing cells. 
Use a sterile instrument for scratching the cells to test 
wound healing. The healing of the cell scratches was 

Fig. 1 Landscape of this study workflow
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observed by inverted microscopy, photographed, and 
the distance of cell migration was recorded at two-time 
spots, 0 and 24 h. The specific procedures were consist-
ent with a previous study [10]. Photographs were taken 
under phase-contrast microscopy (Olympus, Tokyo, 
Japan).

Characterization of ICD clusters
Consensus clustering is an effective dimensionality 
reduction method, an algorithm for identifying the mem-
bers of a typology and their number in a data set [11, 12]. 
Patients were classified by expression data of ICDs using 
a consensus clustering method [13]. To assess the clini-
cal value of ICD clusters, we correlated the clusters with 
other clinical characteristics (e.g., Age, Gender, TNM 
stage including T, N, and M) were compared [14]. Among 
the cohorts, survival differences were compared using 
Kaplan-Meier survival plots [15].

Enrichment analysis and immune landscape of different 
clusters
Differentially expressed genomes (DEGs) are calcu-
lated in R using the package “limma”. The enrichment of 
genomes based on DEGs is analyzed using the R pack-
age “clusterProfiler“ [16]. Normalized enrichment scores 
(NES) for pathway and functional annotations were 
calculated according to the gene set variation analysis 
method of the R package “GSVA”, and the NES-based 
heat map showed the biological functional differences 
between different clusters [17]. Human genome reference 
documents were downloaded from the MSigDB database 
(http:// www. gsea- msigdb. org/ gsea/ msigdb), followed by 
gene set variance analysis (GSVA) and gene set enrich-
ment analysis (GSEA). Significantly different entries 
were obtained by setting P < 0.05 and FDR < 0.25. Mean-
while, Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis was 
used to explore the signaling pathways involved and the 
functions possessed by the DEGs, and which functions 
or pathways contribute most to the changes in pheno-
type. Various algorithms, including GSEA, single sample 
GSEA (ssGSEA), and CIBERSORT, were used to quantify 
the level of immune infiltration in TCGA [18]. We com-
pared differences in the expression of immune-related 
genes between clusters, And the set of immune-related 
genes was acquired through literature [19].

Analysis of somatic mutations and copy number variations
We downloaded somatic mutations and copy num-
ber variations (CNV) data from TCGA. Differences in 
mutant forms between clusters were analyzed through 
the R package “maftools“ [20], and the OncoPrint map of 

different clusters of mutations was generated with the R 
package “ComplexHeatmap“ [21].

ICDRM construction and characterization
A differential expression analysis using the R package 
“limma” was used to screen ICDs differentially expressed 
between tumors and peritumoral, followed by a Lasso-
Cox regression analysis. The ICDRM risk score calcula-
tion method is as follows:

Coe genei is the abbreviation of gene coefficient in this 
research, and the Exp of genei is the expression of genes. 
We randomly assigned the TCGA-HCC cohort samples 
to the risk-scoring model in a 1:1 ratio, differentiating 
between training and test sets. The ICGC and GEO data-
sets were used as external data to assess the reliability 
and stability of the model prediction of patient survival at 
1, 3, and 5 years. Factors associated with prognosis were 
obtained by regression analysis combining ICDRM risk 
score and other clinical characteristics, and forest plots of 
clinical prognostic factors were constructed. Nomograms 
were built through the R package “RMS” using factors 
associated with prognosis. Calibration plots were plotted 
to show the agreement between the 1, 3, and 5 years end-
point events predicted by the Nomogram and the actual 
outcome [10, 22].

Immunotherapy and drug prediction
Immunotherapy is widely used in HCC, and to bet-
ter differentiate patients treated with immunotherapy, 
The Cancer Imaging Archive (TCIA) database (https:// 
tcia. at/ home) is used to help predict immunotherapy 
response [23]. Gene expression data of the TCGA-HCC 
cohort were uploaded to TCIA, and the immunophe-
notype score (IPS) of each sample was downloaded. The 
method used to compare IPS differences between high 
and low-risk subpopulations was the Wilcox test. Nota-
bly, IPS is a prognostic indicator to predict the effect of 
anti-PD-1 and anti-CTLA-4 therapy [24, 25]. To research 
potential drugs for the treatment of HCC patients, we 
computed DEGs between high-risk and low-risk sub-
populations (P > 0.05, |log2FC| > 1) using the R package 
“limma”. The difference in semi-inhibitory concentra-
tions (IC50) between common chemotherapeutic drugs 
and targeted drugs in high and low-risk subpopulations 
was calculated by the R package “pRRophetic“ [26]. The 
therapeutic efficacy of different drugs in different sub-
populations was compared [27]. The first 150 upregu-
lated and down-regulated DEGs were submitted to the 

Risk Force =

n

i=1

Coe genei ∗ Exp of genei

http://www.gsea-msigdb.org/gsea/msigdb
https://tcia.at/home
https://tcia.at/home
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cMAP database (https:// clue. io/) [28] and drugs with a 
| median tau score| > 80 were set as drugs effective for 
HCC treatment. The value of ICDRM in predicting ther-
apeutic drug candidates is achieved by the two prediction 
methods described above. PubChem [29] (https:// pubch 
em. ncbi. nlm. nih. gov/) presents the Structures of drugs in 
three dimensions.

Further investigated the key gene of ICDRM
SangerBox [30] (http:// vip. sange rbox. com/) demon-
strated genes’ expression and prognostic, predictive 
power in pan-cancer. We used the LinkedOmics [31] 
database (http:// www. linke- domics. orglo- gin. php) 
to identify co-expressed genes for the critical gene in 
TCGA. Gene enrichment analysis of GO, KEGG, and 
tissue using the Metascape [32] database (https:// metas 
cape. org). Correlations between genes and immune cells 
were analyzed via the TIMER [33] database (https:// 
cistr ome. shiny apps. io/ timer/). Gene annotation at the 
single-cell level is presented by the Tumor Immuniza-
tion Single-Cell Center (TISCH) [34]website (http:// 
tisch. comp- genom ics. org/). The differentiation trajec-
tories of critical cell fractions and their marker genes 
are presented through the TIGER [35] database (http:// 
tiger. cance romics. org/). Regarding immunotherapy, the 
ICBatlas [36] database (http:// bioin fo. life. hust. edu. cn/ 
ICBat las/) was used to explore differences in gene expres-
sion in different treatment cohorts.

Statistics analysis
This study used R [31] software (version 4.1.3) for statisti-
cal analysis and graphing. GraphPad Prism 8.0 and SPSS 
23.0 were also applied for statistical analysis. Differences 
between the indicated groups were compared using 
the Student’s t-test and one-way analysis of variance 
(ANOVA) followed by Fisher’s least significant difference 
(LSD) test. Correlations were evaluated by Pearson cor-
relation analysis. A P-value < 0.05 was considered to indi-
cate a statistically significant result (* P < 0.05; ** P < 0.01; 
*** P < 0.001). Other related R packages are free for down-
load from the Bioconductor or the R website [37, 38].

Results
Consensus clustering identified two ICD‑associated 
clusters
We used the Metascape database to visualize the exten-
sive association between ICDs, and enrichment analysis 
showed an association with signaling pathways of multi-
ple immune-related pathways (Fig. 2A). We also analyzed 
the differential expression of these genes in tumor and 
peritumor tissues. Most ICDs showed differential expres-
sion (Fig.  2B), and the set of differentially expressed 
ICDs was used for further analysis. We performed 

immunohistochemical experiments on the significantly 
differentially expressed gene, HSP90AA1, to verify the 
differential gene expression in tumor and peritumor tis-
sues. The levels of HSP90AA1 in tumor and peritumor 
tissues were compared in HCC patients by immunohisto-
chemical (IHC) staining, which showed that HSP90AA1 
was overexpressed in tumor tissues (Fig. 2D).

TCGA-HCC cohorts were clustered into clusters 
C1 and C2 based on unsupervised clustering methods 
(Fig. 2C). In clusters C1 and C2, gene expression for ICDs 
is shown as a heatmap (Fig.  2E). According to Kaplan-
Meier (KM) analysis, in terms of overall survival(OS), 
there was a significant difference among C1 and C2 clus-
ters (P < 0.001) (Fig. 2F). Overall, the expression of ICDs 
was high in cluster C2 and low in cluster C1. Therefore, 
we defined cluster C1 as ICD-low and C2 as ICD-high.

In addition, the ICD-low cluster is associated with a 
poor prognosis, whereas the ICD-high clusters have a 
better prognosis. Regarding the differences in somatic 
mutations between the two clusters (Fig.  2G  H), we 
observed no difference between the two clusters of genes 
that were altered most frequently, but the relative fre-
quencies were different. For example, the frequency of 
TNN mutations in the ICD-low clusters is 30%. In con-
trast, the frequency of TNN mutations in the ICD-high 
clusters is 16%, demonstrating that the essence of the 
difference in ICD clusters is the difference in copy num-
ber rather than gene mutations. Then we examined the 
differences in copy number variation (CNV) mutations 
between the two clusters (Fig. S 1A-B) and found a nota-
ble difference in the genomic background and expression 
levels of ICDs between ICD-low and ICD-high clusters. 
Our results suggest that CNV may have a regulatory role 
in the expression of ICD clusters.

In addition, various in  vitro experiments were con-
ducted to assess the role of HSP90AA1. Figure  3  A 
shows the expression of HSP90AA1 in HCC cell lines 
and normal hepatocytes (THLE-2); the mRNA expres-
sion of HSP90AA1 was found to be increased in HCC 
cells compared to THLE-2 cells. In addition, we knocked 
down the expression of HSP90AA1 in HepG2 and Huh7 
cells (Fig.  3B). Knockdown of HSP90AA1 inhibited the 
growth (Fig. 3C and D) and migration (Fig. 3E F) of HCC 
cells. The oncogenic role of HSP90AA1 in HCC has been 
reported in previous studies [39–41], and our results are 
the same as the previous study.

Furthermore, we also did a functional verification of 
BAX, the most differentially significant ICD-associated 
gene in HCC. The role of BAX in HCC has been reported 
in previous studies [42–44]. Figure S  2A shows the 
expression of BAX in HCC cell lines and normal hepato-
cytes (THLE-2); the mRNA expression of BAX was found 
to be increased in HCC cells compared to THLE-2 cells. 

https://clue.io/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://vip.sangerbox.com/
http://www.linke-domics.orglo-gin.php
https://metascape.org
https://metascape.org
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
http://tisch.comp-genomics.org/
http://tisch.comp-genomics.org/
http://tiger.canceromics.org/
http://tiger.canceromics.org/
http://bioinfo.life.hust.edu.cn/ICBatlas/
http://bioinfo.life.hust.edu.cn/ICBatlas/
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In addition, we knocked down the expression of BAX in 
HepG2 and Huh7 cells (Fig. S  2B). Knockdown of BAX 
inhibited the growth (Fig. S  2C-D) and migration (Fig. 
S 2E-F) of HCC cells.

Enrichment analysis and Immune landscape of ICD clusters
We used the R package “limma” for further analy-
sis of the TCGA-HCC cohort, setting |logFC|>1.0 and 
P < 0.05. There were 678 DEGs calculated between 
ICD-low and ICD-high clusters (Fig.  4A, Supplemen-
tary Table S 2), and the Heatmap showed no significant 
association between ICD clusters and clinical features 
(Fig. 4B). GSEA enrichment analysis revealed that DEGs 

upregulated in ICD-high groups were markedly enriched 
in immune-associated pathways, including T cell, B cell, 
and NK cell signaling pathways (Fig. 4C), and the other 
pathways are shown in Supplementary Table S 3. In addi-
tion, GO enrichment analysis shows the biological pro-
cess (BP) of upregulated DEGs in the ICD-high clusters 
were associated with immune response activation; cellu-
lar component (CC) is mainly related to the outer side of 
the plasma membrane; cellular function (MF) is primar-
ily related to antigen binding, immunoglobulin receptor 
binding, and immune receptor activity (Fig. 4D). KEGG 
enrichment analysis revealed ICD-high clusters associ-
ated with immunization processes such as natural killer 

Fig. 2 Genotyping of ICD‑related genes. A Enriched ontology clusters of ICD genes analyzed by Metascape, colored by cluster‑ID. B Heatmap 
shows 34 ICD gene expression differences among tumor and peritumor samples in TCGA. C Total of 374 HCC patients was identified into two 
clusters according to the consensus clustering matrix (k = 2). D Validation of HSP90AA1 expression in clinical tumor tissues by representative images 
of hepatocellular carcinoma and IHC of tumor and peritumor tissue. E Heatmap shows ICD‑related gene expression differences between ICD‑low 
and ICD‑high clusters in TCGA. F Kaplan‑Meier survival curves for the two clusters (P < 0.001). G, H Comparison of the mutation landscape between 
ICD‑low and ICD‑high clusters
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cell-mediated cytotoxicity, T cell receptor signaling path-
way, and B cell receptor signaling pathway (Fig. 4E).

CIBERSORT and ssGSEA algorithms were used to 
compare the infiltration of immune cells between the 
two clusters based on the TCGA-HCC cohort. First, the 
infiltration component of 22 immune cells for each sam-
ple was calculated using the CIBERSORT algorithm. 

The percentages of NK-activated cells, CD4 memory-
activated T cells, and CD8 T cells, representing immune 
activation, were relatively increased in the ICD-high 
clusters; the percentages of M2 macrophages, CD4 
memory-resting T cells, and NK-resting cells, represent-
ing immunosuppression, were relatively decreased in the 
ICD-high clusters (Fig.  5A). The R package “Estimate” 

Fig. 3 Expression of HSP90AA1 in HCC cells and its function. A. mRNA levels of HSP90AA1 in THLE‑2 and HCC cells. B mRNA levels of HSP90AA1 in 
HepG2 and Huh7 HCC cells after HSP90AA1 was knocked down. C, D A colony formation assay was used to explore the function of HSP90AA1 in 
HCC cells. Their representative images are shown in C. E, F Knockdown of HSP90AA1 inhibits HCC cell migration. Wound healing assays were used 
to assess the migration of HepG2 and Huh7 cells after the HSP90AA1 knockdown. Representative images are shown in E (* P < 0.05, ** P < 0.01, 
***P < 0.001). All experiments were repeated at least three times
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generates a tumor stromal score and an immune score, 
which are combined to produce an index called the “Esti-
mate Score” and a score based on the Estimate algo-
rithm to infer tumor purity. In clusters with ICD-high, 
stromal and immune scores are high. Still, tumor purity 
is low (Mann-Whitney u-test) (Fig.  5B). Comparative 
analysis of immune cell infiltration using the ssGSEA 
algorithm revealed that the ICD-high clusters was sig-
nificantly higher than ICD-low clusters in all immune cell 
infiltration levels and immune function scores (Fig.  5C 
and D). In addition, we performed a comparison of the 
expression of genes associated with immune activation 
between the two clusters, and the expression was signifi-
cantly upregulated in the ICD-high clusters (Fig. 5E), as 
were the results observed for the differential expression 
of RNA modification-related genes, MHC, chemokines, 
and receptor genes (Fig. S  3A-D). The above analy-
sis results suggest that the ICD-high clusters represent 
immune-activated hot tumor phenotypes, while the ICD-
low clusters represent immune-suppressed cold tumor 
phenotypes.

ICDRM building and validation
To obtain the characteristic genes most associated with 
prognosis, we screened 7-ICD genes that had an associa-
tion with OS in HCC patients by univariate COX analysis 
(setting P < 0.1); 5-ICD-associated genes were identified 
to build ICDRM after incorporating variables into the 
LASSO regression model (Fig. 6A and B). Subpopulations 
at high-risk had much higher mortality states than those 
at low risk. ATG5, CASP8, and HMGB1 were highly 
expressed in the high-risk subpopulations, whereas CD4 
and PRF1 expressed were lower (Fig. 6C). In a multivari-
ate Cox analysis, the poor prognosis was significantly 
correlated with tumor stage and ICDRM. Multifactorial 
analysis showed that tumor stage and ICDRM risk score 
were independent risk factors of HCC (Fig. 6D). Different 
somatic mutations and CNV were constructed between 
high-risk and low-risk subpopulations based on the 
TCGA-HCC cohort (Fig.  6E-F). Our findings revealed 
differences in the genomic background and expression 
levels of ICDs between Risk-low and Risk-high subpopu-
lations, suggesting the involvement of somatic mutations 

Fig. 4 Identification of DEGs and signal pathways in different clusters. A Volcano plot presents the DEGs between ICD‑low and ICD‑high clusters 
with a threshold of |log2 FC| > 1 and P < 0.05 in TCGA. B Heatmap shows the relationship between subpopulations and clinical features. C GSEA 
analysis shows the signal pathways between ICD‑low and ICD‑high clusters. D, E Bar Chart presents the GO and KEGG enrichment analysis of DEGs.
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and CNV in HCC tumorigenesis (Fig. S 4A, B). The top 
20 driver genes that were altered most frequently in 
both subpopulations were similar. However, the high-
risk subpopulations had significantly more changed cell 
copy numbers than the low-risk subpopulations. Kaplan-
Meier survival analysis indicates that high-risk subpopu-
lations are linked to poorer prognosis, with statistically 
significant differences; the ICGC and GEO datasets dem-
onstrated the effectiveness of ICDRM (Fig.  6G). In the 
TCGA cohort, the survival AUC was 0.696, 0.637, and 

0.619 at 1, 3, and 5 years; in the ICGC cohort, the sur-
vival AUC was 0.595, 0.689, and 0.721 at 1, 3, and 5 years; 
and in the GSE76427 cohort, the survival AUC was 0.709, 
0.638, and 0.758 at 1, 3, and 5 years (Fig. 6H).

In the datasets of three different platforms (TCGA, 
ICGC, and GSE76427), ICDRM had a higher con-
cordance index (C-index) compared to other clinical 
features (Fig. 7A-C), demonstrating the predictive effi-
ciency of ICDRM. Therefore, we developed a nomo-
gram including tumor staging and risk scores in the 

Fig. 5 The immune landscape of ICD‑low and ICD‑high clusters. A Differences in the immune cell infiltration using the CIBERSORT method. 
B Differences in the estimations of a stromal score, immune score, and tumor purity score using the CIBERSORT method. C Differences in the 
immune cell subtypes using the ssGSEA method. D Differences in the immune cells‑related functions using the ssGSEA method. E Differences in 
the expression of immune stimulatory‑related genes using the ssGSEA method
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TCGA-HCC cohort, the ICGC-HCC cohort, and the 
GSE76427 dataset as two external validation groups 
(Fig. 7D-F). Calibration curves were plotted to observe 
the agreement between the predicted and actual nomo-
gram at 1, 3, and 5 years OS (Fig. 7G and I). The results 
suggest that ICDRM, including the 5-ICDs mentioned 
above, has a stable prognostic power.

Somatic mutations data from the TGCA-HCC 
cohort were used to calculate TMB scores, and the 
high TMB groups were significantly associated with 
worse prognosis (P = 0.035) (Fig. S  5A), which is con-
sistent with recent studies showing that TMB can be 
used as a prognostic marker for many kinds of tumors 

[45]. We compared whether ICDRM predicted overall 
survival better than TMB in HCC patients. The results 
showed: patients with a high ICDRM risk score have a 
worse prognosis (P < 0.001), as does the indicator TMB 
risk score, which is statistically significant. It is inter-
esting to note that the survival curves of the patients 
with higher TMB were similar to those of the patients 
with lower TMB in the high-risk (ICDRM) subpopu-
lations. The study’s results suggest that TMB status 
in high-risk subpopulations does not impact patient 
overall survival. Thus, these results indicate that 
ICDRM may have greater prognostic significance than 
TMB (Fig. S 5B).

Fig. 6 Construction and validation of ICDRM. A Univariate Cox analysis evaluates the predictive value of ICDRM in terms of OS. B Lasso‑Cox analysis 
identified 5‑genes most associated with OS in TCGA. C Risk scores distribution, survival status of each patient, and heatmap of prognostic 5‑genes 
signature in TCGA. D Univariate and multivariate Cox analyses evaluate the independent prognostic value of ICDRM in TCGA. E, F Comparison of 
the mutation landscape between subpopulations with high and low‑risk scores. G Kaplan–Meier analyses demonstrate the prognostic significance 
of ICDRM in the TCGA, ICGC, and GSE76427 datasets. H AUC of time‑dependent ROC curves verified the predictive performance of ICDRM in TCGA, 
ICGC, and GSE76427 datasets
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Enrichment analysis and immune landscape of ICDRM 
subpopulations
We used the R package “limma” to further analyze the 
TCGA-HCC cohort, setting |logFC|>1.0 and P < 0.05. 
There were 1189 DEGs between high-risk and low-risk 
subpopulations (Fig.  8A, Supplementary Table S  4). 
Heatmap revealed a remarkable association of ICDRM 
risk score with tumor stage, especially T stage (Fig. 8B). 
Several immune-related pathways were notably over-
represented in low-risk subpopulations based on GSEA 
enrichment analyses, including T-cell receptor signaling 
pathway, B-cell receptor signaling pathway, and NK-cell 
receptor signaling pathway (Fig.  8C), and other path-
ways are shown in Supplementary Table S 5. In low-risk 
subpopulations, BP of upregulated DEGs was associated 
with T-cell activation, based on GO enrichment analy-
sis; CC is mainly associated with the outer side of the 
plasma membrane; MF is primarily associated with 
immunoglobulin receptor binding, antigen binding, and 
carbohydrate-binding (Fig. 8D). KEGG enrichment anal-
ysis revealed the low-risk subpopulations associated with 

immune pathways, including NK cell, T cell, and B cell 
receptor pathways, etc. (Fig. 8E).

Our study examined the differences in immune cells 
infiltrating from each subpopulation using both CIB-
ERSORT and ssGSEA algorithms based on the TCGA-
HCC cohort [46–48]. Comparative results using the 
CIBERSORT algorithm indicate that low-risk subpopu-
lations have a proportionally higher number of immune 
cells with activated immune cell activity. Conversely, 
the high-risk subpopulations had more immune cells 
that suppressed immune function (Fig. 9A). Compared 
to the high-risk subpopulations, the low-risk subpopu-
lations had higher stromal and immune scores and 
lowered tumor purity scores (Mann-Whitney u-test) 
(Fig.  9B). In comparisons of the low-risk subpopula-
tion and the high-risk subpopulation using the ssGSEA 
algorithm, the low-risk subpopulation had significantly 
greater levels of immune cell infiltrations and immune 
function scores. (Figure 9C and D). Meanwhile, we con-
structed a differential heatmap of ICDRM subpopula-
tions and ICD clusters for immune cell infiltration in 

Fig. 7 Prognostic value of ICDRM in TCGA, ICGC, and GEO datasets. A‑C Concordance index (C‑index) of ICDRM. D‑F Construction of Nomograms 
with the ICDRM and tumor stages. G‑I Calibration curves to evaluate the precision of Nomograms
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TCGA (Fig. S 5C). Most patients in the high-risk sub-
populations were in the ICD-low clusters, whereas 
most patients in the low-risk subpopulations were in 
the ICD-high clusters.

Moreover, the high-risk subpopulations exhibited a 
cold tumor immunosuppressive phenotype, while the 
low-risk subpopulations exhibited a hot tumor immu-
nosuppressive phenotype. We also compared the expres-
sion differences of genes related to immune activation 
between the high-risk and low-risk subpopulations. We 
found most of these genes were markedly upregulated in 
low-risk subpopulations. In contrast, the opposite trend 
was observed in the high-risk subpopulations (Fig.  9E). 
We followed the same results in the differential expres-
sion of the following genes: RNA modification-related 
genes, MHC, chemokines, and receptor genes (Fig. 
S  6A-D). The above analyses suggest that the ICDRM 
can discriminate ICD clusters and thus further assess 
variation in the tumor immune microenvironment of 
patients with HCC.

Association of ICDRM with immunotherapy response 
and drug sensitivity
Recent studies suggest that IPS based on immunogenic-
ity may help predict response to immunotherapy. The 
response rates of different subgroups of anti-PD-1 or 
anti-CTLA-4 antibodies used in the TCIA database were 
examined. There was a higher level of IPS in low-risk sub-
populations. Immunotherapy was likely to be more effec-
tive in these subgroups (Fig. 10A). Assessing the value of 
ICDRM in predicting the sensitivity of chemotherapeu-
tic agents or targeted drugs, 68 drugs effective for HCC 
treatment were obtained by setting the median tau score 
> -80 as the cut-off value through the cMAP database 
(Fig. 10B). Predictions using the R package “pRRophetic” 
produced 66 commonly used chemotherapeutic or tar-
geted agents more sensitive to the low-risk subpopula-
tions in the TCGA-HCC cohort. The results showed that 
more drugs were more sensitive to the low-risk subpop-
ulations (Fig. S  7). Taking the intersection of the drugs 
obtained by the two prediction methods, three common 

Fig. 8 Identification of DEGs and signal pathways in different ICDRM subpopulations. A Volcano plot presents DEGs between risk‑high and risk‑low 
subpopulations with a threshold of |log2 FC| > 1 and P < 0.05 in TCGA. B Heatmap shows the relationship between subpopulations and clinical 
features. C GSEA analysis shows the signal pathways between risk‑high and risk‑low subpopulations. D, E Bar Chart presents the GO and KEGG 
enrichment analysis of DEGs.
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drugs were identified: Camptothecin, Vorinostat, and 
Etoposide. (Fig. 10C, Supplementary Table S 6). Further-
more, we find their 3D structures in PubChem, which 
may help to design better ICD inducers (Fig. 10D).

We also performed an exhaustive Spearman correla-
tion analysis between ICDRM risk score and immune 
cells. The results showed that ICDRM was positively cor-
related with M0 macrophages, activated dendritic cells, 
and B-cell memory negatively correlated with T cells. In 
the results, PRF1 was the critical gene of ICDRM, as its 

correlation and P value with immune cells was the most 
significant (Fig. S 8A, B).

PRF1 plays a crucial role as a functional mediator 
of immune regulation
We found that PRF1 (Perforin 1) was significantly 
differentially expressed in most cancer types (Fig. 
S  9A), and PRF1 was highly accurate as a single fac-
tor in predicting tumor prognosis in various cancers 
in the TCGA cohort (Fig. S 9B). Therefore, we further 

Fig. 9 The immune landscape of risk‑high and risk‑low subpopulations. A Differential analysis of immune cell infiltration using the CIBERSORT 
method. B Differential analysis of the estimations for a stromal, immune, and tumor purity score using the CIBERSORT method. C Differential analysis 
of immune cell subtypes using the ssGSEA method. D Differential analysis of immune cell‑related functions using the ssGSEA method. E Differences 
in the expression of immune stimulatory‑related genes
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investigated the characterization of PRF1 in the devel-
opment of HCC. First, genes co-expressed with PRF1 in 
the TCGA-HCC cohort were investigated in the Linke-
dOmics database (Fig. 11A). The results revealed 1136 
co-expressed genes that were significantly related to 
PRF1 (|COR|≥0.3 and P < 0.05, Supplementary Table 
S  7). Among these 1136 genes, 1135 were positively 
associated with PRF1 expression, and 1 was negatively 
associated with PRF1 expression. The DEGs of the 
PRF1 high and PRF1 low expression subpopulations 
were then calculated. 1813 DEGs were identified (|log2 
FC| ≥ 1 and P < 0.05) as shown in Supplementary Table 
S 8. Among them, 1600 upregulated and 213 downregu-
lated genes were identified in the PRF1 high-expression 

group (Fig.  11B). The 1813 DEGs were intersected 
with 1136 co-expressed genes to identify 581 overlap-
ping genes for further functional analysis (Fig.  11C, 
Supplementary Table S  9). Figure  11D shows the co-
expression relationship of PRF1 with immune-related 
genes, including VSIR, CD86, LGALS9, and CD200.etc. 
To study the biological features of the 581 overlapping 
genes, based on the Metascape database, enrichment 
analyses for GO and KEGG were performed. Figure 11E 
lists the top 20 enrichment analysis results, including 
the adaptive immune system, innate immune system, 
immunoregulatory interactions, and activates B cell 
receptors, and the data suggest that PRF1 is an impor-
tant functional mediator of immune regulation. On the 

Fig. 10 Drug prediction depends on ICDRM. A The relationship between PD‑1 and CTLA‑4 responsiveness differences between risk‑low and 
risk‑high subpopulations in TCGA. B Drugs predicted by the cMAP database, setting median tau score > ‑80. C Venn diagram for the drugs predicted 
by the R package “pRRophetic” and the cMAP database. D Using the PubChem website to predict the 3D structure of these intersection drugs
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other hand, as shown in Fig.  11F, overlapping genes 
were enriched in the spleen, blood, and bone marrow 
(CD56 + NK cells, MOLT4, CD14 + monocytes, and 
BDCA4 + dendritic cells), additional evidence for an 
immunomodulatory role of PRF1 in the pathogenesis of 
HCC is provided. In the TCGA-HCC cohort, molecular 
pathways significantly altered by PRF1 high expression 
versus PRF1 low expression were analyzed by GSEA 
soft tools. The results showed that PRF1 mainly regu-
lates immune-related processes or pathways, includ-
ing the adaptive and innate immune systems. Antigen 

activates B cell receptor (BCR), leading to T cell pro-
lymphocytic leukemia (T-PLL) and so on (Fig.  11G). 
This further suggests an immunomodulatory function 
of PRF1 in the carcinogenesis of HCC. The TIMER 
database showed a significant co-expression of PRF1 
with immune cells. In particular, CD8 T cells, B cells, 
and DC cells. (Fig. 11H).

The ICBatlas database was used to compare pre-treat-
ment and post-treatment differences in PRF1 expres-
sion in several immunotherapy cohorts (Fig. S  10A). 
PRF1 expression differences between responders and 

Fig. 11 Genes associated with PRF1 and Functional enrichment analysis in TCGA . A Volcano plot for the co‑expressed genes related to PRF1, 
analyzed by LinkedOmics. B Volcano plot for DEGs between PRF1 high and PRF1 low groups. C Venn diagram for the overlapping genes between 
co‑expressed genes and DEGs. D Co‑expression of PRF1 and immune‑related genes. E GO and KEGG enrichment analysis of the overlapping genes 
by Metascape. F Tissues and cells enrichment analysis of the overlapping genes by Metascape. G GSEA analyses of the overlapping genes. H The 
correlation of PRF1 and immune cells in HCC was analyzed by TIMER.
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non-responders were compared across various immu-
notherapy cohorts (Fig. S  10B). The results showed 
that PRF1 levels were elevated after treatment or in 
the response group, suggesting that PRF1 may play an 
essential role in tumor immunotherapy.

Single-cell RNA sequencing provides greater insight 
into cellular behavior in complex tumor microenviron-
ments [49]. We further investigated the expression of 
PRF1 at the single-cell level. The distribution of PRF1 
expression in different datasets is shown using the TISCH 

Fig. 12 Single‑cell annotation of PRF1 in HCC by TISCH. A Correlation of PRF1 with cell subpopulations. B The cell types and their distribution in the 
HCC_GSE140228_10X dataset and the distribution of PRF1. C The cell types and their distribution in the HCC_GSE140228_Smartseq2 dataset, and 
the distribution of PRF1. D The cell types and their distribution in the HCC_GSE98638 dataset and the distribution of PRF1.
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database (Fig. 12A). PRF1 was expressed in CD4Tn, Treg, 
Tprolif, CD8Tcm, CD8Teff, MAIT, CD8Tex, and NK 
cell types in HCC_GSE140228_10X (Fig.  12B). PRF1 
was expressed in CD4Tn, Tprolif, CD8Tex, and NK cell 
types in HCC_GSE140228_Smartseq2 (Fig.  12C). PRF1 
was expressed in CD4Tn, CD4Teff, Th1, Th17, Treg, 
Tprolif, CD8Tcm, CD8Teff, MAIT, CD8Tex and NK cell 
types in HCC_GSE98638 (Fig. 12D). The results indicate 
that the functional annotation of PRF1 at the single-cell 
level is associated with T cells and NK cells. Cell trajec-
tory analysis is used to reconstruct the process of cellu-
lar change over time by constructing intercellular change 
trajectories. Cell trajectory analysis allows the verifica-
tion of known cellular differentiation relationships at 
single-cell resolution and the mining of cellular subpopu-
lations and marker genes critical for differentiation [50]. 
The expression distribution of PRF1 in different cell types 
in HCC_GSE125449_10x was explored with TIGER (Fig. 
S  11A), and the results indicate that PRF1 is primarily 
expressed in NK/NKT cell types (Fig. S 11B-C) and was 
a marker gene of NK/NKT cells. It is suggested that PRF1 
expression is associated with NK/NKT cell immune infil-
tration. Here, we reiterated the importance of immune 
infiltration of T cells and NK cells in immunogenic cell 
death [51] and that PRF1 might be an essential marker of 
immune cell infiltration of T cells and NK cells.

Discussion
Immunogenic cell death has been identified as a func-
tionally unique form of stress-mediated cell death (RCD) 
[52], and a growing number of studies strongly emphasize 
the ability of ICDs to induce specific anticancer immune 
responses [53]. ICDs trigger a complete adaptive immune 
response by releasing danger signals to reshape the tumor 
immune microenvironment, which would contribute to 
immunotherapy [54]. The combination of immunogenic 
therapy and new immunotherapy regimens holds great 
promise for treating malignancies, and cancer biology is 
focusing more and more on this area [55–58]. Among the 
clinically known ICD inducers, only a few drugs, includ-
ing adriamycin and anthracyclines, epirubicin, idaru-
bicin, mitoxantrone, bleomycin, Vanco bortezomib, and 
oxaliplatin, have been shown to induce true ICD. How-
ever, these inducers remain suboptimal due to cytotoxic-
ity. It is crucial to find a drug that can directly cause ICD 
in tumors [59]. The effects of ICDs on the tumor immune 
microenvironment, invasive tumor migration, and their 
prognostic role in HCC are poorly understood.

In our study, we comprehensively understood the 
association between the differential and clinical charac-
teristics of ICDs expression in HCC. Two ICD clusters 
were identified by consensus clustering, and ICDs were 
relatively highly expressed in the ICD-high clusters and 

relatively low expressed in the ICD-low clusters. Analyz-
ing and evaluating both groups, we found that patients in 
the ICD-high clusters had significantly longer OS, consid-
erably higher levels of immune infiltration, significantly 
higher immune function scores, and significantly higher 
expression levels of immune activator-related genes. 
Therefore, we defined ICD-high as the immune-activated 
hot tumor phenotype and ICD-low as the immune-sup-
pressed cold tumor phenotype. As the tumor becomes 
immunogenic, its immune microenvironment changes, 
which mediates the body’s production of an antitumor 
immune response when tumor cells undergo immuno-
genic death by external stimulation [60]. We hypothesize 
that this change is related to the expression of ICDs. We 
then constructed ICDRM, including 5-ICD genes using 
the Cox-Lasso algorithm. ICDRM was used to clas-
sify patients into high-risk and low-risk subpopulations. 
ICDRM showed a high predictive value for OS and could 
be used as an independent prognostic factor for patients 
with HCC. We validated the validity and stability of 
ICDRM to predict prognosis in datasets of three different 
platforms (TCGA, ICGC, and GEO).

Additionally, we compared the infiltration of immune 
cells and immune-related gene expression among the 
two subpopulations. We found that ICDRM could dis-
criminate ICD clusters and thus further assess TME dif-
ferences in HCC patients, distinguishing whether the 
immune phenotype was immunosuppressed cold tumors 
or immune-activated hot tumors. Use ICDRM to predict 
tumor immunotherapy’s efficacy and identify patients 
more likely to benefit from immunotherapy. Early diag-
nosis and treatment have always been the optimal choice 
in the fight against cancer [61]. The development of cir-
culating tumor DNA (ctDNA) technology has helped 
identify therapeutic targets and combination treatment 
strategies [62]. Calculating the patient’s ICDRM risk 
score can provide valuable information for real-world 
cancer treatment decisions and realize the clinical value 
of predictive models [63].

ICDs interact and influence each other; specifically, 
in the ICDRM we constructed, the downregulation of 
ATG5, CASP8, and HMGB1 positively influenced patient 
survival, while the opposite was true for CD4 and PRF1. 
There is increasing evidence that ICDs is strongly asso-
ciated with the tumor immune microenvironment and 
aggressive migration. Studies suggest that HMGB1 is 
closely associated with tumor proliferation [64]. When 
cells develop ICD, they release HMGB1 extracellularly. 
Cancer eradication requires HMGB1 to bind to Toll-
like receptor 4, activating immune cells through signal-
ing pathways. Blockade of HMGB1 binding to TLR4 is 
associated with early recurrence in breast cancer patients 
[65]. Bax is a crucial regulator of cell death and plays a 
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pivotal role in mitochondrial dysfunction [66]. Its activa-
tion leads to mitochondrial membrane permeabilization, 
releasing cytochrome c and, ultimately, cancer cell death. 
Surprisingly, our study revealed that the knockdown of 
Bax inhibited hepatocellular carcinoma cells’ prolifera-
tion and metastatic capacity. Studies have demonstrated 
that aggressive diseases are linked to pro-apoptotic Bax 
expression or caspase activation, whereas a less aggres-
sive state is associated with anti-apoptotic Bcl-2 [67, 
68]. The process of cell death can potentially promote 
genomic instability and create ecological niches that 
may lead to the repopulation of more aggressive tumor 
cell clones in the context of neoplastic and progres-
sive tumors [69, 70]. HSP90AA1, an oncoprotein, regu-
lates protein conformation, stability, and degradation. It 
is highly expressed in various tumor tissues, including 
hepatocellular carcinoma, lung cancer, gastric cancer, 
breast cancer, and esophageal cancer. It is significantly 
associated with tumor infiltration depth, lymph node 
metastasis, staging, and grading [71–74]. In hepatocel-
lular carcinoma, HSP90AA1 promotes the growth of 
HCC cells by enhancing glycolysis and proliferation and 
reducing apoptosis through pyruvate kinase M2 (PKM2) 
[40].Studying the characteristics of ICDs in HCC will 
improve our knowledge of tumor aggressiveness and help 
develop more individualized and accurate immunother-
apy protocols.

Immunotherapy appears beneficial for patients with 
HCC based on a large body of evidence; however, a 
poor understanding of the TME and immune infiltra-
tion in HCC leads to variable outcomes with the same 
immunotherapy in patients, which may be related to 
immune escape [75]. Therefore, a biomarker is urgently 
needed to predict patients’ responses to immuno-
therapy. Our study shows that the characterization of 
ICDRM in the TCGA-HCC cohort can provide strati-
fication of the patient’s tumor microenvironment, dis-
tinguishing between cold and hot tumors, and has 
significant potential for cancer vaccine development 
[76]. Although ICDs have been used in some preclini-
cal models, there is currently insufficient evidence that 
ICDRM can be used in clinical practice [77]. In our 
study, ICDRM has been demonstrated on three dif-
ferent platform datasets, and a consistent prognosis 
can be predicted for patients with HCC with ICDRM. 
When we examined treatment outcomes by ICDRM 
risk score, we found an association between drug sensi-
tivity and ICDRM risk score. Results from clinical trials 
showed that sorafenib, a drug-sensitive to the high-risk 
subpopulations, prolonged survival by 2.8 months com-
pared to placebo groups in advanced HCC [78]; and axi-
tinib, a drug-sensitive to the low-risk subpopulations, 

allowed patients with advanced HCC to survive up to 
20.1 months [79], consistent with results predicted by 
the TCIA database, low-risk subpopulations had higher 
IPS. There is a possibility that immunotherapy will 
work better for them and that it will have better results.

In addition, drugs that are more sensitive to low-risk 
subpopulations of ICDRM may be more beneficial for 
survival. In addition, based on ICDRM we constructed, 
patients may benefit more from immunotherapy by 
changing the immune phenotype of tumor patients so 
that cold tumors become hot tumors. Whether the three 
drugs (Camptothecin, Vorinostat, and Etoposide) pre-
dicted to be effective for treating HCC based on ICDRM 
can be used to develop better ICD inducers needs further 
investigation.

Immunogenic cell death is closely associated with 
antitumor immune activity [80]. Our further explora-
tion of the critical gene of ICDRM, PRF1, revealed that 
it could serve as a stable prognostic marker for many 
tumors and is significantly differentially expressed 
across cancer types. Single-cell level annotation 
revealed that PRF1 is expressed in multiple immune cell 
types, particularly NK and T cells. In addition, PRF1 
is a signature gene of NK/NKT cells and a marker for 
various immune cells. PRF1 has been shown to play a 
role in allowing tumor cells to perforate and rupture 
the membrane, releasing more DAMPs and leading to 
more immune cells recognizing and engulfing tumor 
cells, an essential feature in activating complete adap-
tive immunity [81]. Cytotoxic T lymphocytes (CTL) are 
capable of killing infected cells as well as tumor cells. 
CTL cytosolic spit out enzymes soluble granzyme, and 
these granules contain perforin (pore-forming pro-
tein) and granzyme (granzyme) and enter the cytotoxic 
immune synapse between CTL and target cells. Among 
them, PRF1 can punch holes in the cytosolic membrane 
of target cells to expose more antigens, allowing gran-
zyme to enter the cytoplasm of target cells rapidly. At 
the same time, effector cytotoxic T cells can accumulate 
toward infected cells or tumor sites under the action 
of chemokines. Thus, cytotoxic T cells secrete effector 
molecules at high local concentrations, selectively kill-
ing target cells without harming adjacent normal cells. 
These effector molecules enter the cytoplasm and cause 
target cell apoptosis by activating apoptosis-associated 
apoptosis enzyme systems [82]. PRF1 plays a perfo-
ration-breaking role and may be essential in inducing 
more immune cells to exert joint antitumor immunity. 
Therefore, the mechanism of PRF1, an important gene 
of ICDRM, in the antitumor immune infiltration of NK 
cells and T cells deserves in-depth investigation.
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However, because our analysis was derived from lim-
ited data analysis, our study has obvious limitations, 
namely, the need for large-scale prospective studies and 
functional or mechanistic experiments to explain the 
mechanism of ICDs in HCC.

Conclusion
This study systematically evaluated ICDs, then con-
structed ICDRM including 5-ICDs, which could be used 
as a stable and accurate prognostic biomarker of HCC. 
Our study confirms that the properties of ICDs provide 
a theoretical basis for their use in developing better ICD 
inducers with significant potential for cancer vaccine 
development. ICDRM could be applied to characterize 
the TME and immune infiltration in patients with HCC, 
as well as provide new ideas and approaches for develop-
ing better and more personalized immunotherapy proto-
cols by determining the immune phenotype of the tumor.
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DEGs betweenhigh‑risk and low‑risk subpopulations. Supplementary 
Table S6. The intersectionof the drugs was predicted using the R package 
"pRRophetic" and the cMAPwebsite. Supplementary Table S7. 1136 Co‑
expressed genes that weresignificantly related to PRF1. Supplementary 
Table S8. 1813 DEGs of the PRF1high and PRF1 low expression subpopu‑
lations. Supplementary Table S9. 581 overlappinggenes between 1813 
DEGs and 1136 co‑expressed genes.
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