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Abstract 

Background Single‑cell RNA‑seq has emerged as an innovative technology used to study complex tissues and 
characterize cell types, states, and lineages at a single‑cell level. Classification of bulk tumors by their individual cel‑
lular constituents has also created new opportunities to generate single‑cell atlases for many organs, cancers, and 
developmental models. Despite the tremendous promise of this technology, recent evidence studying epithelial tis‑
sues and diverse carcinomas suggests the methods used for tissue processing, cell disaggregation, and preservation 
can significantly bias gene expression and alter the observed cell types. To determine whether sarcomas – tumors of 
mesenchymal origin – are subject to the same technical artifacts, we profiled patient‑derived tumor explants (PDXs) 
propagated from three aggressive subtypes: osteosarcoma (OS), Ewing sarcoma (ES), desmoplastic small round cell 
tumor (DSRCT). Given the rarity of these sarcoma subtypes, we explored whether single‑nuclei RNA‑seq from more 
widely available archival frozen specimens could accurately be identified by gene expression signatures linked to tis‑
sue phenotype or pathognomonic fusion proteins.

Results We systematically assessed dissociation methods across different sarcoma subtypes. We compared gene 
expression from single‑cell and single‑nucleus RNA‑sequencing of 125,831 whole‑cells and nuclei from ES, DSRCT, 
and OS PDXs. We detected warm dissociation artifacts in single‑cell samples and gene length bias in single‑nucleus 
samples. Classic sarcoma gene signatures were observed regardless of the dissociation method. In addition, we 
showed that dissociation method biases could be computationally corrected.

Conclusions We highlighted transcriptional biases, including warm dissociation and gene‑length biases, introduced 
by the dissociation method for various sarcoma subtypes. This work is the first to characterize how the dissociation 
methods used for sc/snRNA‑seq may affect the interpretation of the molecular features in sarcoma PDXs.
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Background
Tumors are composed of a diverse multicellular microen-
vironment that dictates cancer progression and response 
to therapy. While cells share an identical genome, their 
phenotype and behavior are driven by their transcrip-
tome and proteome [1]. Cellular heterogeneity within 
the tumor ecosystem has precluded the ability to fully 
understand the cell biology and interactions that drive 
cancer progression [1]. Recently, single-cell RNA-seq 
(scRNA-seq) has emerged as an innovative technology 
to characterize individual cells from heterogeneous tis-
sues in order to understand cell types, states, and line-
ages [2]. The rapid adoption of this technology has led to 
a flurry of research generating single-cell atlases for many 
organs, cancers, and developmental models, enriching 
our understanding of cell biology [3].

Despite the tremendous success of this technology 
when applied to different cancer types, sarcomas, which 
are cancers of mesenchymal origin, have not yet widely 
benefited from the adoption of scRNA-seq. Differences 
in tissue origin may require optimized dissociation to 
capture accurately in  vivo gene expression and cellu-
lar composition. Further, the enzymatic and mechanical 
methods used to dissociate cells are known to bias cel-
lular composition and reduce cellular quality. Many gold 
standard dissociation protocols require extended incuba-
tion at 37  °C, where cellular transcription is still active 
and may introduce gene expression artifacts [4]. Cold-
active protease is a recent alternative to dissociation 
at 37  °C, which may limit and minimize transcriptional 
activity and environmental stresses on cells [4, 5].

Challenges in obtaining fresh clinical specimens and 
the logistical issues to process specimens immediately 
have also hindered workflows [6]. While cancer models 
for sarcoma, including cell lines, xenografts, and PDXs, 
are readily accessible for scRNA-seq, the extent that these 
models represent the original cancer specimen have not 
yet been adequately evaluated. Single-nucleus RNA-
seq (snRNA-seq) of accessible frozen tissue has demon-
strated concordance with scRNA-seq [6–10]. SnRNA-seq 
can remove the limitations for obtaining fresh tissue and 
immediate processing by enabling access to archival tis-
sue and ease the coordination of tissue acquisition by 
allowing sequencing of snap-frozen tissue. Furthermore, 
difficulties with cell fragility or size when considering 
scRNA-seq can be circumvented using snRNA-seq.

The biases introduced by different methods have been 
studied between single-cell and single-nucleus and dis-
sociation using cold-active proteases and standard diges-
tion at 37°C [4]. However, these studies did not include 
sarcoma specimens, which differ significantly from epi-
thelial tissues and carcinomas in their expression not 
only by lineage but also integrins and cell–cell adhesions 

[11, 12]. To fully realize the potential of scRNA-seq and 
snRNA-seq in three of the fifty or more unique sarcoma 
subtypes, we systematically assessed the effect tempera-
ture has upon enzymatic dissociation of fresh tissue and, 
secondarily, studied whether snRNA-seq maintains key 
transcriptomic profiles determined using scRNA-seq. We 
focused our analysis on well-controlled PDX specimens 
of different and rare sarcomas to enable sample acces-
sibility since fresh sarcoma specimens are difficult to 
acquire. This further enabled our group to explore multi-
ple dissociation methods on the same sample.

Though more than fifty distinct sarcoma subtypes exist, 
our work takes an essential step to lay out the technical 
and analytical framework needed for scRNA-seq and 
snRNA-seq analysis of osteosarcoma, ES, and DSRCT, 
three highly aggressive sarcoma samples that affect ado-
lescents and young adults. Our work highlights notable 
method-dependent biases, as well as computational tools 
used to remove them when rare archival frozen samples 
are assessed by snRNA-seq.

Methods
Collection of fresh tissue for scRNA‑seq
All experiments were conducted per protocols and con-
ditions approved by the University of Texas MD Ander-
son Cancer Center (MDACC; Houston, TX) Institutional 
Animal Care and Use Committee (eACUF Protocols 
#00000712-RN02). Male NOD (SCID)-IL-2Rgnull mice 
(The Jackson Laboratory; Farmington, CT) were subcu-
taneously injected with PDX explants (2  mm) to gener-
ate xenografts. All mice were maintained under barrier 
conditions and treated using protocols approved by The 
University of Texas MD Anderson Cancer Center’s Insti-
tutional Animal Care and Use Committee. SA98 (full 
id: MDA-SA98-TIS02), OS1, and OS31, are PDX lines 
maintained by the Pediatric Solid Tumors Comprehen-
sive Data Resource Core [13]. DSRCT and ES PDX lines 
were generated from the Sarcoma Tissue Bank at MD 
Anderson Cancer Center and maintained by the Ludwig 
lab. Once their tumors reached a volume of 150 mm [3], 
tumors were explanted and a portion was flash-frozen for 
snRNA-seq, while the remainder underwent dissociation.

Dissociation workflow from fresh solid tumor samples
Samples were collected and immediately placed into 
MACS® Tissue Storage Solution (Miltenyi Biotec) and 
kept on ice during transport. On arrival to the labora-
tory, samples were minced using a scalpel into frag-
ments < 4  mm under aseptic conditions. Next, samples 
were evenly split for either warm or cold enzymatic 
dissociation.

For warm dissociation of ES and DSRCT PDX speci-
mens, the human Tumor Dissociation Kit (Miltenyi 
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Biotec) was used. The dissociation was performed under 
manufacturer’s protocol using the gentleMACS™ Disso-
ciator (Miltenyi Biotec), a benchtop instrument for the 
semi-automated dissociation of tissues into single-cell 
suspensions. The gentleMACS Program sequenced fol-
lowed the suggestion for ‘Soft’ Tumor type. Briefly, tis-
sue pieces were placed in the gentleMACS™ C Tubes 
containing the enzyme mix. The gentleMACS™ C Tubes 
were then placed onto the gentleMACS™ Dissociator, and 
the program ‘h_tumor_01’ was run, followed by a 30-min 
incubation at 37  °C with rotation using the MACSmix™ 
Tube Rotator. Afterward, we placed the gentleMACS™ 
C Tube onto the gentleMACS™ Dissociator and ran the 
‘h_tumor_02’ program. This was followed by a 30-min 
incubation at 37  °C with rotation. Finally, we placed the 
gentleMACS™ C Tube onto the gentleMACS™ Dissocia-
tor and ran the ‘h_tumor_03’ program. Following com-
pletion of the program, 2 × volume of media was added 
to the samples. This was followed by filtration through a 
MACS SmartStrainer (70 μm, Miltenyi Biotec) and cen-
trifugation at 300  g for 5  min. Cells were resuspended 
in 90% FBS and 10% DMSO at a concentration of 1 mil-
lion cells per mL and placed in a Thermo Scientific™ Mr. 
Frosty™ Freezing Container in a -80 °C freezer.

For warm dissociation of OS PDX specimens, tissue 
was minced into < 4  mm pieces with a sterile scalpel 
or scissors. The tissues were washed several times with 
Hank’s Balanced Salt Solution (HBSS). HBSS was next 
aspirated, and dissociation buffer (HBSS, 1 mg/mL colla-
genase, 3 mM  CaCl2, 1 μg/mL DNase) was added to sub-
merge the tissue. The tissue is then incubated at 37 °C for 
up to 12 h. The cell suspension was then filtered using a 
40 μm cell strainer. The filtrate is pelleted using centrifu-
gation at 400 g for 5 min. Cells were resuspended freezing 
medium and placed in a Thermo Scientific™ Mr. Frosty™ 
Freezing Container in a -80 °C freezer.

For cold dissociation, the protocol was adapted from 
Adam et  al. [5]. Cold protease solution was prepared 
from 5 mM  CaCl2, 10 mg/mL B. Licheniformis protease, 
and 125 U/mL DNase I in 1 × PBS. Tissue was minced 
using a scalpel into fragments under 0.5 mm. Pieces were 
placed in a MACS C-tube, and 5 mL of ice-cold cold pro-
tease solution was added. The samples were incubated for 
10 min at 4 °C with rocking. This was followed by placing 
the pieces in a gentleMACS™ Dissociator (Miltenyi Bio-
tec) and running the m_brain_03 program twice. After-
ward, the samples were centrifuged at 300  g for 5  min 
and resuspended in 3 mL of trypsin–EDTA for 1 min at 
room temperature. The trypsin–EDTA was then neutral-
ized using ice-cold 10% FBS in 1 × PBS and triturated. 
This was followed by filtration through a MACS Smart-
Strainer (70  μm, Miltenyi Biotec) and centrifugation at 
300 g for 5 min. Cells were resuspended freezing medium 

at a concentration of 1 million cells per mL and placed in 
a Thermo Scientific™ Mr. Frosty™ Freezing Container in 
a -80 °C freezer. Cryovials were moved to LN2 storage for 
the long-term.

Thawing cryopreserved cells
The cells were removed from the  LN2 or -80 °C freezer, if 
they were recently cryopreserved and placed into a 37 °C 
water bath for 3 min. The contents were then transferred 
to a 15  mL centrifuge tube. 1  mL of complete medium 
was used to wash the cryovial and added dropwise into 
the centrifuge tube. Next, 8 mL of complete medium was 
added dropwise to reduce osmotic shock. Cells were then 
centrifuged at 300 g for 5 min and resuspended in 1 × PBS 
supplemented with 0.04% BSA. This was followed by live 
cell enrichment using FACS. Single-cell suspensions were 
stained with Calcein AM live cell stain and SYTOX™ Red 
dead cell stain.

Nuclei isolation workflow
The protocol was adapted from Habib et al. [9]. We iso-
lated nuclei from fresh-frozen tissue using the Nuclei 
EZ Prep Kit (Sigma-Aldrich). Fresh-frozen tissue speci-
mens were cut into pieces < 5 mm over dry ice and then 
placed in 0.5  mL ice-cold EZ lysis buffer. This was fol-
lowed by homogenizing using a Chemglass Life Sciences 
Supplier BioVortexer Mixer (Fisher Scientific) attached 
with a plastic microcentrifuge pestle on ice. Then 1  mL 
of ice-cold EZ lysis buffer was added, and samples were 
incubated on ice for 5 min. Debris was filtered out using 
a pluriStrainer Mini 70 μm into a new tube. This was fol-
lowed by centrifugation at 500 g for 5 min. Samples were 
then incubated with 1 mL of ice-cold EZ lysis buffer on 
ice for 5 min, followed by centrifugation. Afterward, the 
supernatant was aspirated, and 0.5  mL of Nuclei Wash 
and Resuspension Buffer (NWRB, 1X PBS supplemented 
with 1.0% BSA and 0.2U/μl RNase Inhibitor) was care-
fully added without disrupting the pellet, which was fol-
lowed by 5 min of incubation. Next, we added 0.5 mL of 
NWRB and centrifuged at 500 g for 5 min. We repeated 
the wash and incubation once more, followed by centrif-
ugation. The supernatant was aspirated, and the nuclei 
were resuspended in NWRB. A portion was visualized 
with Trypan blue under the microscope to inspect for 
debris and nuclei integrity.

To sort nuclei, single-nucleus suspensions were stained 
with 7-AAD in NWRB for 5 min on ice. Then a BD cell 
sorter was used to sort up to 100,000 7-AAD positive 
events. Quality control of post-sort nuclei concentration 
was evaluated under a microscope to ensure adequate 
count. This was followed by loading nuclei onto a 10x 
chip.
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Library preparation and sequencing
We followed the standard protocol set by 10x  Genomics 
for single-cell/single-nucleus capture. A targeted capture 
of 5000 single cell or single nucleus were loaded onto 
each channel of a Chromium single-cell 3’ Chip. The sin-
gle cells and single nuclei were partitioned using the gel 
beads within the Chromium Controller. Afterward, we 
performed cDNA amplification and fragmentation. This 
was followed by index and adapter attachments. Samples 
were pooled and sequenced on a NovaSeq 6000 with tar-
geted sequence depth at 100,000 reads/cell or nucleus.

sc/snRNA‑seq data preprocessing
We used Cell Ranger mkfastq to generate demultiplexed 
FASTQ files. Reads were aligned to the human GRCh38 
genome, and reads were then quantified as UMIs by 
Cell Ranger count. For snRNA-seq, reads were mapped 
with both introns and exons in Cell Ranger 5.0 using the 
include-introns option for counting intronic reads [10].

We performed QC and normalization separately for 
each sarcoma PDX. We followed the guidelines for QC 
from OSCA and others [14]. We inspected UMIs, gene 
counts, and the percentage of mitochondrial genes and 
identified outliers based on median absolute deviation 
(MAD). We used a strict value of 2 or more MADs from 
the median while also using generic cut-offs. Cells that 
did not meet the criteria were removed from the anal-
ysis. Scrublet was used to predict and detect doublets 
within the data [15]. While doublets were flagged, there 
was not a single cluster of doublets, which would be evi-
dent as an artifact, so no cells were removed. The num-
ber of cells analyzed pre- and post-quality control are 
listed in Table S1.

Data normalization, dimensional reduction, 
and comparisons
Seurat v3 was used for sample normalization, dimen-
sional reduction, scaling, and differential expression 
analysis [16]. We used the Wilcoxon test to compare 
gene expression between protocols. Enrichr was used for 
pathway enrichment. We set a log2 fold change thresh-
old of log2(1.5) or greater. This will result in genes that 
are 50% greater than the baseline. The AddModuleS-
core function in Seurat v3 was used to observe the aver-
aged gene expression of the different gene sets. We used 
curated gene sets of a warm dissociation signature from 
O’Flanagan et al. [4], EWS-FLI1 gene targets [17], EWS-
WT1 gene targets [18] and osteoblastic and chondroblas-
tic signatures classically associated with the tissue origin 
of OS (Table S2). The osteoblastic and chondroblastic 
signatures were found on Harmonizome (https:// maaya 
nlab. cloud/ Harmo nizome/). The osteoblastic signature 
was specifically found in the GeneRIF Biological Term 

Annotations under ‘Osteoblastic’. The chondroblastic 
signature was specifically found in the TISSUES Text-
mining Tissue Protein Expression Evidence Scores under 
‘Chondroblasts’. To find conserved markers between dis-
sociation methods, we used the function FindConserved-
Markers in Seurat v3. We performed integration using 
the integration functions within Seurat v3. The datasets 
were integrated by dissociation protocol.

Predicting sample type by bias scores
To classify nuclei and cells using the length bias and 
warm dissociation scores, data sets were randomly split 
into a training and test set. To prevent data leakage, 
scaled data was not used. We then calculated the gene set 
scores separately on the training and test sets. A logistic 
regression model was fit to the training set on either the 
warm dissociation or length bias score to predict for cells 
and nuclei, respectively. We calculated the probabilities 
and the area under the curve using the pROC v1.18.0 
package. This was compared to a random gene signa-
ture equal in the number of genes of either length bias or 
warm dissociation gene sets.

Statistical analyses
Results reported as boxplots display the data distribu-
tions (centerline: median, box limits: first and third quar-
tiles, and the whiskers are the highest and lowest values 
that are no greater and smaller than 1.5 × the interquar-
tile range) as specified in the Figure Legends. Numerical 
values are reported as mean ± SEM. One-way ANOVA 
and the Wilcoxon rank-sum test were performed using 
the R packages ggpubr and stat. A p-value of less than 
0.05 was considered statistically significant.

Results
Single‑cell and single‑nucleus RNA sequencing of sarcoma 
subtypes
In this work, we studied sarcomas from varying tissue 
origins, including osteosarcoma (OS), Ewing sarcoma 
(ES), and desmoplastic small round cell tumor (DSRCT) 
(Fig. 1). We used different dissociation protocols: Milte-
nyi Tumor Dissociation Kit, cold-active protease derived 
from Bacillus licheniformis, and Nuclei EZ Prep. These 
three protocols are described herein as Warm, Cold, 
and Nuclei protocols. For the OS specimens, we used 
the same Nuclei protocol and a different Warm proto-
col optimized for OS. For DSRCT and ES specimens, we 
performed the additional Cold protocol, using the cold-
active protease, as we had more specimens available. 
Each sarcoma subtype included three PDX specimens 
derived from different patients. In total, we analyzed 
125,831 whole-cells and nuclei across the three sarcoma 
subtypes and three dissociation protocols.

https://maayanlab.cloud/Harmonizome/
https://maayanlab.cloud/Harmonizome/
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Evaluation of quality control metrics for tissue dissociation 
protocols
Previous work has shown that dying and dead cells can 
influence the transcriptome and introduce artifacts that 
preclude useful biological insight [4]. To evaluate this 
effect in sarcoma, we evaluated and compared several 
protocols based on cell/nucleus quality and transcrip-
tomic signatures. For cell/nucleus quality, we measured 
the percent of reads mapping to the transcriptome, num-
ber of genes, unique molecular identifiers (UMIs), and 
percent of mitochondrial genes for each cell or nucleus. 
We optimized our strategy to enrich for live single cells 
and single nuclei, respectively, by incorporating fluores-
cently activated cell sorting (FACS) or fluorescently acti-
vated nuclei sorting (FANS) prior to sequencing (Fig. S1).

Next, we evaluated common quality control (QC) met-
rics across all samples to assess the effect of each disso-
ciation protocol (Fig. 2A). We observed some variations 
in QC metrics for the number of genes and UMIs when 
comparing between protocols while limiting the compar-
isons to between PDXs of each sarcoma subtype (Fig. 2B-
D). However, some of the variations could be explained 
by the number of cells sequenced and sequencing depth 
since there is an inverse relationship between these two 
metrics when total reads are kept constant. Expectedly, 
nucleus samples demonstrated little to no percentage of 
mitochondrial genes since purified nuclei do not contain 
mitochondrial transcripts, which were enriched in the 

whole-cell samples. With respect to each protocol, we did 
not discern a positive or negative influence on the QC 
metrics.

Dissociation protocol biases the transcriptome
To determine whether protocol-specific differences in 
gene expression exist, we visualized the UMAP embed-
dings of all whole-cells and nuclei without batch or tech-
nical corrections. When colored by sarcoma subtype, 
the same sarcoma subtype cluster together but with two 
distinct clusters for each sarcoma subtype except for 
OS (Fig. 3A). We suspect that this may be due to biases 
from the different dissociation protocols. When labeled 
by fresh specimens (whole cells) or frozen specimens 
(nuclei), we identified a distinct delineation between 
fresh and frozen tissues in the UMAP. The observed dif-
ferences within the UMAP, we hypothesized, stem from 
biological artifacts linked to fresh tissue dissociation or 
technical artifacts that reflect a core set of mRNA tran-
scripts preferentially retained within the nucleus. By col-
oring the UMAP embedding by dissociation type, cells 
processed using the Warm and Cold methods sometimes 
overlapped for each PDX (e.g., ES-1 and ES-4), whereas 
Nuclei clusters remained segregated.

Previous reports using normal epithelial tissues and 
carcinomas revealed that warm enzymatic dissocia-
tion (i.e., at 37  °C) invoked a distinct ‘Warm Dissocia-
tion Signature’ enriched in FOS, FOSB, and JUN [7]. To 

Fig. 1 Overview of Workflow and Experiments in this study. Schematic depicting the sarcoma subtypes used in this study and the general 
workflow for the specific experiments. FACs: fluorescence‑activated cell sorting, FANS: fluorescence‑activated nucleus sorting, DSRCT: desmoplastic 
small round cell tumor
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Fig. 2 Patient information and quality control metrics. A Overview of all sarcoma subtypes that were processed and evaluated. For each sample, 
the number of cells or nuclei passing QC thresholds, the number of sequencing reads per cell/nuclei, the number of genes per cell/nuclei, and the 
median percentage of UMIs mapping to mitochondrial genes are displayed in the table. All samples had less than 0.01 doublet fraction. B Boxplots 
display the data distributions (centerline: median, box limits: first and third quartiles, and the whiskers are the highest and lowest values that are no 
greater and smaller than 1.5 × the interquartile range) for number of UMIs per cells/nuclei, number of genes per cell/nuclei, and percentage of UMIs 
mapping to mitochondrial genes vary across sarcoma subtypes and choice of protocol. The dots represent the mean value for each PDX, where the 
color denotes the dissociation protocol as displayed in the legend
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investigate if similar dissociation-specific biases occur in 
sarcomas exposed to collagenase at 37  °C, we selected a 
partial list of the top genes within the Warm Dissocia-
tion signature and compared their expression. Averaged 
gene expression from each sarcoma subtype showed that 
these genes are, indeed, elevated in the Warm protocol 
(Fig.  3B). Furthermore, since prior literature has stated 
that long non-coding RNAs (lncRNAs) are localized to 
the nucleus, we also explored their gene expression in 
these specimens [19]. Consistent with previous results, 
we observed that lncRNAs were elevated in the Nuclei 

protocol. Together, these results indicate that the method 
chosen for dissociation has a profound effect on gene 
expression.

To further characterize how scRNA-seq and snRNA-
seq affect transcript abundance, we analyzed differ-
entially expressed genes (DEGs). Warm and Nuclei 
protocols demonstrated a consistent trend for each sar-
coma type. Genes with the largest fold-change in the 
Warm method included mitochondrial and ribosomal 
protein genes (Fig.  4, Tables S3-S5). This was expected 
since the mitochondria (and their innate transcripts) are 

Fig. 3 Performance of each protocol on various sarcoma subtypes. A UMAP embedding of all cells labeled by Sarcoma subtype, Tissue state, and 
Dissociation type. B Boxplots display the data distributions (centerline: median, box limits: first and third quartiles, and the whiskers are the highest 
and lowest values that are no greater and smaller than 1.5 × the interquartile range) for the enrichment of selected stress‑response genes in the 
Warm dissociation protocol and selected lncRNA in the Nuclei isolation protocol. Post hoc comparison with Bonferroni correction found statistically 
significant differences for all comparisons for both stress‑response and lncRNA genes



Page 8 of 16Truong et al. BMC Cancer          (2023) 23:488 

Fig. 4 DEG Biases introduced by Warm and Nuclei Protocols. Scatter plot of log transformed gene expression levels between warm and nuclei on 
the left column. Red indicates up‑regulated in warm, and blue indicates up‑regulated in nuclei with p‑value < 0.05. Black is non‑significant. Dot plot 
of enrichR scores of the Hallmark gene sets from MSigDB are on the right column. Plots are shown for DSRCT (A, B); ES (C, D); and OS (E, F). Scale 
reports ‑log10 Adjusted P‑value
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removed entirely during the Nuclei dissociation method. 
Similarly, enrichment of ribosomal protein genes was 
also noted in a comparison between scRNA-seq and 
snRNA-seq for kidney tissue [20]. On the other hand, 
genes enriched in the Nuclei protocol did not have a clear 
consensus or overlap between sarcoma types. In addition, 
we found a common set of 325 genes enriched after filter-
ing for log2 fold change over 1.5. Similarly, we found 117 
genes enriched in the Nuclei protocol (Fig. S2A, B). Next, 
we performed a pathway enrichment of the MSigDB hall-
mark gene set using Enrichr. We observed stress-associ-
ated pathways in each sarcoma type that was enriched in 
the Warm protocol, including Hypoxia, Apoptosis, DNA 
repair, and TNF-alpha Signaling via NF-kB, which is con-
sistent with prior work [4]. Interestingly, we noted that 
Epithelial-Mesenchymal Transition (EMT) was signifi-
cantly enriched in all sarcoma subtypes, which was not 
noted in prior works with normal or carcinoma samples 
[4]. For the Nuclei protocol, we observed enrichment in 
Mitotic Spindle. When comparing the Warm and Cold 
protocols for only ES and DSRCT, we again observed 
an increase in several of the commonly identified stress-
related pathways like previous results (Fig. S3, Tables S6 
and S7). The UMAP embedding suggested that the dif-
ferences in Warm and Cold are minimal due to the two 
data sets overlapping for all PDX but ES-6 and DSRCT-4, 
which only partially overlapped (Fig.  3A). Furthermore, 
we found in total 14 commonly enriched pathways sug-
gesting a core set of conserved genes enriched in the 
Warm protocol for sarcoma samples when compared 
against the Nuclei protocol (Fig. S2C). Interestingly, we 
did not observe any common pathways enriched between 
sarcomas for the Nuclei protocol.

Sarcoma signatures are preserved irrespective 
of the method used for dissociation
Next, to evaluate if any of the protocols influenced sig-
natures associated with a particular sarcoma type, we 
analyzed the expression of gene sets curated from the 
literature (Table S2). For ES, we used a set of genes that 
are direct targets of the EWS-FLI1 fusion protein, which 
included KDSR, CAV1, and FCGRT [17]. Likewise, a gene 
set for EWS-WT1 targets, generated from cell lines, was 
used to evaluate the effect of each protocol in DSRCT 
[18]. Since OS lacks a clearly defined gene set and often 
contains cells of partial fibroblastic, chondroblastic, or 
osteoblastic lineage commitment, we utilized curated 
genes associated with osteoblastic and chondroblastic 
signatures classically associated with the putative tissue 
origin of OS. Strikingly, the unique sarcoma subtype-
specific gene signatures were preserved across all disso-
ciation protocols (Fig.  5). This suggests that regardless 
of dissociation protocol biases, the cells still exhibit the 

classic signatures for each sarcoma studied. For instance, 
the EWS-WT1 gene targets are upregulated in only the 
DSRCT PDX specimens. Likewise, the EWS-FLI1 target 
genes are only enriched in ES, irrespective of the protocol 
used. However, when comparing dissociation protocols 
for ES only, we observed overexpression of the EWS-FLI1 
gene set specifically in the Nuclei protocol. This sug-
gested that for ES only, there may be a Nuclei protocol 
bias influencing the EWS-FLI1 target gene expression. 
While we did not observe this phenomenon in the other 
gene sets, we explored the idea of a Nuclei protocol bias.

Single‑nucleus RNA sequencing enriches for genes 
with long transcripts
Subsequent analysis revealed that several enriched genes 
in the Nuclei protocol are coded by transcripts longer 
in length compared to those enriched in the Warm pro-
tocol. To further investigate this interesting finding, we 
compared the gene lengths of commonly enriched genes 
in the Warm versus Nuclei protocol for all sarcomas. We 
found that genes enriched in the Nuclei protocol had sig-
nificantly longer genes (Wilcoxon test, p-value < 2.2e-16) 
(Fig. S4A).

This suggests that there is a possible gene length-
associated bias in snRNA-seq. Recent work indicated 
that hybridization of the polyT RT-primer to intronic 
polyA stretches of nascent transcripts results in the gene 
length bias [21]. Across the different sarcoma subtypes, 
we observed higher exonic reads for the Warm protocol 
(DSRCT: 39.8 ± 2.7%, ES: 42.1 ± 12.0%, OS: 45.7 ± 1.9%) 
versus the Nuclei Protocol (DSRCT: 14.3 ± 0.9%, ES: 
11.8 ± 3.2%, OS: 16.1 ± 1.1%) (Fig.  6A). Conversely, 
there were higher intronic reads for the Nuclei protocol 
(DSRCT: 55.4 ± 3.2%, ES: 48.2 ± 13.1%, OS: 52.3 ± 5.6%) 
versus the Warm Protocol (DSRCT: 26.4 ± 3.2%, ES: 
17.2 ± 7.2%, OS: 27.7 ± 1.6%). Regardless of sarcoma sub-
type, our analysis showed that 52.0 ± 7.5% of reads for 
Nuclei mapped to intronic regions whereas 24.0 ± 4.9% 
of reads were mapped for Warm protocol (Fig. 6B). Post 
hoc comparison with Bonferroni correction between 
Warm and Cold against Nuclei was significantly differ-
ent for both Exonic (p < 2.9e-13) and Intronic (p < 4.4e-
12) regions but not for the intergenic region. We binned 
the genes into quartiles based on the gene length termed 
as Short (0–8077 nt), Short Med. (8078–24,399 nt), 
Long. Med. (24,400–66,502 nt), and Long (> 66,502 nt). 
On average, 55.6% of total genes greater than 66,502 nt 
(Long) were enriched in the Nuclei protocol compared 
to 28.2% and 26.6% in the Warm and Cold protocols, 
respectively (Fig. 6C). Interestingly, we also observed an 
opposite effect in the short genes (0–8077 nt) with 20.7% 
and 21.4% of the total genes in Warm and Cold protocols 
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respectively as opposed to 4.1% in the Nuclei protocol 
(Fig. 6C).

To answer if there was a bias due to polyA stretches, we 
counted the number of polyA regions, defined as greater 
than 15 A repeats, within the full-length cDNA, includ-
ing both intronic and exonic regions for every gene. We 
observed a significant correlation between increasing 
gene length and polyA regions (R = 0.7, p-value < 2.2e16, 
(Fig.  6D). While we saw a positive correlation between 
scRNA and snRNA expression for each sarcoma type, 
there is a skew toward higher expression of genes that are 
longer and containing many polyA regions for snRNA 
data (Fig. S4B-D).

A gene length bias score accurately identified cells profiled 
by snRNA‑seq
To evaluate the enrichment of long transcripts, we gen-
erated a length bias score by taking the top 200 genes 
with the highest number of polyA regions and combining 
them into a signature gene set (Table S8). Note that these 

genes were chosen purely by length and are agnostic to 
the underlying biology. In addition, we evaluated the 
expression of a previously generated warm dissociation 
signature from O’Flanagan et al. [4] Our results demon-
strated that the warm dissociation signature is associated 
with both the Warm and Cold protocols (Fig. 6E). Com-
parisons showed a significant difference when comparing 
either Warm versus Nuclei or Cold versus Nuclei. While 
the stress-response genes in the warm dissociation signa-
ture are minimized in the Cold protocol, the warm disso-
ciation signature may still be active in Cold compared to 
Nuclei. Since cells under Cold dissociation are still alive 
and functioning, fresh-frozen tissue used in the Nuclei 
protocol represents a snapshot of the cell’s state in the 
tissue that can no longer change due to the dissociation 
method. On the other hand, expression of the length bias 
score is only observed in samples profiled using snRNA-
seq, where we report a significant difference for the 
Nuclei protocol when compared against the other two 
protocols. Together, these signatures robustly delineated 

Fig. 5 Biases associated with protocol on Sarcoma‑specific signatures. Boxplots display the data distributions (centerline: median, box limits: first 
and third quartiles, and the whiskers are the highest and lowest values that are no greater and smaller than 1.5 × the interquartile range) of the 
sarcoma‑specific signatures. A post hoc one‑sided test with Bonferroni correction and defined contrasts for each sarcoma subtype vs. the rest for 
each signature was performed. We report a significant difference (p < 2e‑16) where the sarcoma subtype was greater than the rest by outlining the 
graph with a red border. EWS‑FLI1 ES signature is derived from a gene set of EWS‑FLI1 target genes. EWS‑WT1 DSRCT signature is derived from a 
gene set of EWS‑WT1 target genes. Both osteoblastic and chondroblastic signatures are gene sets derived from reference databases
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the biases imparted by scRNA- and snRNA-seq for the 
different sarcoma subtypes.

To further illustrate this, we evaluated logistic regres-
sion models using the length bias and warm dissociation 
signatures to classify affected cells. We randomly split the 
ES data set into training and test groups. Using the logis-
tic regression model, we could accurately predict samples 
that underwent the Nuclei protocol (AUC = 1.00) and 
whole-cells that displayed stress from the Warm proto-
col (AUC = 0.92) (Fig. S5). We applied the same model to 

the OS and DSRCT data set and observed the same find-
ings (Fig. S6). To test if we could extrapolate this classi-
fier to single-cell and single-nucleus libraries processed 
outside our lab, we used data from a recent paper [6]. In 
this work, the authors used collagenase type 4 at 37  °C 
to dissociate a neuroblastoma PDX (O-PDX) into single 
cells and Tween with salts and Tris to dissociate O-PDX 
into single nuclei [6]. The authors demonstrated that the 
same Warm dissociation signature we evaluated was ele-
vated in whole-cells when compared to nuclei. Like our 

Fig. 6 Gene‑length associated bias in snRNA‑seq. A Comparison of dissociation protocol impact on percentage of reads mapping to exonic, 
intronic, and intragenic regions with B summary plot averaging all sarcoma subtypes and comparing between protocols. C snRNA‑seq samples 
were enriched in genes with longer gene length. Genes were split into quartiles based on gene length. D Increased PolyA regions were associated 
with longer gene lengths. E Boxplots display the data distributions (centerline: median, box limits: first and third quartiles, and the whiskers are the 
highest and lowest values that are no greater and smaller than 1.5 × the interquartile range) of the Warm Dissociation scores, which was significantly 
higher in the Warm and Cold protocol as opposed to the Nuclei protocol. Length Bias score was significantly higher in the Nuclei protocol 
(Wilcoxon test, **** denotes p <  = 0.0001)
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data, we applied the length bias and warm dissociation 
signatures to the O-PDX data set and could accurately 
predict samples that were nuclei (AUC = 1). Importantly, 
we observed the same findings in a neuroblastoma resec-
tion from a patient specimen to rule out if this was lim-
ited to only PDX specimens. Our results suggest that 
single nuclei could readily be classified just by the length 
bias score and that this may not be limited to just PDX 
samples (Fig. S7). This implies that snRNA-seq enriches 
for longer transcript when compared to scRNA-seq from 
paired samples.

We suspected that when comparing sarcoma signatures 
between protocols for ES, the elevated expression of the 
EWS-FLI1 gene set in the Nuclei protocol may be due to 
the gene length-associated bias in snRNA-seq (Fig.  5). 
For each sarcoma signature, we divided the genes into 
four bins based on quartiles of gene length (Fig. S8A). 
As we expected, for the EWS-FLI1 target gene set, over 
40% of genes in this specific set were considered long 
(≥ 66,502 nt). This enrichment was not observed in the 
other gene sets. To further explore the effect of longer 
genes, we split the EWS-FLI1 target gene set into two 
groups – short (< 65,502 nt) and long (≥ 65,502 nt) genes. 
Next, we evaluated the resulting expression in ES and 
indeed observed a gene length-associated bias but only in 
the group that included long genes (Fig. S8B).

Data integration recovers conserved markers 
and matching cell‑states
As demonstrated by our UMAP embedding for OS 
(Fig.  7), the same samples processed simultaneously by 
scRNA-seq and snRNA-seq exhibit large batch effects 
and vastly different transcriptomic signatures. This com-
plicates downstream analyses – even within the same 
cancer type – and will present unique challenges when 
investigators try to apply lessons learned from a dataset 
assessed by scRNA-seq to another generated in parallel 
using snRNA-seq.

One could theoretically solve the dilemma using a 
brute-force approach that runs each sample twice, first 
by scRNA-seq then again using snRNA-seq, assuming of 
course that sufficient tissue exists, However, this method 
is likely to be impractical given tissue scarcity, frequent 
lack of paired fresh/frozen tissues, and the redundant 
costs associated with creating and sequencing the cDNA 
library twice per sample. Prospective collection of fresh 
tissues for rare cancers like sarcoma, or even rarer sar-
coma subtypes like OS, ES, or DSRCT, presents addi-
tional hurdles.

To counter batch effects induced by sample handling, 
inter-operator variation, and differing technologies (e.g., 
CEL-Seq, Fluidigm, 10x  Chromium), several bioinfor-
matic tools exist to remove covariates. Utilizing the 

integration workflow for Seurat v3, we corrected for pro-
tocol biases and integrated each dataset of matched PDX 
specimens [16]. Each sarcoma subtype dataset was split 
by dissociation method and then integrated.

As can be seen after applying integration, techni-
cal biases from dissociation protocols are mitigated, 
and PDX specimens with similar cell states now cluster 
together (Fig. 7A). As an example, the Warm dissociation 
signature that was previously enriched in fresh tissues 
analyzed by scRNA-seq, is now homogeneously distrib-
uted and not affecting the clustering of samples (Fig. 7B). 
Similarly, the length bias score, which was previously 
causing the samples profiled by snRNA-seq to separate is 
now mitigated (Fig. 7B).

When observing conserved markers for OS PDXs, we 
predicted that both fresh and frozen from the same PDX 
would exhibit the same DEGs when compared to other 
PDXs. Based on the Fig. 7C, we observed that the DEGs 
are conserved between fresh and frozen specimens. As 
we expected, the unintegrated UMAP does not neatly 
align the conserved markers, which is most likely due 
to the technical biases that we have shown influencing 
the algorithm (Fig.  7D, left column). Upon integration 
of the samples, we can clearly observe the conserved 
DEGs localizing to each PDX (Fig.  7D, right column). 
We extended this same analysis to both ES and DSRCT, 
and we observed the same effects (Figs. S9 and S10). Like 
batch corrections, this illustrates the need for properly 
integrating diverse datasets, where in this work, paired 
specimens underwent different dissociation protocols to 
reliably perform downstream analyses.

Discussion
The advent of single-cell transcriptomic profiling has 
revolutionized the ability to decipher gene expression in 
a way that would have been otherwise unimaginable just 
a decade ago. Of significant value for cancer research is 
the opportunity to measure the cellular composition of 
each tumor, as well as the individual states and pheno-
types of individual cancer cells that would have otherwise 
been obscured with whole-tumor RNA-seq approaches. 
Accurate interpretation of the results, however, requires 
a keen appreciation for the technical and computational 
biases introduced by the chosen methods for tissue han-
dling, cell dissociation, and cell or nuclei preservation.

In this work, we sought to elucidate the inherent biases 
of different dissociation protocols on the transcriptome 
of sarcomas, focusing initially on three subtypes that pre-
dominantly affect children and young adults. To avoid 
consuming scarce clinical research specimens, we limited 
our research scope to early-generation sarcoma PDXs, 
which maintain close fidelity to the OS, ES, or DSRCT 
patients from whom they were derived. The choice to 
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Fig. 7 Integration recovers matching cell states from different dissociation methods for OS. A UMAP embeddings after integration (bottom row) 
showed alignment of matching PDX specimens. B After integration (bottom row), clusters on the UMAP were no longer affected by the identified 
biases. Darker blue indicates higher expression. C Dot plot of conserved markers shows unique gene expression for each PDX. The top marker is in 
red. D After integration (right column), top conserved markers are correctly aligned with the associated PDX cluster
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use PDXs, rather than human tumors, also stemmed 
from our ability to tightly regulate how tumors were col-
lected, stored, and processed. Further, the PDX tissues 
afforded an opportunity to receive fresh and snap fro-
zen tissue simultaneously from the same tumor to avoid 
temporal biases. In contrast, the human tumors, as they 
exist in our institution, were collected months or years 
apart, often at different points in each patient’s treat-
ment course, and typically snap frozen or formalin-fixed 
and paraffin-embedded without gathering a fresh tissue 
comparator.

Our work builds upon prior studies in normal tissues 
and carcinomas that have analyzed the protocol-depend-
ent biases used for scRNA-seq and snRNA-seq [4–6, 14, 
16, 22]. Consistent with prior studies, enzymatic diges-
tion at 37  °C invoked a marked stress response, mani-
fest by upregulation of immediate early genes (IEGs), 
such as FOS, JUN, and MYC [4]. As expected, this stress 
response was minimized in the Cold protocol and almost 
absent in the Nuclei dissociation.

Interestingly, because many sarcoma subtypes are 
caused by chromosomal translocations that produce 
pathognomonic fusion proteins, we had the opportu-
nity to determine if protocol-specific technical biases 
interfered with the downstream target gene signatures 
induced by EWS-FLI1 or EWS-WT1 in ES and DSRCT, 
respectively. Though we hypothesized a stress response 
could affect the expression of EWS-FLI1 target genes, 
we observed, in fact that snRNA-seq had a significantly 
greater impact, possibly due to enrichment for genes with 
longer transcripts. This unexpected bias towards longer 
transcripts resulted in an EWS-FLI1 target gene set that 
was overexpressed in samples assessed by snRNA-seq, as 
opposed to scRNA-seq.

As to why the EWS-FLI1 target genes contain an over-
abundance of long genes, we explored a few possibilities. 
The EWS-FLI1 transcription factor is known to bind to 
GGAA microsatellite repeats of 9 or more [23, 24]. This 
may be influenced with transcription length like the 
increase of polyA region with increasing length. How-
ever, many of the microsatellite repeats that enable EWS-
FLI1 binding were found within the first intron or the 
promoter region, but may also be located as far as 1 Mb 
upstream of the transcription start sites [24]. A more 
likely explanation may be found in the broader analysis 
of long genes. A review of the effect of gene length found 
positive correlations with intron number, protein size, 
and SNPs [25]. Remarkably, gene length is also associated 
with cancer, heart diseases, and neuronal development 
[25, 26]. Given that a portion of EWS-FLI1 targets are 
known to be neural genes, we can speculate that some 
of the long genes in the EWS-FLI1 gene set are neural 
related [27].

Overall, special care must be considered when com-
paring data between whole-cells and nucleus. To 
remove the technical bias introduced by snRNA-seq, we 
generated a length bias signature using genes with long 
transcripts. Others have shown that technical biases or 
batch-to-batch effects can be regressed from snRNA-
seq or scRNA-seq data [22]. Regression of the length 
bias from the snRNA-seq can produce comparable 
results to scRNA-seq [21]. However, comparing whole-
cell and nucleus transcriptomes between specimens of 
different tissue origins or diseases should be interpreted 
with caution. As noted already, gene length is associated 
with cancer, heart diseases, and neuronal development 
and correlated with SNPs [25, 26]. On the other hand, 
our data and others have demonstrated that snRNA-seq 
data is enriched with lncRNA as compared to scRNA-
seq [19]. While this may seem like a confounding varia-
ble when trying to compare the two different modalities 
(i.e., scRNA- and snRNA-seq), it may be beneficial to 
utilize snRNA-seq if the intent is to enrich and study 
lncRNA that regulates cell biology.

Computational methods play an important role in 
normalizing data for known technical biases. After 
applying Seurat v3 integration, matched PDX speci-
mens with similar cell states clustered together on the 
UMAP embedding. This is to be expected since Seurat 
v3 jointly reduces the dimensionality of datasets using 
a diagonalized CCA to identify shared biological mark-
ers and conserved gene expression signatures [16]. The 
algorithm then finds mutual nearest neighbors in this 
low-dimensional representation to recover matching 
cell states between datasets [28]. Since feature selection 
for integration is limited to variable features within 
each dissociation protocol, subtle differences between 
protocols (such as the warm dissociation signature) will 
play a smaller role.

Not performed in this study, but an important con-
cept to highlight when using different dissociation pro-
tocols is the effect on cellular composition bias. While 
scRNA-seq and snRNA-seq adequately represent the 
original cell populations, others have noted some dif-
ferences, especially for immune cells [6, 7]. An unavoid-
able limitation of our study was the placement of PDXs 
within immunocompromised murine models that lack a 
full immune cell repertoire. Thus, we did not have the 
opportunity to assess whether snRNA-seq underesti-
mates the prevalence of T-cells, B-cells, and NK cells, 
as has been reported previously in carcinomas [29]. 
Others have shown that methanol fixation was supe-
rior to cryopreservation with respect to epithelial cell 
preservation. It remains to be explored whether one 
preservation method is superior to another in retain-
ing the native cell distribution or sarcomas or normal 
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mesenchymal tissue. As spatial image omics (SIO) gains 
traction, one could envision using this technology as 
a ‘gold standard’ to meticulously catalog cancer’s true 
cell composition without suffering the aforementioned 
technological artifacts [30].

While our research clearly cautions scientists of 
some of the dissociation-specific biases introduced, we 
recognize that a one-size-fits-all approach may not be 
optimal for all labs, scenarios, or cancer types. Since 
scRNA-seq remains a rapidly evolving technology, we 
anticipate that labs, at least for the foreseeable future, 
will continue using scRNA-seq from fresh tissues and 
snRNA-seq from archival tissue that exist already in 
labs throughout the world. Depending on the scenario, 
high-quality data can be generated from either meth-
odological approach. We envision our work, as well 
as many others’ understandings of dissociation-spe-
cific biases, will serve as a roadmap to guide scientists 
in recognizing how their experiments could intro-
duce biases in the expression of genes and pathways 
observed in their data.

Conclusions
Our work is the first to rigorously compare the pro-
tocols used for sc/snRNA-seq to assess their effect on 
gene expression in sarcoma tissues. Consistent with 
prior reports in epithelial malignancies, we demon-
strate that Warm dissociation introduced similar cell 
stress signatures in three pediatric sarcoma subtypes. 
Among other key findings, the gene signatures associ-
ated with ES’s and DSRCT’s fusion proteins were more 
readily observed using snRNA-seq. This result has 
immediate relevance since it suggests that pre-exist-
ing frozen specimens can be used to advance sarcoma 
research. Last, we demonstrate that computational 
algorithms can remove some of the biases linked to the 
experimental methods.
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