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Abstract 

Histone lysine demethylases (KDMs) have been reported in various malignances, which affect transcriptional regula-
tion of tumor suppressor or oncogenes. However, the relationship between KDMs and formation of tumor microenvi-
ronment (TME) in gastric cancer (GC) remain unclear and need to be comprehensively analyzed.

In the present study, 24 KDMs were obtained and consensus molecular subtyping was performed using the "NMF" 
method to stratify TCGA-STAD into three clusters. The ssGSEA and CIBERSORT algorithms were employed to assess 
the relative infiltration levels of various cell types in the TME. The KDM_score was devised to predict patient survival 
outcomes and responses to both immunotherapy and chemotherapy.

Three KDM genes-related molecular subtypes were Figured out in GC with distinctive clinicopathological and 
prognostic features. Based on the robust KDM genes-related risk_score and nomogram, established in our work, GC 
patients’ clinical outcome can be well predicted. Furthermore, low KDM genes-related risk_score exhibited the more 
effective response to immunotherapy and chemotherapy.

This study characterized three KDM genes-related TME pattern with unique immune infiltration and prognosis by 
comprehensively analyses of transcriptomic profiling. Risk_score was also built to help clinicians decide personalized 
anticancer treatment for GC patients, including in prediction of immunotherapy and chemotherapy response for 
patients.
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Introduction
GC is one of the most common malignant cancer and 
ranked as the fourth leading cause of cancer-related 
deaths all around the world [1–4]. Advanced treatments 
have helped improving the prognosis of GC. The 5-year 
survival of GC patients at stage IA and IB treated with 
surgery are between 60 and 80%. However, the 5-year 
survival of advanced stage tumor remain poor [5]. Thus, 
effective prognostic markers and potential therapeutic 
targets are needed to help clinicians select the most suit-
able therapy for GC patients.

KDMs are a family of enzymes that play a crucial role 
in the regulation of gene expression through the dynamic 
modification of histone proteins [6]. These enzymes cata-
lyze the removal of methyl groups from lysine residues 
on histones, which in turn modulates chromatin struc-
ture and subsequently influences transcriptional activ-
ity. Mutations or aberrant expression of KDMs have been 
observed in various types of cancer, including leukemia, 
breast cancer, prostate cancer, lung cancer, and colorectal 
cancer, among others [7]. Some KDMs have been iden-
tified as oncogenes, promoting tumor growth and pro-
gression, while others have been found to act as tumor 
suppressors, preventing cancer development [8]. These 
diverse roles depend on the specific KDM, its target 
genes, and the cellular context [9]. For example, KDMs 
affect the methylation of H3K4, H3K9, H3K27, and 
H3K36, which can regulate the expression of tumor sup-
pressor genes or oncogenes [10, 11]. Emerging evidences 
indicate KDMs are related to various cancers. In head 
and neck squamous cell carcinomas (HNSCC), KDM1, 
KDM4, KDM5, and KDM6 proteins are regarded as the 
useful therapeutic targets [12]. However, few studies 
have comprehensively explored the role KDM demethy-
lase genes in clinical outcomes of gastric cancer patients. 
Considering that targeting KDMs has become an attrac-
tive therapeutic strategy in cancer treatment and several 
small molecule inhibitors targeting KDMs, particularly 
those in the JmjC family, have been developed and are 
undergoing preclinical and clinical evaluation, there is an 
urgent need for research investigating the prognostic role 
of KDM genes in GC [13, 14]. This will facilitate the dis-
covery of potential KDM-targeted therapies for the treat-
ment of GC patients.

TME plays a crucial role in cancer development. 
Within the TME, factors such as CD8 + T cells and mac-
rophages have been identified as important determinants 
of response to immunotherapy or chemotherapy [15, 
16]. Alterations in the abundance of TME cells, such as 
CD8 + T cells, macrophages, and fibroblasts, have been 
found to be associated with clinical outcomes in a vari-
ety of cancers, including gastric cancer [17–19]. The cor-
relation between TME cell infiltration and KDMs has 

seldom been reported in GC. This study aimed to inte-
grate mRNA and genomic data for an in-depth analysis 
of KDMs, with the goal of uncovering the underlying 
relationship between KDM genes and GC tumorigenesis. 
The findings could offer novel insights into the applica-
tion of various therapeutic treatments for GC patients, 
based on the regulation of histone demethylase KDMs.

Materials and methods
RNA expression dataset
In this study, we analyzed the RNA expression dataset 
from the Gene Expression Omnibus (GEO) database 
(GSE66229 [20]) and the TCGA-STAD cohort. TCGA 
databases were obtained from UCSC Xena (https:// 
xenab rowser. net/ datap ages/), while somatic mutation 
data were downloaded from https:// portal. gdc. cancer. 
gov/ repos itory. Copy number variation information was 
extracted from UCSC Xena.

Non‑negative matrix factorization (NMF) algorithm
The NMF algorithm was utilized to examine molecu-
lar subtypes based on KDM genes. The NMF cluster-
ing function [21] was used to stratify the TCGA-STAD 
cohort into three distinct clusters, as shown in Tab. S1.

Analyses of tumor microenvironment infiltration
CIBERSORT [22] and single-sample gene set enrich-
ment (ssGSEA) analyses [23] were conducted to evaluate 
TME infiltration in patients from the TCGA-STAD and 
GSE66229 cohorts.

Development KDM genes‑related risk_score
Initially, differentially expressed genes (DEGs) from 
the three NMF clusters were overlapped. Through gene 
ontology (GO) analyses, 389 genes were identified as 
being related to the KDM phenotype. After combined 
with 24 KDMs, all genes were used to generate a gene 
model with 15 genes showed the highest frequencies of 
359 (Tab. S2), and then, 15 genes were used to calculate 
risk_score by the Lasso Cox regression algorithm, as 
follows:

KDM_score = (0.30264* ABCG4 expres-
sion) + (0.08650* ACSS3 expression) + (0.1489* CKAP4 
expression) + (0.31486* FXYD1 expression) + (0.04066* 
GAMT expression) + (-0.09317* MAP3K10 expres-
sion) + (0.01091* PCDHB5 expression) + (0.007583* 
PIEZO2 expression) + (0.04638* PSMG3 expres-
sion) + (0.002336* RPS4Y1 expression) + (0.07975* SNCG 
expression) + (0.22821* SYT6 expression) + (-0.13414* 
TPGS1 expression) + (-0.02402* XIST expres-
sion) + (-0.07743* KDM4A expression).

The median value of KDM_score was used to divide 
patients in high- and low-risk groups. Kaplan–Meier 

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository


Page 3 of 15Zhang et al. BMC Cancer          (2023) 23:454  

(K-M) survival curve and immune analyses were based 
on high- and low-risk groups.

Cell migration assays
In vitro experiments involved two human-derived gastric 
cancer cell lines: MKN-45 and SGC-7901. A control cell 
line (transfected with an empty vector) was established, 
along with two experimental cell lines (knockdown and 
overexpression groups). The knockdown group provided 
two stable cell lines constructed with shRNA sequences, 
while the overexpression group provided one stable cell 
line. The human GC cell line MKN-45 and SGC-7901 cell 
line were purchased from the National Cancer Institute 
(Bethesda, MD, USA). Transwell assays were performed 
by seeding 4 ×  104–8 ×  104 cells into the upper cham-
ber (CLS3464, Corning Costar, Corning, NY, USA) with 
no FBS supplementation while the lower chamber was 
added 600 μL DMEM with 10% FBS. After 36–72  h of 
culture, migrated cells were fixed with 4% paraformalde-
hyde (G1101, Servicebio, Wuhan, Hubei, China), stained 
with Crystal Violet Staining Solution (C0121, Beyotime, 
Shanghai, China), and counted under a microscope. 
Transwell assays was repeated 3 times for each group, 
followed by statistical analysis. The statistical comparison 
was performed using a t-test, * indicating P value < 0.05; 
** indicating P value < 0.01; *** indicating P value < 0.001.

Cell scratch wound healing assay
Cells were seeded at a density of 1 ×  105 cells/well in six-
well plates, with triplicate wells per condition. Once the 
cells had uniformly spread across the bottom of each well, 
three to four parallel lines were meticulously drawn in 
each well using sterile 10 μL pipette tips. Suspended cells 
were gently washed away, leaving the remaining adherent 
cells to be cultured in serum-free medium. After a 24-h 
incubation period, five random fields per well were exam-
ined under a light microscope. Images were captured and 
cells within these fields were manually counted. In this 
study, we highlighted the knockdown and overexpression 
groups to emphasize the tumor-promoting function of 
KDM5C in gastric cancer (Fig.  2E). Cell scratch wound 
healing assay was repeated 3 times for each group, fol-
lowed by statistical analysis. The statistical comparison 
was performed using a t-test, * indicating P value < 0.05; 
** indicating P value < 0.01; *** indicating P value < 0.001.

Mouse models establishment
MKN-45 cell line was selected to construct stable cell 
line, including an overexpression (OE) cell line and a 
knock-down (KD) cell line as the experimental groups. 
Then, the transfection efficiency of KDM5C was con-
firmed by Western blotting and quantitative reverse tran-
scription polymerase chain reaction (qRT-PCR) analyses. 

Antibody used for validation of KDM5C expression was 
purchased from Affinity (#DF13631). MKN-45-NC and 
MKN45-KDM5C-OE or KD cells (5 ×  106) were injected 
subcutaneously into the right and left hind flanks, 
respectively, of the BALB/c nude mice. The Volume of 
tumor = 1/2 × length ×  width2 was adopted to calculate 
the size of tumors.

RNA Isolation and quantitative real‑time polymerase chain 
reaction (RT‑qPCR)
For our study, we used a total of 120 pairs of BLCA 
patient tissues from Lianshui People’s Hospital of kangda 
college Affiliated to Nanjing Medical University. All 
patients provided written informed consent in accord-
ance with the Institutional Review Boards of Lianshui 
People’s Hospital of kangda college Affiliated to Nanjing 
Medical University.

, and the study was approved by the Ethical Committee 
of Lianshui People’s Hospital of kangda college Affiliated 
to Nanjing Medical University.

To isolate total RNA, we used Trizol reagent (Invitro-
gen) on either cultured cells or fresh tissue samples. We 
then synthesized cDNA through reverse transcription 
using the Prime Script RT reagent kit (TaKaRa) and con-
ducted quantitative RT-PCR with primers in the presence 
of the SYBR Green Realtime PCR Master Mix (Thermo). 
To calculate the relative abundance of mRNA, we nor-
malized to ACTB mRNA.

Statistical analyses
Analyses in this study were mainly based on R and 
Graphpad. The Kruskal–Wallis H test was used to show 
the difference among three cluster. Wilcox test was used 
to show the difference between two clusters. The log-
rank test was used in survival analysis. * indicating P 
value < 0.05; ** indicating P value < 0.01; *** indicating P 
value < 0.001.

Results
Genetic variation of KDM genes in gastric cancer
A workflow briefly introducing our study was dis-
played in Fig. 1A. 24 KDM genes derived from previous 
researches [24, 25]. were included for subsequent analy-
ses. Initially, principal component analysis (PCA) was 
conducted based on paired tumor-normal tissues, reveal-
ing that KDM genes could distinguish tumor tissues from 
normal samples in gastric cancer (Fig. 1B). Subsequently, 
maftools [26] was employed to screen the somatic muta-
tions of KDM genes in the TCGA-STAD cohort. The 
results indicated that JMJD1C had the highest mutation 
rate (7%) (Fig.  1C). Copy number variations (CNV) of 
KDM genes on chromosomes were displayed in Fig. 1D. 
Based on CNV frequency (Fig. 1E) and RNA expression 
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of KDM genes (Fig. 1F) in paired tumor-normal tissues, 
KDM2A, KDM4A, KDM5B and KDM3A were upregu-
lated in tumor, consistent with their CNV amplifica-
tion. These results revealed difference in the landscape 

of genetic alterations and expression of KDM genes in 
gastric cancer, indicating dysregulation of KDM genes 
played an important role in GC tumorigenesis.

Fig. 1 Genetic variation of KDM genes in gastric cancer. A The workflow being used in our work. B Using KDMs to discriminate tumors from normal 
tissue by principal component analysis (PCA). C Genetic alterations of 24 KDMs in GC tumors was demonstrated in oncoplot. Each column was each 
GC patient’s mutation data and mutation frequency of each gene was displayed on the right side. D Locations of CNV alterations in KDMs on 13 
chromosomes. E 10 CRGs’ CNV diversity in GC tissues using TCGA-STAD data. F Boxplot shows the expression difference between normal and GC 
tissues in TCGA-STAD cohort. Statistical difference is identified by Wilcox test, * indicating P value < 0.05; ** indicating P value < 0.01; *** indicating P 
value < 0.001
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Fig. 2 Experimental validation of functional phenotypes of KDM5C in GC. A Boxplot showed the expression of KDM5C between tumor and normal 
samples of TCGA-STAD cohort. Statistical difference is identified by t-test, * indicating P value < 0.05; ** indicating P value < 0.01; *** indicating 
P value < 0.001. B Western-blotting of KDM5C in paired normal and tumor tissues of gastric cancer. C Western blotting and qPCR analyses of 
overexpression and known-down of KDM5C in MKN-45 cell line. Statistical difference is identified by t-test, * indicating P value < 0.05; ** indicating 
P value < 0.01; *** indicating P value < 0.001. D Transwell assays of MKN-45 cell line. Statistical difference is identified by t-test, * indicating P 
value < 0.05; ** indicating P value < 0.01; *** indicating P value < 0.001. E Cell wound scratch assays of MKN-45 cell line. Statistical difference is 
identified by t-test, * indicating P value < 0.05; ** indicating P value < 0.01; *** indicating P value < 0.001. F Tumor models construction using MKN-45 
cell line. Statistical difference is identified by t-test, * indicating P value < 0.05; ** indicating P value < 0.01; *** indicating P value < 0.001
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Experimental validation of functional phenotypes 
of KDM5C in GC
Considering that KDM5C was upregulated in gastric can-
cer based on transcriptomic data (Fig.  2A), the higher 
expression of KDM5C in gastric cancer was validated 
using seven paired tumor-normal tissues through west-
ern blotting (Fig. 2B). In order to investigate the role of 
KDM5C in the metastatic potential of gastric cancer 
cells, KDM5C was knocked down and its expression was 
enhanced in the MKN-45 cell line (Fig. 2C). Results from 
transwell assays (Fig. 2D) and cell wound scratch assays 
(Fig.  2E) demonstrated that attenuated KDM5C expres-
sion dramatically reduced cell migration ability in  vitro, 
while ectopic KDM5C expression significantly enhanced 
cell migration ability. Xenograft tumor assays were also 
conducted using the MKN-45 cell line. Overexpression 
of KDM5C led to accelerated xenograft tumor growth 
and larger tumor volumes. In contrast, knock-down 
of KDM5C resulted in an attenuated xenograft tumor 
growth and smaller tumor volumes (Fig. 2F). These data 
suggest that the tumor-promoting activity of KDM5C in 
GC.

KDM genes‑related molecular subtypes in GC
A network in Fig. 3A described the connections and prog-
nostic value of KDM genes in GC. Next, three molecular 
subtypes were identified in TCGA-STAD cohort using 
NMF algorithm (Fig.  3B, C; Fig. S2A), as confirmed by 
PCA algorithm (Fig.  3F). These clusters were identified 
as KDM genes-related clusters (KGRCs), comprising 
127 patients in KGRC1, 52 patients in KGRC2, and 171 
patients in KGRC3. The survival analysis showed that 
KGRC2 had the worst prognosis (Fig. 3D; overall survival 
(OS), P = 0.043; log-rank test). Distribution of clinico-
pathological features indicated that the most of patients 
at stage IV were concentrated into KGRC2, supporting its 
corresponding prognosis patterns (Fig. 3E).

Ultimately, pathway activities were assessed using 
the gene set variation algorithm (GSVA) to explore the 
biological differences between the KGRCs (Fig.  3G; 
Fig. S3D). By quantification analyses (Fig. S3D), It was 
demonstrated that cancer-related pathways such as 
Pan_F_TBRs and TGFb_Family_Member_Li_et_al were 
predominantly enriched in KGRC2. Immune-related 
pathways like CD8_T_cells_Bindea_et_al and HLA_sig-
nature_gene were mainly upregulated in KGRC1. To 
further confirm our KDM genes-related classification 
was stable, we also included another cohort (GSE66229-
ACRG) for identical analyses and obtained similar results 
(Fig. S3A-D). These results emphasized the significant 
discrepancy of biological function between different 
KGRCs.

Tumor microenvironment infiltration of KGRCs
Having described the molecular differences between 
the three KGRCs, the TME infiltration of these clus-
ters was next evaluated. In Fig.  4A-B, it was observed 
that activated CD4 + T cells were primarily enriched in 
KGRC1 and KGRC3, as indicated by both CIBERSORT 
and ssGSEA analyses. Subsequently, ESTIMATE analy-
sis was performed in the three KGRCs, revealing that 
TME cells, including immune and stromal cells, were 
predominantly enriched in KGRC1 (Fig.  4C-D). Fur-
thermore, KGRC1 contained the smallest proportion of 
tumor cells (Fig.  4E). Immune genes related to stimula-
tion and inhibition were screened in Fig. S4A-B. Most of 
stimulation genes were highly expressed in KGRC1 such 
as TLR4, TNFSF14, etc. Inhibition genes such as CD276, 
TGFB1 and VEGFB were highly expressed in KGRC2, in 
line with its poor prognosis. Therefore, the patients in 
KGRC1 with substantial TME cells and upregulation of 
immune-stimulation genes might be good candidates for 
immunotherapy and activated  CD4+ T cells could be the 
therapeutic target to improve the prognosis of patients in 
KGRC1.

Construction of KDM‑risk score in gastric cancer
To further comprehend the transcriptomic patterns 
mediated by KDM genes, a total of 389 genes were 
obtained by overlapping DEGs from the three KGRCs 
(Fig. 5A). GO analysis (Fig. 5B) revealed that these genes 
were associated with mitotic nuclear division and mito-
chondrial gene expression. These genes were identi-
fied as KDM phenotype-related signatures. In order to 
obtain genes for risk model construction in training and 
validation cohorts, the 389 genes were overlapped with 
all genes in a validation cohort derived from GSE66229, 
yielding a total of 327 genes (Fig. 5C). Subsequently, these 
genes and the 24 KDM genes were combined to construct 
the KDM-related risk_score (KDM_score). TCGA-STAD 
was selected as the training set, and 1000 iterations were 
performed as previously reported [27]. Five gene groups 
were obtained for screening. A group of 15 genes with 
the highest frequencies of 359 was ultimately selected 
to generate a signature for constructing the KDM_score 
(see methods; Fig. 5D). The c-index was used to validate 
the accuracy of the KDM_score in TCGA and GSE66229, 
as depicted in Fig.  5E. By setting the median value of 
the KDM_score as the threshold, the TCGA cohort was 
divided into high and low-risk groups. The proportion 
analysis showed that high-risk group was mainly clus-
tered into previous KGRC2 with the worse prognosis 
(Fig. 5F). The expression levels of 15 genes used for con-
structing risk_score and 24 KDM genes between high- 
and low-risk groups in training cohort were shown in 
Fig. 5G, H.
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Survival analyses showed that high-risk group pre-
dicted the worse prognosis in both of training (TCGA-
STAD cohort) and testing cohorts (GSE66229-ACRG) 

(Fig.  6A, E). The distribution plot of risk scores and 
survival rates in all datasets showed that the high-
risk groups had a higher mortality rate compared to 

Fig. 3 KDM genes-related molecular subtypes in GC. A Correlations and prognostic relation of 24 KDMs in GCs. Prognostic impact of each gene was 
reflected by the circle size Favorable factors for overall survival is in green, while risk factors was in purple. The line between each gene represented 
the correlation among CRGs. Positive correlation was in red, while negative correlation was in blue. Prognostic impact was calculated by LogRank 
test and correlation between genes was evaluated by Paerson analysis. B Plot shows the NMF rank survey and the optimal rank for cluster is 3 in 
TCGA-STAD cohort. C Consensus heatmap in TCGA-STAD cohort was shown in setting rank as 3 in NMF algorithm. D Kaplan–Meier survival plot 
for overall survival in TCGA-STAD cohort is based on 3 KGRCs sorted by NMF algorithm. P value was calculated by LogRank test. E The distribution 
of clinical stages (Stage I-IV) in each KGRC. F Principal component analysis of three KGRCs in TCGA-STAD cohort. G The enrichment difference of 
biological pathways in three KGRCs was displayed in heatmap
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Fig. 4 Tumor microenvironment infiltration of KGRCs. A‑B Boxplot reflects 23 immune cells infiltration in three KGRCs using ssGSEA algorithm in 
TCGA-STAD cohort. Statistical difference is identified by Kruskal–Wallis H test, * indicating P value < 0.05; ** indicating P value < 0.01; *** indicating 
P value < 0.001. C‑E ESTIMATE analyses of three KGRCs. Statistical difference is identified by Kruskal–Wallis H test, * indicating P value < 0.05; ** 
indicating P value < 0.01; *** indicating P value < 0.001
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the low-risk groups (Fig.  6B, C; Fig.  6F, G). AUC val-
ues of 1-, 2-, 3-, and 5-year survival rates in training 
set (TCGA-STAD) were 0.678, 0.719, 0.743, and 0.766, 
respectively (Fig.  6D). AUC values of 1-, 2-, 3-, and 
5-year survival rates in validation cohort (GSE66229) 

were 0.495, 0.497, 0.536, and 0.555 (Fig.  6H). These 
results indicated the predictive power of KDM_score 
for survival.

Fig. 5 Construction of KDM-risk score in gastric cancer. A Venn plot reflected 389 KDM phenotype-related genes by overlapping DEGs among 
three KGRCs. B GO function enrichment of those 389 KDM phenotype-related DEGs. C Overlapping 389 genes with all genes in GSE66229. D 
Barplot showed the frequency of gene models. E Column plot showed the c-index of KDM_score in TCGA-STAD and GSE66229 cohorts. F Sangi plot 
illustrated the proportion and distribution of three KGRCs in high and low-risk group. Statistical difference is identified by Kruskal–Wallis H test, * 
indicating P value < 0.05; ** indicating P value < 0.01; *** indicating P value < 0.001. G‑H Expression heatmap of 15 genes in building risk_score and 
24 KDM genes was constructed in training set (TCGA-STAD) and validation cohort (GSE66229), respectively
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Fig. 6 Construction of KDM-risk score in gastric cancer. A, E Kaplan–Meier survival plot in training set (TCGA-STAD) and testing set (GSE66229) 
is based on high and low risk group. P value was calculated by LogRank test. B, C, F, G Distribution plot reflected the relationship between dead 
status and risk score in training set (TCGA-STAD) and validation cohort (GSE66229), respectively. D, H ROC curve shows AUC values of KDM_score in 
predicting 1-, 2-, 3-, and 5-year survival of patients in validation cohort (GSE14333 and GSE37892)
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Immune‑related characteristics between the high‑ 
and low‑risk groups
To comprehend the immune-related molecular char-
acteristics of the different risk groups, maftools were 
employed and it was demonstrated that the mutation 
rates of genes in the low-risk group were higher than 
those in the high-risk group (Fig.  7A, B). Tumor muta-
tional burden (TMB) level displayed in Fig.  7D showed 

that low-risk group had higher TMB level, in line with 
the above results. Since higher TMB could predict a bet-
ter response to immunotherapy [28, 29], these results 
suggested that the patients in low-risk group might be 
good candidates for immunotherapy.

TME analyses by ssGSEA and CIBERSIRT meth-
ods showed that the low-risk groups were mainly 
infiltrated by activated  CD4+ T cells, in line with the 

Fig. 7 Immune-related characteristics between the high- and low-risk groups. A, B Oncoplots showed mutation of STAD between low and 
high-risk groups. C Boxplot reflects 23 immune cells infiltration in three KGRCs using ssGSEA algorithm in TCGA-STAD cohort. Statistical difference is 
identified by Kruskal–Wallis H test, * indicating P value < 0.05; ** indicating P value < 0.01; *** indicating P value < 0.001. DTMB level between low and 
high-risk groups. E–F The quantification analysis of different subtypes in two risk groups of GSE66229 cohort
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results of KGRC1. Therefore,  CD4+ T cells might be 
the target for immunotherapy in low-risk KDM-related 
group of GC patients (Fig. 7C). Furthermore, we found 
that regulatory T cells (Tregs) were mainly enriched 
in high-risk group. As previously reported, Tregs were 
main population of immune-suppressive cells [30, 31]. 
Thus, high-risk group with worse prognosis might 
exhibit an ineffective response to immunotherapy.

As the validation cohort (AGRC cohort) contained 
epithelial and mesenchymal phenotypes (EP and MP), 
a proportion analysis was conducted and it was dis-
covered that the high-risk group of the AGRC cohort 
had a greater number of patients with MP (Fig.  7E), 
which is known to be associated with a poorer prog-
nosis. Furthermore, it was observed that the high-risk 
group of the AGRC cohort had more patients with the 
epithelial-mesenchymal transition (EMT) phenotype 
(Fig.  7F), while the low-risk group had more patients 
with the microsatellite instability (MSI) phenotype. 
As previously reported, EMT was a negative factor 
[32], while MSI was a positive factor of immunother-
apy [33]. So, patients in low-risk group indeed could 
respond effectively to immunotherapy. Drug suscepti-
bility in the low- and high-risk groups was also evalu-
ated. Interestingly, it was discovered that patients in 
the high KDM_score group had a higher imputed score 
for oxaliplatin, 5-fluorouracil, and cisplatin, implying 
that patients with a high KDM_score may not respond 
effectively to these drugs (Fig. 8A). Overall, the KDM_
score that was constructed may be utilized to predict 
the response of gastric cancer patients to both immu-
notherapy and chemotherapy.

Constructing a nomogram based on KDM_score
A nomogram was constructed using the KDM_score 
and TNM stages to predict overall survival (OS) in 
the TCGA-STAD cohort. The AUC for survival at 1, 3, 
and 5 years exhibited high accuracy in the training set 
(TCGA-STAD) and validation set (GSE66229-ACRG) 
(Fig. 8B, C). In training set, AUC values at 1-, 3-, and 
5-year were 0.718, 0.718, and 0.750, respectively. In 
validation set, AUC values at 1-, 3-, and 5-year were 
0.768, 0.750, and 0.740. By compared with AUC values 
of TNM stage systems, we found that, in training set, 
AUC values of nomogram at 1-, 3-, 5-year were higher 
than that of disease stages (Fig. 8D). In validation set, 
AUC values of nomogram at 3-year were higher than 
that of disease stages (Fig. 8D). Finally, the calibration 
plots of the nomogram shown in Fig. S5A, B suggested 
that our nomogram has a good prediction ability.

Discussion
KDMs are enzymes that catalyze site-specific demethyla-
tion of lysine residues on histones [34], thereby regulat-
ing the methylation of H3K4, H3K9, H3K27, or H3K36. 
Through this process, KDM genes play crucial roles in 
regulating transcription, chromatin architecture, and cel-
lular differentiation, which can affect the expression of 
tumor suppressor genes or oncogenes [6]. KDM genes 
have been shown to regulate TME infiltration. For exam-
ple, KDM6B ablation has been found to promote CD4+ T 
cell differentiation into Th2 and Th17 subsets in the small 
intestine and colon [35]. To identify potential therapeu-
tic targets for personalized treatment of GC, it is crucial 
to comprehensively understand the correlation between 
KDM genes and TME characteristics in gastric cancer.

This study identified three distinct molecular subtypes 
of gastric cancer related to the KDM gene. The TCGA-
STAD cohort was classified into three phenotypes: 
KGRC1-3. The study also demonstrated that these sub-
types exhibit unique characteristics in the tumor micro-
environment (TME). Specifically, KGRC1 showed an 
activation of CD4 + T cells. Talking of the TME traits, 
 CD4+T cells helps  CD8+T cells differentiate into cyto-
toxic  CD8+T cells through conventional dendritic cells’ 
cytokines, such as IL-12, IL-15 and type I interferon [36]. 
Subsequent ESTIMATE analyses also confirmed the 
high infiltration level of TME cells in KGRC1, suggesting 
immune cells in KGRC1 could indeed be the target cells 
for immunotherapy. Thus, patients in KGRC1 featur-
ing higher activated  CD4+ T cells might display a better 
response to immunotherapy. We have introduced for the 
first time a classification of KDM genes in GC and found 
that this classification can highlight the immune infiltra-
tion status of gastric cancer patients characterized by dif-
ferent KDM genes, providing a new research perspective 
for the clinical use of immunotherapy in GC patients.

This study also screened the expression of KDMs in 
tumor and normal samples, and identified KDM5C 
as highly expressed in gastric cancer. KDM5C was 
selected for examination of its functional phenotype 
in GC tumorigenesis, and the results demonstrated 
that its overexpression could enhance tumor cell meta-
static potential and promote xenograft tumor growth. 
Previous studies indicated that KDM5C predicted 
higher tumor immunogenicity and inflamed anti-tumor 
immunity alterations [37]. There need to be more stud-
ies of KDM5C in regulation of tumor microenviron-
ment in gastric cancer. To demonstrate the clinical 
significance of KDM genes, a stable and concise prog-
nostic KDM_score was built. Based on the KDM_score, 
patients could be stratified into high-risk and low-risk 
group showing different prognosis, clinicopathologi-
cal features and immune infiltration. Furthermore, 



Page 13 of 15Zhang et al. BMC Cancer          (2023) 23:454  

combining KDM_score and tumor stage, we established 
a comprehensive nomogram to improve the predic-
tivity and accuracy of KDM_score. Furthermore, we 
confirmed the ability of KDM_score in immunother-
apy and chemotherapy prediction, which we believed 
that KDM_score could be applied in clinical practice 

to predict patients’ response to immunotherapy and 
chemotherapy.

To sum up, mutations and expression alterations 
of KDM genes were firstly analyzed in gastric cancer. 
Then, we figured out KGRC and KDM_score. Their cor-
relation with immune infiltration and clinical features 

Fig. 8 Constructing a nomogram based on KDM_score. A Drug score between two risk groups. B‑D ROC curve shows AUC values of nomogram in 
predicting 1-, 2-, 3-, and 5-year survival of patients in training dataset and validation cohort
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in TME were screened out in our research. Neverthe-
less, our work also has certain shortcomings. This study 
is mainly based on public database. Further validation 
in multi-center dataset may better prove our findings.

Abbreviations
GC  Gastric cancer
CNV  Copy number variation
GEO  Gene-Expression Omnibus
GSVA  Gene set variation analysis
KGRC   KDM Genes-related clusters
TCGA   The Cancer Genome Atlas
TME  Tumor microenvironment
STAD  Stomach Adenocarcinoma
EP  Epithelial phenotype
MP  Mesenchymal phenotype
TMB  Tumor mutational burden
Tregs  Regulatory T cells

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12885- 023- 10923-1.

Additional file 1. Supplementary cell line and figure 2B

Additional file 2. Supplementary figures

Additional file 3. Supplementary table 1

Additional file 4. Supplementary table 2

Acknowledgements
Not applicable.

Authors’ contributions
Haichao Zhang, Haoran Wang, Li Ye, Wenqin Luo, and Wei Wang contributed 
to conception and design of the study. Haichao Zhang, Haoran Wang, Li 
Ye, Ji Che, and Cheng Yu organized the database. Cheng Yu and Wei Wang 
performed the statistical analysis. Haichao Zhang wrote the first draft of the 
manuscript. Wenqin Luo, and Wei Wang wrote sections of the manuscript. All 
authors contributed to manuscript revision, read, and approved the submitted 
version.

Funding
Not applicable.

Availability of data and materials
All data in this study can be obtained from the Gene-Expression Omnibus 
(GEO; https:// www. ncbi. nlm. nih. gov/ geo/), the GDC portal (https:// portal. gdc. 
cancer. gov/) and the UCSC Xena (https:// xenab rowser. net/ datap ages/).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 5 January 2023   Accepted: 5 May 2023

References
 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray 

F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and 
Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 
2021;71(3):209–49.

 2. Ajani JA, D’Amico TA, Bentrem DJ, Chao J, Cooke D, Corvera C, Das P, 
Enzinger PC, Enzler T, Fanta P, et al. Gastric Cancer, Version 2.2022, NCCN 
Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 
2022;20(2):167–92.

 3. Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk 
factors and prevention. Prz Gastroenterol. 2019;14(1):26–38.

 4. Yang L, Ying X, Liu S, Lyu G, Xu Z, Zhang X, Li H, Li Q, Wang N, Ji J. Gastric 
cancer: Epidemiology, risk factors and prevention strategies. Chin J Can-
cer Res. 2020;32(6):695–704.

 5. Sexton RE, Al Hallak MN, Diab M, Azmi AS. Gastric cancer: a comprehen-
sive review of current and future treatment strategies. Cancer Metastasis 
Rev. 2020;39(4):1179–203.

 6. Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation 
dynamics: establishment, regulation, and biological impact. Mol Cell. 
2012;48(4):491–507.

 7. Audia JE, Campbell RM. Histone Modifications and Cancer. Cold Spring 
Harb Perspect Biol. 2016;8(4): a019521.

 8. Lee EY, Muller WJ. Oncogenes and tumor suppressor genes. Cold Spring 
Harb Perspect Biol. 2010;2(10): a003236.

 9. Sterling J, Menezes SV, Abbassi RH, Munoz L. Histone lysine demethylases 
and their functions in cancer. Int J Cancer. 2020.

 10. Paluszczak J, Baer-Dubowska W. Epigenome and cancer: new possibilities 
of cancer prevention and therapy? Postepy Biochem. 2005;51(3):244–50.

 11. Maleszewska M, Wojtas B, Kaminska B. Deregulation of epigenetic 
mechanisms in cancer. Postepy Biochem. 2018;64(2):148–56.

 12. Dorna D, Paluszczak J. The Emerging Significance of Histone Lysine 
Demethylases as Prognostic Markers and Therapeutic Targets in Head 
and Neck Cancers. Cells. 2022;11(6):1023.

 13. Graca I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jeronimo C. 
Epigenetic modulators as therapeutic targets in prostate cancer. Clin 
Epigenetics. 2016;8:98.

 14. Yoo J, Jeon YH, Cho HY, Lee SW, Kim GW, Lee DH, Kwon SH. Advances in 
Histone Demethylase KDM3A as a Cancer Therapeutic Target. Cancers 
(Basel). 2020;12(5).

 15. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associ-
ated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 
2017;14(7):399–416.

 16. Jiang Y, Zhang Q, Hu Y, Li T, Yu J, Zhao L, Ye G, Deng H, Mou T, Cai S, et al. 
ImmunoScore Signature: A Prognostic and Predictive Tool in Gastric 
Cancer. Ann Surg. 2018;267(3):504–13.

 17. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Can-
cer. 2016;16(9):582–98.

 18. Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of 
stromal cells in the tumour microenvironment. Nat Rev Immunol. 
2015;15(11):669–82.

 19. Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-check-
point blockade: response evaluation and biomarker development. Nat 
Rev Clin Oncol. 2017;14(11):655–68.

 20. Oh SC, Sohn BH, Cheong JH, Kim SB, Lee JE, Park KC, Lee SH, Park JL, Park 
YY, Lee HS, et al. Clinical and genomic landscape of gastric cancer with a 
mesenchymal phenotype. Nat Commun. 2018;9(1):1777.

 21. Lee DD, Seung HS. Learning the parts of objects by non-negative matrix 
factorization. Nature. 1999;401(6755):788–91.

 22. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling 
Tumor Infiltrating Immune Cells with CIBERSORT. Methods Mol Biol. 
2018;1711:243–59.

 23. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7.

 24. Liu H, Liu L, Holowatyj A, Jiang Y, Yang ZQ. Integrated genomic and 
functional analyses of histone demethylases identify oncogenic KDM2A 
isoform in breast cancer. Mol Carcinog. 2016;55(5):977–90.

 25. Cunningham CM, Li M, Ruffenach G, Doshi M, Aryan L, Hong J, Park 
J, Hrncir H, Medzikovic L, Umar S, et al. Y-Chromosome Gene, Uty, 
Protects Against Pulmonary Hypertension by Reducing Proinflammatory 
Chemokines. Am J Respir Crit Care Med. 2022;206(2):186–96.

https://doi.org/10.1186/s12885-023-10923-1
https://doi.org/10.1186/s12885-023-10923-1
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://xenabrowser.net/datapages/


Page 15 of 15Zhang et al. BMC Cancer          (2023) 23:454  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 26. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient 
and comprehensive analysis of somatic variants in cancer. Genome Res. 
2018;28(11):1747–56.

 27. Song Q, Shang J, Yang Z, Zhang L, Zhang C, Chen J, Wu X. Identification 
of an immune signature predicting prognosis risk of patients in lung 
adenocarcinoma. J Transl Med. 2019;17(1):70.

 28. Cristescu R, Aurora-Garg D, Albright A, Xu L, Liu XQ, Loboda A, Lang L, 
Jin F, Rubin EH, Snyder A, et al. Tumor mutational burden predicts the 
efficacy of pembrolizumab monotherapy: a pan-tumor retrospective 
analysis of participants with advanced solid tumors. J Immunother Can-
cer. 2022;10(1):e003091.

 29. Strickler JH, Hanks BA, Khasraw M. Tumor Mutational Burden as a Predic-
tor of Immunotherapy Response: Is More Always Better? Clin Cancer Res. 
2021;27(5):1236–41.

 30. Sojka DK, Huang YH, Fowell DJ. Mechanisms of regulatory T-cell 
suppression - a diverse arsenal for a moving target. Immunology. 
2008;124(1):13–22.

 31. Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of treg-medi-
ated T cell suppression. Front Immunol. 2012;3:51.

 32. Terry S, Savagner P, Ortiz-Cuaran S, Mahjoubi L, Saintigny P, Thiery JP, 
Chouaib S. New insights into the role of EMT in tumor immune escape. 
Mol Oncol. 2017;11(7):824–46.

 33. Luchini C, Bibeau F, Ligtenberg MJL, Singh N, Nottegar A, Bosse T, Miller R, 
Riaz N, Douillard JY, Andre F, et al. ESMO recommendations on microsatel-
lite instability testing for immunotherapy in cancer, and its relationship 
with PD-1/PD-L1 expression and tumour mutational burden: a systematic 
review-based approach. Ann Oncol. 2019;30(8):1232–43.

 34. Walport LJ, Hopkinson RJ, Chowdhury R, Zhang Y, Bonnici J, Schiller R, 
Kawamura A, Schofield CJ. Mechanistic and structural studies of KDM-
catalysed demethylation of histone 1 isotype 4 at lysine 26. FEBS Lett. 
2018;592(19):3264–73.

 35. Cribbs AP, Terlecki-Zaniewicz S, Philpott M, Baardman J, Ahern D, Lindow 
M, Obad S, Oerum H, Sampey B, Mander PK, et al. Histone H3K27me3 
demethylases regulate human Th17 cell development and effec-
tor functions by impacting on metabolism. Proc Natl Acad Sci U S A. 
2020;117(11):6056–66.

 36. Borst J, Ahrends T, Babala N, Melief CJM, Kastenmuller W. CD4(+) T cell 
help in cancer immunology and immunotherapy. Nat Rev Immunol. 
2018;18(10):635–47.

 37. Chen XJ, Ren AQ, Zheng L, Zheng ED. Predictive Value of KDM5C Altera-
tions for Immune Checkpoint Inhibitors Treatment Outcomes in Patients 
With Cancer. Front Immunol. 2021;12: 664847.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Comprehensive transcriptomic analyses identify KDM genes-related subtypes with different TME infiltrates in gastric cancer
	Abstract 
	Introduction
	Materials and methods
	RNA expression dataset
	Non-negative matrix factorization (NMF) algorithm
	Analyses of tumor microenvironment infiltration
	Development KDM genes-related risk_score
	Cell migration assays
	Cell scratch wound healing assay
	Mouse models establishment
	RNA Isolation and quantitative real-time polymerase chain reaction (RT-qPCR)
	Statistical analyses

	Results
	Genetic variation of KDM genes in gastric cancer
	Experimental validation of functional phenotypes of KDM5C in GC
	KDM genes-related molecular subtypes in GC
	Tumor microenvironment infiltration of KGRCs
	Construction of KDM-risk score in gastric cancer
	Immune-related characteristics between the high- and low-risk groups
	Constructing a nomogram based on KDM_score

	Discussion
	Anchor 23
	Acknowledgements
	References


