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Abstract
Background The association involving mismatch repair (MMR) genes, molecular subtype and specific immune 
cell group in tumor microenvironment has been focused by more recent studies. Its prognosis value in lung 
adenocarcinoma (LUAD) neoadjuvant chemotherapy remains elusive.

Methods The correlation between the MMR gene patterns and the immune landscape were comprehensively 
evaluated. The MMRScore was calculated using principal component analysis (PCA) after grouping using R/mclust 
package. The prognostic significance of the MMRScore was evaluated by Kaplan-merrier analysis. Then a cohort of 
103 Chinese LUAD patients was collected for neoadjuvant chemotherapy prognosis evaluation and validation using 
MMRScore.

Results Four MMRclusters (mc1, 2, 3, 4)-characterized by differences in extent of aneuploidy, expression of 
immunomodulatory (IM) genes, mRNA expression, lncRNA expression and prognosis were identified. We established 
MMRscore to quantify the MMR pattern of individual LUAD patients. As is shown in further analyses, the MMRscore 
was a potential independent prognostic factor of LUAD. Finally, the prognostic value of the MMRscore and its 
association with tumor immune microenvironment (TIME) of LUAD were verified in Chinese LUAD cohort.

Conclusions We demonstrated the correlation between MMR gene pattern, the CNV and tumor immune landscape 
in LUAD. A MMRcluster mc2 with high MMRscore, high TMB and high CNV subtype was identified with poor prognosis 
and infiltrating immunocyte. The comprehensive evaluation of MMR patterns in individual LUAD patients enhances 
the understanding of TIME and gives a new insight toward improved immune treatment strategies for LUAD patients 
compared to neoadjuvant chemotherapy.
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Background
DNA repair is necessary to ensure cellular genome integ-
rity, served as a multi-enzyme, multi-pathway system 
[1]. DNA damage can occur either through errors dur-
ing DNA replication or through chemical changes in base 
nucleotides in the cellular environment. Several mecha-
nisms such as nucleotide excision repair (NER), base 
excision repair (BER), DNA strand break repair (DSBR), 
direct reversal of DNA damage, and replication of 
DNA damage by specialized DNA-derived polymerases 
(bypass replication), which are fundamental underlying 
mechanisms in different DNA repair pathways [2]. The 
occurrence of many specific human diseases is thought 
to be related to these defects in the repair pathways. In 
addition, previous studies have long found that the repair 
of damaged DNA is closely related to a variety of cellular 
processes such as DNA replication, DNA recombination, 
and cell cycle checkpoint arrest.

Mismatch repair (MMR) genes produced by DDR 
pathway is the most known type of DNA mutation cause 
[3]; it is although to regulate multiple DNA-related pro-
cesses, such as DNA stability and alternative splicing 
[4]. Recently, aberrant expression of MMR regulators is 
revealed to be associated with cancer and immune events 
including tumorigenesis, immunomodulatory (IM) 
abnormality and malignant tumor progression [5].

Neoadjuvant chemotherapy is a treatment method 
in which some cycles of chemotherapy are given before 
tumor resection and the remaining cycles are given after 
surgery. Neoadjuvant chemotherapy is considered as a 
therapy with multiple potential benefits in the treatment 
of lung cancer [6]. For patients with one of these types 
of tumors that do not respond well to chemotherapy, the 
value of that treatment is diminished if therapeutic inter-
ventions to improve outcomes for such patients cannot 
be identified.

The association involving mismatch repair (MMR) 
genes, molecular subtype and specific immune cell group 
in tumor microenvironment has been focused by more 
recent studies. Its prognosis value in lung adenocarci-
noma (LUAD) neoadjuvant chemotherapy remains elu-
sive. In this investigation, we integrated the clinical and 
molecular data of 461 TCGA-LUAD and 103 Chinese 
LUAD cancer patients to comprehensively evaluate the 
MMR modification patterns and with lung cancer neoad-
juvant chemotherapy. Distinct MMR modification regu-
lation pattern and associated distinct immune characters, 
neoadjuvant chemotherapy sensitivity and prognoses 
were identified, showing the key roles of MMR gene pat-
tern in the developments of individual TIME in lung ade-
nocarcinoma patients. We also construct a methodology 
to quantify the MMR modification of individual LUAD 
patients by evaluating the gene patterns of 24 MMR 
regulators.

Methods
Molecular and clinical data
RNA sequencing data (count and fpkm values) for gene 
expression analysis, genetic mutations (Mutect2), and 
clinical data were downloaded from the Genomic Data 
Commons (https://portal.gdc.cancer.gov/). The Ensembl 
gene IDs of the RNA-seq data were mapped to gene 
symbols by referring to an annotation file (https://www.
gencodegenes.Org/human/release_22. html). The copy 
number variation (CNV) data were downloaded from the 
xena web tool (https://xena.ucsc.edu/) [7].

Model-based clustering analysis for MMR regulators
Gene expression levels were quantified using the metric 
log2 (fpkm + 1), then used to identify MMR modification 
patterns based on the expression of 24 MMR regulators 
genes by model-based clustering analysis implemented 
in the R package/mclust [8]. In this package, the optimal 
number of clusters was determined based on the Bayes-
ian information criterion (BIC).

Gene set variation analysis (GSVA)
Gene set variation analysis (GSVA)-a non-parametric 
and unsupervised method commonly used for estimat-
ing pathway variations in the samples of expression 
datasets-was performed to explore the differences in 
biological processes among MMR modification patterns 
[9]. The c2.cp.kegg. v6.2. symbols gene sets for GSVA 
were downloaded from the Molecular Signatures Data-
base (MSigDB). A p < 0.05 was considered statistically 
significant.

Identification of differentially expressed genes (DEGs) 
among MMRclusters
To identify genes related to MMR modification regu-
lation, we classified LUAD patients into MMRclusters 
based on the expression of 24 MMR genes. DEGs among 
these clusters were determined using the R/limma pack-
age, which was applied using the raw fpkm values of RNA 
sequencing data. Genes with adjusted p < 0.05 and at least 
two-fold changes in expression were identified as DEGs. 
We refer to the research method of Zeng et al. [10].

Construction of the MMR gene signature
In this part, we refer to the research method of Zeng 
et al[10]. We applied a methodology to quantify the 
MMR modification pattern (MMRscore) of individual 
LUAD patients. The MMRScore was established as fol-
lows. First, we extracted the overlapping DEGs among 
MMRClusters and classified the LUAD patients into sev-
eral groups using model-based clustering to analyze the 
overlapping DEGs. Univariate Cox regression analysis 
was performed to evaluate the prognosis of each overlap-
ping DEG. Genes with a significant prognosis (p < 0.05) 
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were extracted for further analysis. Next, principal com-
ponent analysis (PCA) was performed to establish the 
MMR gene signature. We selected both principal com-
ponents 1 (PC1) and 2 (PC2) as signature scores. Finally, 
the MMRscore was defined using a method similar to 
Genomic Grade Index:

 MMRScore = Σ (PC1i + PC2i)

where i is the expression of overlapping genes with a sig-
nificant prognosis of DEGs among MMRclusters.

Correlation between MMRscore and other relevant 
biological processes
In this part, we refer to the research method of Zeng et 
al. [10] Spearman’s correlation analysis was performed 
to explore the correlation between MMRscore and other 
relevant biological processes using the gene sets reported 
by Mariathasan et al., including (1) antigen processing 
machinery (APM), (2) effector CD8 T-cell signature, (3) 
immune checkpoint, (4) nucleotide excision repair, (5) 
mismatch repair, (6) DNA replication, (7) DNA dam-
age repair, (8) epithelial-mesenchymal transition mark-
ers, (9) Wnt targets, (10) pan-fibroblast transforming 
growth factor-β response signature, and (11) angiogen-
esis signature.

Statistical analysis
Statistical significance for 3 or more groups was esti-
mated using the Kruskal-Wallis test and association 
between categorical variables was explored using the χ2 
test. The correlation coefficient was calculated via Spear-
man’s correlation analysis. The Kaplan-Meier method 
was used to generate survival curves and the log-rank 
test was used to determine the statistical significance of 
differences. The oncoplot function of R/maftools pack-
age was used to depict the mutation landscape of TCGA-
LUAD cohort and immunotherapeutic cohort. All tests 
were two sided, and p < 0.05 was regarded as significant. 
All analyses were performed with R software V.4.2.0 
(http://www.R-project.org).

Results
MMR regulators in LUAD: mutation landscape 
characteristics and clinical relevance
Based on published literature, DNA miss match repair 
(MMR) is regulated by 24 genes were highlighted. The 
mutation frequency of 24 MMR genes changes in LUAD 
was investigated using somatic mutations. Only 18 of 567 
samples had MMR regulator mutations, indicating that a 
complete average mutation frequency of MMR regulators 
was lower (Please see in Fig. 1a). The survival curve of the 
24 MMR regulators was then examined, and it was shown 
that 16/24 MMR regulators had a substantial influence 

(p < 0.05) on LUAD patients (Please see in Fig.  1b). The 
MMR regulators’ mRNA expression levels in LUAD and 
surrounding tissues were also investigated, and it was 
discovered that 22 of the 24 MMR regulators were differ-
ently expressed with p < 0.05 (Please see in Fig. 1c). The 
expressional and genetic differences in MMR regulators 
were significantly diverse between LUAD and surround-
ing tissues, indicating that MMR regulator expression 
imbalance plays a critical role in formation and progres-
sion of LUAD. For clinical effect evaluation, we execute a 
COX model which shows that HDAC1 has positive cor-
relation (Please see in Fig. 1d). Taken together, these find-
ings suggest that MMR gene pattern plays critical roles in 
the formation of LUAD.

MMR gene patterns mediated by 24 MMR regulators
The 24 MMR regulators’ expression was used to catego-
rize LUAD patients using model-based clustering. We 
found four different RNA methylation modification pat-
terns (called MMRClusters MC1–MC4), with 118 cases 
in MMRcluster-C1, 129 cases in MMRCluster-C2, 53 
cases in MMRCluster-C3, and 85 cases in MMRClu-
ster-C4 (Please see in Fig. 2a). RFC4, MSH2, EXO1 and 
POLD3 expression levels were high in MMRCluster-
MC2, whereas none was low. And MMRCluster-MC2 
had the poor prognosis with p < 0.05 (Please see in 
Fig. 2b).

The R/limma package software was used to find 48 
DEGs associated to the four-cluster subtype. The net-
work activity of DEGs was investigated (Please see in 
Fig.  2c). Based on four MMRClusters, the therapy sen-
sitivity of chemotherapy was evaluated (Please see in 
Fig. 2d), cisplatin shows lower IC50 than paxitiex. Study 
had investigated the pan-cancer immune landscape and 
eventually found the six immune subtypes (C1–C6) 
considered for determining the immune response pat-
terns and have consequences for future immunotherapy 
research. In most LUAD patients, the immune subtype 
C3 was enriched, which is characterized by lower lev-
els of overall CNVs. Surprisingly, the four unique MMR 
gene pattern levels showed different C3 immune subtype 
proportions, with MMRCluster-C3 in Fig.  2e. For more 
detailed description, we execute a DEGs relationship 
analysis as the same for network plot in Fig. 2f.

Immune characteristics and subtype identification in 
distinct MMR modification patterns
Thorsson et [11] colleagues investigated the pan-can-
cer immune landscape and eventually found the six 
immune subtypes (C1–C6) considered for determining 
the immune response patterns and have consequences 
for future immunotherapy research. Surprisingly, 
among the four MMRclusters, the 4 unique modifica-
tion levels showed different C1 and C2 immune subtype 

http://www.R-project.org
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Fig. 1 Clinical relevance and molecular characteristics of MMR regulator genes in LUAD. (A) The mutation landscape of 24 MMR regulator genes in 492 
LUADs; (B) The overall survival of high or low expression of 24 MMR regulator genes in LUADs; (C) The gene expression alterations among MMR regulator 
genes; Tumor (normal) was indicated in red (blue). ANOVA test: The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001); (D) For 
clinical relevance evaluation, a COX model analysis shows positive related genes
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Fig. 2 MMR modification patterns in LUAD and biological characteristics of MMR subtypes. (A) Model-based clustering of LUAD yields four subtypes 
in the TCGA-LUAD dataset. MC1, cluster1; MC2, cluster2; MC3, cluster3; MC4, cluster4; (B) Comparison of prognosis among four Chromatin Modification 
subtypes (Kaplan-Meier analysis); (C) PPI network based on 41 COX DEGs; (D) Boxviolins for estimated IC50 of Cisplatin and Paclitaxel among 5 identified 
subtypes in TCGA-LUAD cohort; (E) Agreement of 5 identified subtypes with immune status and pathological stage in TCGA-LUAD cohort; (F) PPI network 
based on 41 COX DEG using network
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proportions, with MMRcluster-C2 having highest, fol-
lowed by MMRcluster-C3, and C1 (p < 0.001). The immu-
nological properties of various MMR patterns were next 
investigated in further detail. In comparison to the other 
clusters, MMRcluster-C2 had a high TMB, higher lev-
els of overall CNVs and different mRNA and LncRNA 
expression pattern (Please see in Fig.  3a-c). Subtype-
specific upregulate or downregulate biomarkers were 
found by starting with differential expression analysis 
(DEA). The most differentially expressed genes (DEG) 
sorted by log2Fold are chosen as the biomarkers for each 
MMRCluster subtype. These biomarkers should pass the 
R/limma package analysis to identify subtype-specific 
downregulated Fig.  3d in left and upregulated in right 
biomarkers.

Similarly, GSEA is executed for each molecular sub-
type based on the DEA results to identify signal pathways 
using a gene set background which includes all gene sets 
derived from GO biological processes (c5. bp.v 7.1. sym-
bols. gmt). Heatmap analysis of subtype specific down-
regulated biological pathways (Please see in Fig. 3e top) 
using limma package for 6 identified subtypes in TCGA-
LUAD and upregulated pathways (Please see in Fig.  3e 
bottom).

Construction of the MMR gene signature and evaluated 
the immune landscape was significantly associated with 
MMRScore
The immunological properties were next further explored 
in MMR gene patterns. 49 DEGs associated with signifi-
cant prognoses were extracted for further PCA analysis 
to establish the chromatin modification gene signature. 
Based on the visualized box plot in Fig. 4a, we could find 
that a positive differentiation (p < 0.05) between the four 
MMRClusters. Furthermore, the student t test showed 
a positive difference in MMRScore among all the four 
MMRClusters. We used the MMRScore assay to assess 
the MMR alteration pattern in individual LUAD. The R/
limma program software was used to find 49 DEGs asso-
ciated to the mc2 subtype. The prognosis of 49 genes in 
the MMR modification subtype associated DEGs were 
assessed using a univariate Cox regression analysis.

Exploring the expression of diverse MMR alteration 
patterns is required to progress this study. The functions 
based on the expression of IM regulators in the MMR 4 
subtypes were investigated in Fig. 4b. Almost all function 
were poorly expressed in mc2 especially in immune, such 
as T function, B function, APC processing, Macrophage 
functions. As shown in Fig.  4c, using the CIBERSORT 
algorithm, it is not difficult to find B cell memory, B cell 
naive, macrophages M0, M1, T cell CD4 memory and the 
dendritic cells showed an activated state. In particular, 
quiescent dendritic cells showed significant differences 
between normal and cancerous tissues, respectively. 

The heatmap of immune related genes between mc1 
and mc134 lung adenocarcinoma samples was shown in 
Fig. 4d.

MMR-associated immune microenvironment 
characteristics in validation cohort
For further validation our previous results, we collect a 
Chinese LUAD cohort including 103 Chinese LUAD 
patients with DFS after neoadjuvant chemotherapy. With 
or no neoadjuvant chemotherapy, Kaplan-merrier plot 
analysis in Fig. 5a shows a significant effect after neoad-
juvant chemotherapy. With a consideration of subtyp-
ing, we recalculated the MMRScore for every individual 
in the 103 Chinese cohort. Using median method, the 
cohort was for Kaplan-merrier plot analysis in Fig.  5b. 
Antigen processing, chemokines, and responses to inter-
ferons were all significantly up-regulated in the high 
MMRScore group, suggesting an increase in the effi-
ciency of T cell recognition of antigens and thereby trig-
gering inflammation and antitumor immunity. We then 
assessed the protein expression of PD-L1 and CD4 in 
primary lung cancer based on the four MMRclusters in 
Fig.  5c using immunohistochemical (IHC) analysis, and 
some representative pictures in Fig. 5d. In the subtype of 
validation cohort, mc3 shows a higher mRNA expression 
gene a, lower gene b and dysfunction immune. For fur-
ther validation, we detect their expression using IHC in 4 
Chinese LUAD cohort with higher MMRScore, the data 
shows that higher mRNA expression gene a, lower gene b 
was associated with low CD4 expression.

Functional annotations and pathway enrichment analyses 
of MMRScore subtypes
To understand the MMRscore’s potential biological 
power in terms of remarkable predictive ability, we ana-
lyzed the GO enrichment in TCGA with the help of the 
R/clusterProfiler package, where the analyzed data came 
from PCA and DEG of the RNASeqstat2 pipeline (Please 
see in Fig. 6a and b). KEGG and GSEA analysis showed 
that, among all pathways, synaptic transmission pathways 
were enriched in the low MMRscore group, and pathways 
involved in immune system diseases were significantly 
associated with high MMRscore in Fig. 6c. On this basis, 
for the HALLMARK and KEGG signature scores of each 
sample, we use the ssGSEA algorithm to conduct a com-
prehensive exploration. Adjusted p-values were ranked 
by the limma algorithm according to their significance, 
and the top 20 enrichments were visualized in a heatmap 
(Please see in Fig.  6d). High MMRscore LUAD showed 
enrichment of multiple immune activation pathways 
including IL-6/JAK/STAT3 pathway, interferon-gamma 
response, inflammatory response, and antigen process-
ing and presentation. Low MMRscore is related to the 
enrichment of E2F_TARGETS and G2M_checkpoint.
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Fig. 3 Different responses of immune cells are enriched in the four subtypes of lung cancer. (A) Comparison of TMB and TiTv among four identified 
subtypes of lung cancer in TCGA-LUAD cohort; (B) Barplot of fraction genome altered among four identified subtypes of lung cancer in TCGA-LUAD 
cohort; (C) Molecular subtypes in distinct MMRclusters. From top to bottom: mRNA expression (median normalized expression levels); lncRNA expression 
(median normalized expression levels); (D) Heatmap of subtype-specific upregulated and downregulated biomarkers using limma for 4 identified sub-
types in TCGA-LUAD cohort; (E) GSVA of subtype-specific upregulated pathways (left). GSVA of subtype-specific downregulated pathways in TCGA-LUAD 
cohort (right)
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Fig. 4 The immune landscape in distinct MMR modification patterns. (A) Box plot visualizing the chromatin modification of four clusters. Boxplot show-
ing the different chromatinScore between chromatin modification subtypes. ANOVA test: The asterisks represented the statistical p value (*p < 0.05; 
**p < 0.01; ***p < 0.001); (B) Heatmap of enrichment score of gene set of interest for four identified subtypes in PRAD; (C) The distribution of 22 types of 
immune cells between normal and tumor of PRAD cancer using CIBERSORT; (D) Heatmap plot showing the different immune related genes between 
chromatin modification subtypes
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Fig. 5 MMR-Associated Immune Microenvironment Characteristics in validation cohort. (A) Kaplan-merie analysis of collected 102 Chinese LUAD pa-
tients; (B) Heatmap plot of IHC detection of MSH6, MSH2 and CD4 in 8 sample; (C) Kaplan-merie analysis of four subtypes according to MMRScore; (D) The 
IHC image of one sample of MSH6, MSH2 and CD4.
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Fig. 6 Functional Annotations and Pathway Enrichment Analyses of MMRScore Subtypes. (A, B) RNASeqstat2 pipeline: PCA analysis and venn plot of 
three methodologies (limma, edgeR and DEseq2). (C) GSEA HALLMARK analysis of the mc2 and mc134 MMRscore groups. (D) HALLMARK enrichment of 
mc2 and mc134 subtypes calculated by the ssGSEA algorithm with activation or inhibition
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Discussion
A growing number of studies have shown that MMR 
genes play critical roles in tumorigenesis, therapeutic 
clinical resistance, and immune responses through the 
cooperation between MMR regulators [4, 5]. At pres-
ent, questions about the role of MMR modification pat-
terns in the tumor immune microenvironment have 
been explored and answered in some cancer types. In 
this investigation, we further deepen our understanding 
of TIME-based antitumor immune responses by explor-
ing and understanding the role of MMR gene patterns in 
the immune landscape of lung adenocarcinoma and use 
this as a springboard to provide more effective LUAD 
patients. immunotherapy strategies.

Lung cancer can already be subtyped based on genomic 
profiling, which promises to improve the application of 
precision-focused personalized therapy in the future [12]. 
In this study, among 24 MMR regulators, four MMR-
related clusters with significantly different immune 
microenvironments have been specified, based on their 
differences in aneuploidy, overall somatic copy num-
ber alterations, expression of immune-related genes and 
prognosis. In addition, Th17 expression is often associ-
ated with improved prognosis in previous studies [13]. 
Coincidentally, this experiment also draws consistent 
conclusions as follows: C3 presents enriched pathways 
associated with complete immune activation and exhib-
its the most obvious Th17 signature. MMRcluster-C1 
exhibited not only high proliferation and ITH, but also 
enriched pathways associated with full immune activa-
tion and relatively high CD8 + T cell infiltration, all of 
which indicate high tumor growth rates in C1. So, it may 
seem strange but not contradictory that C1 shows a state 
of activated immunity but at the same time there is a low 
survival rate. MMRcluster-C2 exhibits features that are 
primarily associated with immunosuppression of bio-
logical processes and relatively low infiltration of CD8 + T 
cells.

Because each individual has a different MMR modi-
fication pattern, we adopted a methodology called 
MMRscore to accurately calculate the MMR pattern of 
different lung adenocarcinoma patients. Our study also 
found that MMRScore was positively correlated with 
CNV. Through comprehensive analysis, we identified 
MMRScore as a potential independent prognostic fac-
tor for neoadjuvant chemotherapy. Therefore, we judged 
that the MMR gene pattern may serve as a key influencer 
leading to different clinical responses to immunotherapy 
and indirectly validated the value of MMRscore in pre-
dicting immunotherapy outcome.

The advent of anti-PD-1/PD-L1 ICT therapy is a break-
through in the treatment of certain advanced cancer 
types [14, 15]. However, LUAD patients who received 
this treatment did not all have a positive and significant 

clinical response, and immunotherapy results showed 
individual heterogeneity. Therefore, it is very important 
to find markers that can predict the outcome of immu-
notherapy. It is known that if people have pre-existing 
CD8 + T cell infiltration and high tumor mutational 
burden, they can have a higher response to anti-PD-1 
therapy. However, in some advanced cancers, contrary 
to some known cancer types, tumor mutational burden, 
neoantigen burden, and HLA engagement did not cor-
relate with response to anti-PD-1 therapy. And in other 
cancer type, immune-infiltrating tumors and immune-
desert/excluded tumors, respectively, did not differ sta-
tistically in response or survival to anti-PD-1 therapy. In 
our study, we discovered and confirmed the prognostic 
value of MMRscore in cold-immunized LUAD patients 
with low T cell infiltration and used MMRscore as a pre-
dictive strategy for anti-PD-1/PD-L1 therapy.

Neoadjuvant chemotherapy can theoretically improve 
disease-free survival (DFS) and overall survival (OS) by 
early treatment of microscopic metastases. From a prac-
tical standpoint, neoadjuvant chemotherapy provides 
sufficient time for other surgical planning such as custom 
endoprosthesis preparation. In addition, neoadjuvant 
chemotherapy can make patients who would otherwise 
be inoperable and must have their limbs amputated eli-
gible for surgery if they shrink the tumor sufficiently 
[16]. At the same time neoadjuvant chemotherapy can 
improve postoperative healing because recovery from 
chemotherapy is less time-critical. One of the most 
important ways to improve prognosis is early identifi-
cation combined with subsequent treatment. However, 
there are currently no known therapeutic interventions 
to improve outcomes for patients with poor histologic 
response to chemotherapy [17]. Therefore, we believe 
that MMRscore has adjuvant predictive value for neoad-
juvant chemotherapy.

Finally, this investigation discovered a link between 
MMR gene pattern, copy number variation (CNV), and 
the immunological landscape of lung cancer tumors. 
With a clinical cohort to verify our pre results on TCGA-
LUAD, our in-depth analysis of MMR alteration patterns 
in individual lung cancer patients adds to knowledge of 
tumor immunological landscape and paves the way for 
neoadjuvant chemotherapy prognosis or novel and bet-
ter immunotherapeutic methods. In our study, we have 
a disadvantage due to the lack of enough clinical data on 
immune checkpoint therapy. This is an important factor 
to consider, as it can limit the validity and applicability of 
the research findings.
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