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Abstract 

Objective In recent years, an increasing number of studies have revealed that patients’ preoperative inflammatory 
response, coagulation function, and nutritional status are all linked to the occurrence, development, angiogenesis, 
and metastasis of various malignant tumors. The goal of this study is to determine the relationship between preopera-
tive peripheral blood neutrophil to lymphocyte ratio (NLR), monocyte to lymphocyte ratio (MLR), systemic immune-
inflammatory index (SII), platelet to lymphocyte ratio (PLR), and platelet to fibrinogen ratio (FPR). Prognostic nutri-
tional index (PNI) and the prognosis of glioblastoma multiforme (GBM) patients, as well as establish a forest prediction 
model that includes preoperative hematological markers to predict the individual GBM patient’s 3-year survival status 
after treatment.

Methods The clinical and hematological data of 281 GBM patients were analyzed retrospectively; overall survival (OS) 
was the primary endpoint. X-Tile software was used to determine the best cut-off values for NLR, SII, and PLR, and the 
survival analysis was carried out by the Kaplan–Meier method as well as univariate and multivariate COX regression. 
Afterward, we created a random forest model that predicts the individual GBM patient’s 3-year survival status after 
treatment, and the area under the curve (AUC) is used to validate the model’s effectiveness.

Results The best cut-off values for NLR, SII, and PLR in GBM patients’ preoperative peripheral blood were 2.12, 537.50, 
and 93.5 respectively. The Kaplan–Meier method revealed that preoperative GBM patients with high SII, high NLR, 
and high PLR had shorter overall survival, and the difference was statistically significant. In addition to clinical and 
pathological factors. Univariate Cox showed NLR (HR = 1.456, 95% CI: 1.286 ~ 1.649, P < 0.001) MLR (HR = 1.272, 95% CI: 
1.120 ~ 1.649, P < 0.001), FPR (HR = 1.183,95% CI: 1.049 ~ 1.333, P < 0.001), SII (HR = 0.218,95% CI: 1.645 ~ 2.127, P < 0.001) 
is related to the prognosis and overall survival of GBM. Multivariate Cox proportional hazard regression showed that SII 
(HR = 1.641, 95% CI: 1.430 ~ 1.884, P < 0.001) is also related to the overall survival of patients with GBM. In the random 
forest prognostic model with preoperative hematologic markers, the AUC in the test set and the validation set was 
0.907 and 0.900, respectively.

Conclusion High levels of NLR, MLR, PLR, FPR, and SII before surgery are prognostic risk factors for GBM patients. A 
high preoperative SII level is an independent risk factor for GBM prognosis. The random forest model that includes 
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preoperative hematological markers has the potential to predict the individual GBM patient’s 3-year survival status 
after treatment,and assist the clinicians for making a good clinical decision.

Keywords Glioblastoma multiforme, Prognostic analysis, Preoperative hematological markers, Inflammatory immune 
index, Random survival forest model

Introduction
Patients with GBM have a poor overall prognosis, with 
an overall survival time of only 12–15 months after sur-
gery plus STUPP [1]. As a result, accurately predict-
ing the prognosis of GBM patients is critical. According 
to research, the prognosis of GBM patients is affected 
by their age, tumor characteristics, treatment plan, and 
other factors [2]. However, the accuracy of predicting 
the prognosis of GBM is still limited, and more prognos-
tic factors are needed to evaluate the prognosis of GBM 
patients. Preoperative systemic inflammatory response, 
coagulation function, and nutritional status of patients 
have all been shown in studies to influence the anti-
tumor effect [3–6]. Some preoperative hematological 
markers, such as NLR, MLR, PLR, FPR, SII (SII = NLR* 
platelet count), and PNI (PNI = albumin + 5* lympho-
cytes), have been linked to the prognosis of certain malig-
nant tumors, including gastric cancer, esophageal cancer, 
colorectal cancer, and breast cancer [7–12]. However, 
there is no agreement on the role of preoperative hema-
tological markers in GBM, and more research is required.

The overall survival time of GBM patients can be 
improved after surgery plus the STUPP protocol, but 
the difference in prognosis and survival time between 
patients remains significant [13]. It is critical to screen 
out these patients with poor prognoses and accurately 
predict patient survival time after treatment.

In this study, the prognostic factors of 281 GBM 
patients treated at the first affiliated hospital of Zheng-
zhou University were systematically examined. Our goals 
are as follows: 1. to investigate the predictive value of 
preoperative peripheral blood inflammatory response, 
coagulation function, and nutritional status in patients 
with GBM. 2. Develop a GBM random forest prognosis 
model that incorporates clinical fundamentals, molecu-
lar pathology, imaging features, and preoperative periph-
eral blood markers. At the same time, we collected data 
on 115 GBM patients treated at the People’s Hospital of 
Henan Province to further validate the forecast model.

Materials and methods
Research data
Collect data on GBM patients who were admitted to the 
Department of Neurosurgery at Zhengzhou University’s 
First Affiliated Hospital between 2015 and 2018, and 

received surgical treatment as well as regular postopera-
tive radiotherapy and chemotherapy. 281 patients were 
included based on the inclusion and exclusion criteria. 
(1) Patients who underwent surgery for the first time in 
our hospital’s neurosurgery department were diagnosed 
with GBM by pathology after surgery and completed 
the “STUPP” radiotherapy and chemotherapy regimen; 
(2) age was 18  years old; (3) hematological examina-
tion within 1  week before the operation; (4) head mag-
netic resonance spectroscopy imaging one week before 
the operation. (5) and patients with complete follow-up 
data. Exclusion criteria include (1) preoperative puncture 
biopsy, radiotherapy, and chemotherapy; (2) infectious 
diseases; (3) severe heart, lung, liver, and kidney disease; 
(4) auto-immune disease; (5) poor magnetic resonance 
imaging quality; and (6) severe intra-tumor hemorrhage.

Using the same criteria and methods, data of 115 
patients treated for GBM in Henan Provincial People’s 
Hospital were collected for validation of the prediction 
model. This investigation followed the Helsinki Declara-
tion and was approved by the Ethics Committee of the 
First Hospital of Zhengzhou University.

Basic clinical data
Patients who meet the enrollment criteria should have 
their clinical basic data recorded and collected in detail, 
including their age, gender, intracranial hypertension, 
epilepsy, preoperative KPS score, and tumor resection 
degree. Criteria for Tumor resection degree: All patients 
were reexamined with skull-enhanced MRI 48–72 h after 
surgery, and the calculation formula for tumor resection 
degree was (preoperative tumor volume–postoperative 
residual tumor volume)/preoperative tumor volume. 
Resection greater than or equal to 95% was defined as 
total resection, Less than 95% resection was defined as 
incomplete resection.

Hematological data
Fasting hematology indices, including neutrophil count, 
monocyte count, lymphocyte count, platelet count, 
serum albumin concentration, plasma fibrinogen, and 
other indices, were collected within one week before 
surgery for all patients who met the enrollment crite-
ria. Determine the NLR, MLR, PLR, FPR, PNI, and SII 
values.
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Imaging data
All patients in our hospital underwent an examination 
by MRS within a week of the operation. MRS examina-
tion results from eligible patients were collected, which 
included tumor location, maximum diameter of the 
tumor, single or sporadic tumor, N-acetylaspartic acid 
(NAA) value, choline (Cho) value, and creatine (Cr) value 
in the tumor area, and NAA/Cr, Cho/Cr, and Cho/NAA 
ratios.

Molecular and immunohistochemistry results
Patients’ postoperative pathological data were reviewed, 
and the expression levels of IDH mutant or wild type, 
p53, and Ki67 proteins were meticulously recorded. 
The IDH classification is based on the 2016 edition of 
the World Health Organization Classification of Cen-
tral Nervous System Tumors. Ki67 was expressed using 
a percentile system, with 30% indicating low expression 
and 30% indicating high expression. The p53 protein was 
expressed in “-to +  +  +  + ”, “- ~  + ” was low expression; 
“ +  + ” and above was high expression.

Follow‑up method
Outpatient reexamination, phone inquiries, and medi-
cal records were used to obtain follow-up data once 
every three months in the first year after surgery and 
once every six months beginning in the second year 
after surgery, with death as the end point of follow-up. 
The total survival time (TST) is defined as the patient’s 
survival time from the date of operation to death or the 
last follow-up. The follow-up time of this group ranged 
from 3.5 to 63  months, with a median follow-up time 
of 19 months. In total, 213 (75.8%) patients reached the 
endpoint. The deadline to follow up is August 31, 2021.

Statistical method
IBM SPSS26.0 software was used for statistical analysis. 
The mean standard deviation (x s) is used between the 
two groups, the t-test is used between the two groups, 
one-way ANOVA is used for comparison among multi-
ple groups, and the rest are expressed by median (inter-
quartile spacing), and a nonparametric test is used for 
comparison. 0.05 is the test level. The best cutoff values 
for NLR, MLR, PLR, FPR, PNI, SII, NAA/Cr, Cho/Cr, 
and Cho/NAA were determined using the ROC curve. 
The Kaplan–Meier method and the Log Rank test were 
used to assess patients’ postoperative survival. The uni-
variate and multivariate Cox proportional hazard regres-
sion models were used to calculate the risk ratio (HR) 
and 95% confidence interval (CI), and the influence was 
determined. To create a multivariate Cox regression for-
est map, we used the R package forest plot.

Construction of random forest prognostic model
Patients’ data are grouped and labeled (training set = 0, 
test set = 1), and the selected variables are organized into 
a data matrix, with each row representing a patient and 
each column representing a variable. The prognosis pre-
diction model in this study is built using the R language 
R package random Forest. The required R language func-
tion package is first loaded, followed by the sorted data 
matrix being read into the R language program and 
divided into a training set and a testing set based on the 
data grouping labels (training set = 0, testing set = 1). The 
random survival forests prediction model will then be 
trained in the training set. The receiver’s working curve 
(ROC) can be used to assess the predictive model’s abil-
ity. The area under the curve (AUC) ranges from 0 to 1. 
The larger the AUC, the better the model’s predictive 
ability. Finally, we further verified the predictive ability of 
the model on the verification set.

Results
Data characteristics of patients
Patients were divided into two groups based on whether 
they died at the end of the follow-up period (214 cases) 
or survived (67 cases). At the end of follow-up, the age 
(P < 0.001), KPS score (P = 0.002), preoperative NLR 
(P < 0.001), MLR(P = 0.001), PLR(P = 0.001) and SII 
(P < 0.001) of GBM patients between the two groups. 
Other data differences were not statistically significant 
(P > 0.05) (See Table 1).

Univariate Cox survival analysis
Initially, we systematically evaluated the prognostic value 
of each factor in patients with GBM. Univariate Cox 
regression analysis showed that age (P < 0.001, HR = 3.43), 
tumor location (P < 0.001, HR = 0.421), KPS (P < 0.001, 
HR = 0.975), NLR (P < 0.001, HR = 1.456), FPR(P = 0.006, 
HR = 1.183), SII (P < 0.001, HR = 1.871) and IDH 
(P < 0.001, HR = 0.218) were significantly correlated with 
the overall survival of GBM (See Table 2).

Kplan‑Meier survival curve
According to age 65, the KPS score was 70, and the IDH 
status was classified as wild type or mutant type. Using 
the ROC curve, the optimal NLR, PLR, and SII cut-
off values were determined to be 2.12, 93.5, and 537.5, 
respectively. The Log-Rank test revealed the statistical 
significance of the difference between survival curves.

Kaplan–Meier survival curve analysis showed that the 
cumulative survival rate of patients aged ≤ 65  years was 
higher than that of Patients aged > 65  years old (Fig.  1), 
The log-rank test showed that the difference is statisti-
cally significant with P < 0.05.
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Table 1 Data of two groups of patients with different outcomes

Variable Death group (n = 214) Survival group (n = 67) χ2/t/Z P value

Age > 65 years old [example (%)] 56(26.2%) 2(3%) -  < 0.001

Male [example (%)] 119(55.6%) 36(53.7%) 0.073 0.788

Intracranial hypertension [cases (%)] 136(63.6%) 40(59.7%) 0.323 0.570

Epilepsy [cases (%)] 64(29.9%) 20(29.8%) 0.001 0.993

Kps < 70 [example (%)] 143(66.8%) 58(86.5%) 9.768 0.002

Total tumor resection [cases (%)] 162(75.7%) 54(80.6%) 0.688 0.407

 NLR 2.60(2.01,3.40) 1.88(1.41,2.31) 5.853  < 0.001

 MLR 0.28(0.21,0.36) 0.21(0.19,0.30) 3.178 0.001

 PLR 138(108,175) 116(88.5,160) 3.415 0.001

 FPR 76(62,110) 75(59,89.5) 1.737 0.082

 PNI 51.0(48.1,55.0) 51.4(49.0,52.7) 0.401 0.689

 SII 652.5(474,802) 406(278,511) 7.723  < 0.001

Frontotemporal lobe [example (%)] 60(28.8%) 45(67.2%) 33.377  < 0.001

Maximum diameter ≥ 5 cm[ example (%)] 73(34.1%) 27(40.3%) 0.852 0.356

Single tumor [cases (%)] 106(49.5%) 34(50.7%) 0.030 0.862

 NAA/Cr 0.67(0.30,1.00) 0.73(0.44,1.02) 1.538 0.124

 Cho/Cr 2.15(1.71,3.41) 1.96(1.72,3.20) 0.855 0.392

 Cho/NAA 4.08(1.77,10.00) 3.48(1.77,5.26) 1.697 0.090

 IDH mutant (example,%) 23(10.7%) 36(53.7%) 92.364  < 0.001

 Low expression of Ki67 (e.g.,%) 151(70.5%) 44(67.2%) - 1.000

 Low expression of p53 (e.g.,%) 184(28.8%) 49(28.8%) 5.946 0.015

Table 2 Cox regression analysis of prognostic factors of glioblastoma multiforme by single factor forward introduction method

Variable B SE Wald df Sig HR 95.0% CI for HR

Gender -0.064 0.138 0.213 1.000 0.644 0.938 0.716 ~ 1.230

Age 1.113 0.162 47.273 1.000 0.000 3.043 2.216 ~ 4.179

Intracranial hypertension -0.003 0.143 0.000 1.000 0.985 0.997 0.751 ~ 1.319

Preoperative epilepsy 0.183 0.152 1.459 1.000 0.227 1.201 0.751 ~ 1.319

KPS score -0.025 0.006 17.167 1.000 0.000 0.975 0.963 ~ 0.987

Tumor resection degree 0.078 0.161 0.238 1.000 0.626 1.082 0.0789 ~ 1.482

NLR 0.376 0.063 35.011 1.000 0.000 1.456 1.286 ~ 1.649

MLR 0.241 0.065 13.615 1.000 0.000 1.272 1.120 ~ 1.649

PLR 0.265 0.064 17.125 1.000 0.000 1.303 1.150 ~ 1.477

PNI -0.102 0.064 2.547 1.000 0.111 0.903 0.797 ~ 1.024

FPR 0.168 0.061 7.529 1.000 0.006 1.183 1.049 ~ 1.333

SII 0.626 0.066 91.004 1.000 0.000 1.871 1.645 ~ 2.127

Tumor site -0.864 0.154 31.636 1.000 0.000 0.421 0.312 ~ 0.569

Maximum diameter of tumor 0.014 0.060 0.057 1.000 0.812 1.014 0.902 ~ 1.140

Solitary -0.024 0.137 0.032 1.000 0.859 0.976 0.746 ~ 1.276

NAA/Cr -0.050 0.059 0.720 1.000 0.396 0.951 0.846 ~ 1.068

Cho/Cr -0.001 0.060 0.000 1.000 0.987 0.999 0.888 ~ 1.123

Cho/NA 0.113 0.061 3.441 1.000 0.064 1.119 0.994 ~ 1.261

IDH -1.525 0.222 47.084 1.000 0.000 0.218 0.141 ~ 0.336

Ki67 0.147 0.096 2.345 1.000 0.126 1.158 0.960 ~ 1.397

p53 0.076 0.066 1.316 1.000 0.251 1.079 0.948 ~ 1.228
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Kaplan–Meier survival curve analysis showed that the 
cumulative survival rate of patients with KPS score ≥ 70 
was higher than that of patients with KPS score < 70 
(Fig.  2), the log-rank test showed that the difference is 
statistically significant with P < 0.05.

Kaplan–Meier analysis of survival curves revealed 
that the cumulative survival rate of patients with IDH 
mutation was greater than that of patients with IDH 

wild (Fig.  3), the log-rank test showed that the differ-
ence is statistically significant with P < 0.05.

Kaplan–Meier survival curve analysis showed that 
the cumulative survival rate of patients with NLR < 2.12 
was higher than that of Patients with NLR ≥ 2.12 
(Fig. 4), the log-rank test showed that the difference is 
statistically significant with P < 0.05.

Kaplan–Meier survival curve analysis showed that the 
cumulative survival rate of patients with PLR < 93.5 was 

Fig. 1 Cumulative survival rate of different age groups without endpoint events

Fig. 2 Cumulative survival rate of different KPS levels without end-point events
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higher than that of Patients with PLR ≥ 93.5 (Fig. 5), the 
log-rank test showed that the difference is statistically 
significant with P < 0.05.

Kaplan–Meier survival curve analysis showed that the 
cumulative survival rate of patients with SII < 537.5 was 
higher than that of Patients with SII ≥ 537.5 (Fig. 6), The 
log-rank test showed that the difference is statistically 
significant with P < 0.05.

Multivariate Cox survival analysis
Further multivariate Cox regression analysis and the 
establishment of multivariate Cox regression for-
est diagram showed that age > 65  years old (P < 0.001, 
HR = 1.823) and SII ≥ 537.5 (P < 0.001, HR = 1.641) were 
risk factors related to the survival of GBM patients 
(Table  3, Fig.  7). GBM patients with IDH mutation 

Fig. 3 Cumulative survival rate of different IDH states without endpoint events

Fig. 4 Cumulative survival rate of different levels of NLR without endpoint events
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Fig. 5 Cumulative survival rate of different levels of PLR without endpoint events

Fig. 6 Cumulative survival rate of different levels of SII without endpoint events

Table 3 Cox regression analysis of prognostic factors of glioblastoma multiforme by multi-factor forward introduction method

Vriable B SE Wald df Sig HR 95.0% CI for HR

Age 0.600 0.171 12.349 1.000 0.000 1.823 1.304 ~ 2.547

SII 0.495 0.070 49.573 1.000 0.000 1.641 1.430 ~ 1.884

IDH -0.118 0.232 23.199 1.000 0.000 0.327 0.207 ~ 0.515

KPS -0.255 0.065 15.474 1.000 0.000 0.775 0.682 ~ 0.880
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(P < 0.001, HR = 0.327) and KPS score ≥ 70 (P < 0.001, 
HR = 0.775) tend to have a better survival prognosis.

Construction and evaluation of random forest prediction 
model
Two hundred and eighty-one GBM patients were ran-
domly divided into a training set (n = 168) and a testing 
set (n = 113), with the training set being used to train 
the random forest model and the test set being used to 
evaluate the prediction system’s accuracy. The trained 
random forest model used in binary tree has three vari-
ables (mtry), and it contains five hundred decision trees 
(ntree). The model’s accuracy is 100% for in the training 
set and 92.92% in the testing set. The prediction model 
was further validated using the 115 patients treated for 
GBM at Henan People’s Hospital as the validation set, 
with an accuracy rate of 93.91% (Table 4).

The random forest model’s receiver operating charac-
teristic curve was plotted using the testing set predic-
tion results, and the model had a sensitivity of 0.870 
and a specificity of 0.944, with an AUC of 0.907 (Fig. 8). 
While using the validation set prediction results, it had 

a sensitivity of 0.833 and a specificity of 0.967, with 
an AUC of 0.900 (Fig. 9).

Variable weight of the random forest model
The random Forest R package is used to examine the 
random forest model’s variable weights. Mean Decrease 
Accuracy represents the percentage of random disrup-
tion of a feature. The higher the accuracy of the model, 

Fig. 7 Cox regression forest diagram of prognosis of glioblastoma multiforme

Table 4 Confusion matrix of random forest model

Training set Predicted value

die survive

True value die 124 0

survive 0 44

Test set Predicted value

die survive

True value die 85 5

survive 3 20

Validation set Predicted value

die survive

True value die 88 3

survive 4 20
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the more important the feature is. This is used to calcu-
late the relative importance of variables. The top five vari-
ables influencing the importance of prognosis in GBM 
patients are IDH, SII, age, KPS, and FPR. Likewise, Mean 
Decrease Gini employs the Gini index to calculate the 
relative importance of features. IDH, age, SII, p53, and 
KPS are the top five variables that influence the impor-
tance of prognosis in GBM patients (See Fig. 10).

Discussion
An accurate prognosis evaluation is critical for GBM 
treatment design and clinical management. However, 
current prognosis prediction models are unable to meet 
the medical needs of GBM patients. This study systemati-
cally examined the clinical features, molecular pathologi-
cal features, magnetic resonance spectroscopy imaging 
features, and prognostic value of the preoperative periph-
eral blood inflammation index, coagulation index, and 
nutritional status index of 281 patients with GBM. A 
random forest prognosis model with peripheral blood 
markers was developed. This model accurately predicts 

GBM patients’ 3-year survival after surgical resection and 
the + STUPP regimen.

Cancer-related inflammation has emerged as a new 
cancer indicator in recent decades. Nutritional sta-
tus, inflammatory status, and immune function are fre-
quently thought to be related to the prognosis in patients 
with malignant tumors [14, 15]. Inflammation, as part 
of the tumor microenvironment, can promote tumor 
occurrence, development, angiogenesis, and metasta-
sis, as well as affect tumor patients’ clinical outcomes. 
As a result, inflammatory cells in peripheral blood can 
interact with tumor cells directly or indirectly, promot-
ing tumors’ malignant biological behavior [16]. Inflam-
matory conditions, such as pro-inflammatory cytokines, 
growth factors, and chemokines, directly contribute to 
cancer progression [17]. The tumor microenvironment 
also generates inflammatory mediators that contrib-
ute to cell apoptosis and angiogenesis [6, 18]. We dis-
covered that preoperative NLR, MLR, PLR, FPR, and 
SII were associated with the prognosis of GBM patients 
who received surgical treatment plus the STUPP proto-
col. As a result, a high level of SII was an independent 

Fig. 8 The receiver operating characteristic curve of the random forest model using the testing set
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prognostic factor of GBM. Reasons for analysis: Neu-
trophils have the potential to alter the tumor microen-
vironment by secreting angiogenic growth factors (such 
as vascular endothelial growth factors and matrix met-
alloproteinases) and inhibiting the cytotoxic activity of 
other immune cells (such as activated T cells, natural 
killer cells, and so on) [19]. Lymphocytes, on the other 
hand, inhibit tumor progression and eliminate new 
tumor cells as part of anti-cancer immunity [20]. Mono-
cytes and their highly specialized macrophages inhibit 
tumor cell migration, invasion, metastasis, tumor-related 
angiogenesis, and the anti-tumor immune response [21]. 
Monocytes will be recruited into the brain parenchyma 
as a source of tumor-associated macrophages under any 
pathological condition, particularly glioma [22]. Plate-
let-tumor aggregates are responsible for the recruit-
ment of neutrophils and the release of factors related to 
tumor growth, metastasis, and angiogenesis during the 
first few hours of cancer cell colonization. Some stud-
ies, on the other hand, have found that platelet-trans-
mitted factors can have cytotoxic effects on proliferating 
tumor cells and even enhance apoptosis [23]. As a result, 

inflammatory cells in the peripheral blood can interact 
with tumor cells directly or indirectly, promoting tumors’ 
malignant biological behavior. The SII is a comprehensive 
index that combines neutrophil, lymphocyte, and platelet 
counts and can indicate the level of inflammation in can-
cer patients [24]. Thrombocytopenia, neutropenia, and/
or lymphopenia are frequently present in glioma patients, 
along with an increase in SII in peripheral blood, all of 
which can promote tumor cell differentiation, prolifera-
tion, and metastasis [25, 26].

A prognostic model is a model that predicts the out-
come of diseases. It is commonly used in the clinic to 
predict disease progression, patient survival time, and 
the likelihood of developing a specific disease stage. It 
employs a variety of predictive factors and methods. 
Many researchers have attempted similar studies on 
the prognosis evaluation model for glioma patients. 
Rathore et al. [27] determined the likelihood of predict-
ing the early recurrence of GBM after surgery using 
the radiochemical characteristics of edema around the 
tumor. This model can help guide super-total resec-
tion and/or postoperative intensive radiotherapy. Wang 

Fig. 9 The receiver operating characteristic curve of the random forest model using the validation set
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et  al. [28] performed univariate and multivariate Cox 
regression analysis on GBM and human autophagy-
related genes in the American Cancer Gene Atlas 
Database (TCGA). The genes neuroregulatory protein 
1, integrin subunit 3, and microtubule-binding pro-
tein 1 light chain 3 were chosen to create a prognos-
tic risk scoring model, and a prognostic nomogram 
was created that included autophagy characteristics, 
age, drug therapy, radiotherapy, and the IDH mutation. 
This model was proven useful. Gorlia et al. [29] devel-
oped a prognosis model of GBM patients treated with 
temozolomide based on age, surgical scope, the mini-
mental state evaluation score, and MGMT methylation 
status, which was used to assess the factors influenc-
ing GBM patient survival. Some researchers developed 
a glioma prognosis model based on non-coding RNA 
and divided patients into high-risk and low-risk groups 
[30]. Peng et  al. [31] conducted a thorough examina-
tion of PDI family members and discovered several new 
potential signal pathways involved in the progression of 
glioma. A glioma prognosis nomogram was developed 
based on the survival risk score of PDIs and other clini-
cal factors. These studies have fully validated the prog-
nostic evaluation model’s positive role in predicting 

patient prognosis. In recent years, an increasing num-
ber of molecular markers have been used to predict the 
prognosis of gliomas, but the research and develop-
ment cycle for these markers is lengthy and expensive, 
preventing widespread application.

Based on the foregoing, this study gathered eas-
ily accessible and low-cost clinical data, hematological 
data, magnetic resonance imaging data, pathological 
and immunohistochemical data, and built a random for-
est prognosis model of GBM after surgical resection and 
the STUPP regimen. In the testing set and validation set, 
our prediction model’s sensitivity (0.870, 0.833), specific-
ity (0.944, 0.967), and AUC (0.907, 0.900) respectively. 
Because of the small sample size, there is some over-fit-
ting in the training set, resulting in a 100% accuracy rate. 
The reason for selecting this model is that it has the fol-
lowing advantages over other machine learning methods 
and traditional mathematical models: 1. it can be used 
for a wide range of data types. 2. It can handle numerous 
input variables. 3. It can assess the importance of vari-
ables. 4. It can maintain accuracy even when data is lost, 
and 5. It is faster to learn.

Without a doubt, this study has some limitations: 
1. this is a retrospective study, the number of patients 

Fig. 10 Variable weight ranking of random forest model
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included is limited, and the follow-up time is inadequate. 
2. Patients may receive different treatments after sur-
gery, such as bevacizumab, and the duration of treat-
ment may vary. This may cause research findings to 
deviate. More prospective clinical trials are needed to 
assess the prognostic value of hematological indicators 
in GBM patients. 3. The GBM random forest prognosis 
model developed in this study requires additional exter-
nal validation.

Conclusion
High levels of NLR, MLR, PLR, FPR, and SII before sur-
gery are prognostic risk factors for GBM patients. A high 
preoperative SII level is an independent risk factor for 
GBM prognosis. The random forest model that includes 
preoperative hematological markers has the potential to 
predict the individual GBM patient’s 3-year survival sta-
tus after treatment, and assist the clinicians for making a 
good clinical decision.
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