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Abstract
Objective In this study, we aimed to investigate the predictive efficacy of magnetic resonance imaging (MRI) 
radiomics features at different time points of neoadjuvant therapy for rectal cancer in patients with pathological 
complete response (pCR). Furthermore, we aimed to develop and validate a radiomics space–time model (RSTM) 
using machine learning for artificial intelligence interventions in predicting pCR in patients.

Methods Clinical and imaging data of 83 rectal cancer patients were retrospectively analyzed, and the patients were 
classified as pCR and non-pCR patients according to their postoperative pathological results. All patients received 
one MRI examination before and after neoadjuvant therapy to extract radiomics features, including pre-treatment, 
post-treatment, and delta features. Delta features were defined by the ratio of the difference between the pre- and 
the post-treatment features to the pre-treatment feature. After feature dimensionality reduction based on the above 
three feature types, the RSTM was constructed using machine learning methods, and its performance was evaluated 
using the area under the curve (AUC).

Results The AUC values of the individual basic models constructed by pre-treatment, post-treatment, and delta 
features were 0.771, 0.681, and 0.871, respectively. Their sensitivity values were 0.727, 0.864, and 0.909, respectively, 
and their specificity values were 0.803, 0.492, and 0.656, respectively. The AUC, sensitivity, and specificity values of 
the combined basic model constructed by combining pre-treatment, post-treatment, and delta features were 0.901, 
0.909, and 0.803, respectively. The AUC, sensitivity, and specificity values of the RSTM constructed using the K-Nearest 
Neighbor (KNN) classifier on the basis of the combined basic model were 0.944, 0.871, and 0.983, respectively. The 
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Introduction
For patients with locally advanced rectal cancer, the stan-
dard recommended treatment regimen is preoperative 
neoadjuvant chemoradiotherapy (nCRT) combined with 
total mesorectal excision [1]; however, in some patients, 
pathological complete response (pCR) can be achieved 
after only nCRT. Besides the advantage of not having to 
undergo surgery, such patients can also be followed up 
directly, which is a “wait-and-see” treatment strategy [2]. 
However, as some patients do not respond adequately 
to nCRT, some opportunities for good treatment are 
missed. Therefore, there is an urgent need for a reliable 
method to accurately predict the efficacy of nCRT.

For evaluating and predicting the efficacy of nCRT, 
various studies have used morphological features repre-
sented by TNM stage and tumor regression grade (TRG)
[3], tumor marker features represented by carcinoem-
bryonic antigen (CEA) and carbohydrate antigen-199 
(CA199) levels [4, 5], and tumor microenvironment-
related molecular features, such as EGFR, VEGF, and 
Ki67 [6, 7]. However, considering the spatial and tempo-
ral heterogeneity of tumor tissue, the use of the same cat-
egory of indicators to predict the efficacy of the disease is 
associated with drawbacks of low sensitivity and specific-
ity, thus preventing it from meeting the requirements of 
“precision medicine.”

At present, radiomics is an image analysis technology 
which involves the cross-integration of radiology, medi-
cine, bioengineering, and other related disciplines. It has 
been widely used to evaluate the efficacy of neoadjuvant 
therapy for rectal cancer [8–10]. Previously, we have also 
reported on the use of T2-weighted imaging (T2WI)-
based texture features for the prediction of pCR in 
patients [11]; however, low-throughput-based image fea-
tures and small sample studies resulted in poor prediction 
sensitivity. Furthermore, this previous study neglected 
how the final prediction results would have been affected 
by the differences in time points of neoadjuvant therapy. 
Notably, the majority of similar studies in the literature 
are based on the features extracted from pre-neoadju-
vant therapy for the prediction of pCR in patients [12, 
13]. However, experience from studies wherein surgery 
was deferred suggests that pre-nCRT efficacy assessment 
underestimates the true incidence of pCR [14]. Therefore, 

it is necessary to comprehensively study the time points 
of feature extraction from a time- and cost-effectiveness 
perspective, which mainly includes pre-treatment, post-
treatment, and the differences between them. Thus far, 
few studies have correlated the time point of extraction 
of radiomics features with the predicted outcomes. In 
addition, machine learning is attracting a lot of attention 
as a promising method to guide clinical decision-making. 
Machine learning enables better efficiency, accuracy, and 
reproducibility due to the large number of latent features 
that can be extracted to build classification or predictive 
models [15].

In conclusion, the primary purpose of this study was 
to determine the predictive performance of radiomics 
features extracted at different time points of nCRT of 
patients with pCR. Furthermore, we developed and 
validated a high-throughput machine learning-based 
radiomics space-time model (RSTM) to accurately pre-
dict pCR in rectal cancer patients.

Materials and methods
Patients
This retrospective study was approved by the Institu-
tional Review Board of Zhejiang Provincial People’s 
Hospital (NO. 2021QT256), which waived the informed 
consent of all patients.

This study is a retrospective analysis to develop a 
predictive model, and the specific process is shown in 
Fig.  1. To develop the RSTM, we retrospectively ana-
lyzed clinical and radiology imaging data of 2332 patients 
diagnosed as having rectal cancer between June 2017 
and June 2022. The data were sourced from the picture 
archiving and communication system of Zhejiang Provin-
cial People’s Hospital. The inclusion criteria were as fol-
lows: patients with locally advanced rectal cancer (cT3-4, 
N0, and M0) or (cT1-4, N1, and M0); 2) patients having 
undergone standard nCRT followed by total mesorectal 
excision; 3) patients with complete postoperative pathol-
ogy results available; and 4) patients for whom complete 
MRI scans were performed before and after neoadjuvant 
therapy. The exclusion criteria were as follows: (1) failure 
to tolerate complete neoadjuvant therapy or treatment 
interruption; (2) history of other cancers or rectal cancer 
recurrence; (3) any contraindications to MRI scanning; 

Delong test showed that the performance of RSTM was significantly different from that of pre-treatment, post-
treatment, and delta models (P < 0.05) but not significantly different from the combined basic model of the three 
(P > 0.05).

Conclusions The RSTM constructed using the KNN classifier based on the combined features of before and after 
neoadjuvant therapy and delta features had the best predictive efficacy for pCR of neoadjuvant therapy. It may 
emerge as a new clinical tool to assist with individualized management of rectal cancer patients.

Keywords Radiomics, Rectal cancer, Pathological complete response, Machine learning, Neoadjuvant therapy
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and (4) lack of pathological results after rectal mesen-
teric resection. Finally, we recruited 83 patients which 
formed the dataset for the construction of the RSTM. 
Clinical variables were collected which included age, 
CEA, and CA199. The additional variables were obtained 
from the structured report of rectal cancer MRI, which 
includes the distance from the edge of the anus (DIS), cir-
cumferential resection margin (CRM) status, MRI-based 
extramural vascular invasion (mrEMVI) status, radio-
logical tumor (T) stage and lymph node (N) stage. This 
study was conducted in accordance with the Declaration 
of Helsinki and was approved by the Ethics Committee. 
Owing to the retrospective design of the study, the need 
for informed consent was waived. The course of nCRT 
and pathological evaluation is shown in supplementary 
materials.

Image preprocessing
All MRI images were acquired using a 3.0-T magnetic 
resonance imaging system (Skyra; Siemens Healthineers). 
The scans were acquired 2 weeks before and 4 weeks 
after nCRT, including T2-weighted imaging (T2WI), 
T1-weighted imaging (T1WI), diffusion-weighted imag-
ing (DWI), and enhanced T1WI (T1 + C) sequences. 
To minimize the potential impact of scanning scheme 
parameters, we used the non-commercial AK soft-
ware (GE Healthcare Analysis Kit) for preprocessing 

and aligning images for T2WI, T1WI, DWI, and T1 + C 
sequences before feature extraction. The image resolution 
was resampled to 1 × 1 × 1 mm3 by linear interpolation, 
and the image gray levels were discretized and normal-
ized to 32 orders to perform image preprocessing. Next, 
all sequences were rigidly registered on T2WI perpen-
dicular to the rectal axis, which was used as a template 
mask. This was done using the registration function of 
the AK software which ensured that the four sequences 
contained the same resolution, spacing, and origin. The 
normalized T2WI images were imported into the ITK-
SNAP software (http://www.itksnap.org/), and the entire 
rectal tumor was segmented layer by layer to obtain the 
volume of interest (VOI). Finally, the VOI was imported 
into the AK software for feature extraction. Based on the 
alignment of sequences, we found that T1WI, DWI, and 
T1 + C could share the same VOI as T2WI to extract fea-
tures. Detailed MRI scan parameters and schematics of 
registration are available in supplementary materials.

Acquisition and selection of radiomics features
All feature extraction was based on the py-Radiomics 
Library (version 2.1.1) in PHIGO (Precision Health 
Institution, GE Healthcare) software, and specific fea-
ture information is shown in supplementary materials. 
We extracted 930 radiomics features from each MRI 
sequence and scanned four sequences per patient, thus 

Fig. 1 Study design diagram, including the model construction and validation process
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amounting to 3720 radiomics features per patient for a 
single time point. Furthermore, in this study, two radiolo-
gists (Radiologist A and Radiologist B) independently and 
manually delineated tumor segmentation on pre- and 
post-treatment MRI images to ensure the stability and 
accuracy of radiomics features, and finally, feature sets 
A (from Radiologist A) and B (from Radiologist B) were 
obtained. The Spearman correlation test was used to cal-
culate the correlation coefficient (CC) of each feature in 
sets A and B. The features with CC > 0.8 were selected as 
robust features for the construction of the RSTM model. 
In this study, we also calculated the delta feature, which 
is defined as the ratio of the difference between the pre- 
and the post-treatment features to the pre-treatment fea-
ture. The specific formula is as follows:

Delta = (Pre-treatment radiomic feature - Post-treat-
ment radiomic feature)/Pre-treatment radiomic feature.

To obtain delta features, we only selected the radiomics 
features that existed both before and after treatment after 
feature stability screening to ensure that the three fea-
ture sets of pre-treatment, post-treatment, and delta fea-
tures have the same number of features. Then, from the 
extracted features, the most important features related 
to the treatment response of nCRT were obtained. For 
feature selection, to reflect the largest difference between 
the tumor tissues before and after treatment, we first 
selected the features with the greatest difference among 
the three groups and then obtained the optimal features 
by dimensionality reduction based on the feature set 
of each group. Specific information on dimensionality 
reduction is provided in supplementary materials.

Modeling strategy and model development
Based on the three optimal feature sets, we used logis-
tic regression to construct a basic model for individual 
time points. We built a combined basic model at multiple 
time points, used a reverse stepwise selection method 
based on the stopping rule of the Akaike information cri-
terion to select potential predictors, and evaluated the 
diagnostic performance at different time points based 
on the receiver operating characteristic curve (ROC) 
and Delong test. Next, we added some clinical features 
related to pCR to build a comprehensive RSTM based 
on the selected predictors. In this study, the RSTM was 
constructed with machine learning classifiers, including 
support vector machine (SVM), random forest (RF) clas-
sifier, and K-Nearest Neighbor (KNN) [16]. Furthermore, 
we used the bootstrap method for the RSTM construc-
tion and repeated it 1000 times to avoid reporting biased 
results and limit overfitting. In addition, for each time 
bootstrap validation, we also selected different hyper-
parameters for comparison, and finally, we selected the 
optimal classifier through the accuracy (ACC) and kappa 
value tests [17]. In this study, the output of RSTM was 

a binary prediction of pathological response to nCRT, 
defined as pCR or non-pCR, and the machine learning 
and bootstrap method part is elaborated in the supple-
mentary materials.

Model validation
We used the AUC values of the ROC curve to evaluate 
and compare the diagnostic performance of the RSTM 
with that of each basic model constructed at a single time 
point and jointly at three time points; we used the Delong 
test to evaluate the differences in performance. In addi-
tion, to assess the clinical applicability of the RSTM, we 
used the best cut-off value corresponding to the Youden 
index of the ROC curve as the threshold, and the pCR 
prediction score of each case calculated by the RSTM 
was used to divide all cases into high- and low-probabil-
ity groups of pCR. Then, we used the final postoperative 
pathological report as the gold standard to evaluate the 
classification performance of the RSTM model.

Statistical analysis
Statistical analysis was performed using SPSS software 
(version 24.0), MedCalc software (version 11.2), and 
Python (version 3.5). Continuous variables were com-
pared using the two-sample t-test or Mann–Whitney 
U test, and categorical variables were compared using 
the chi-square test. All statistics were two-sided, and 
statistical significance was set at P < 0.05. For selecting 
radiomics features, we first used one-way analysis of vari-
ance (ANOVA) to select features with differences among 
the three sets of features and then performed pairwise 
comparisons between groups for features with statistical 
differences. We applied Bonferroni correction accord-
ingly; P value of < 0.017 (0.05/3) was considered statisti-
cally significant for comparisons among all three groups. 
The kappa value in machine learning is defined as kappa 
= (observed accuracy – expected accuracy)/(1 - expected 
accuracy), and this value typically falls between 0 and 
1, with a value of 0–0.2 indicating slight consistency 
(slight), 0.21–0.4 indicating fair consistency, 0.41–0.6 
indicating moderate consistency, 0.61–0.8 indicating 
substantial consistency, and 0.81–1 indicating almost 
perfect consistency.

Results
Comparison of baseline clinical characteristics
A total of 83 cases were included in this study. There 
was no statistically significant difference between pCR 
and non-pCR patients in terms of their demographic 
characteristics and conventional radiology character-
istics (P > 0.05); however, the DIS differed significantly 
(P < 0.05). Detailed results in this regard are provided in 
Table 1.
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Feature selection
From among 3720 features, a total of 2960 robust features 
were screened, and then, 2396 features were selected 
using one-way ANOVA; next, after pairwise comparisons 
of these features, 333 features were selected on the basis 
of the corrected P value. Figure 2 shows the 333 features 
selected for subsequent dimension reduction processing, 
and after gradient boosting decision tree (GBDT) dimen-
sionality reduction, 6 features were obtained in the pre-
treatment group, 6 features in the post-treatment group, 
and 10 features in the delta group. These 22 features are 
shown in Fig.  3. Thereafter, 8 features (Table S2) were 
screened by multivariate logistic regression analysis to 
construct the combined basic model, including two pre-
treatment features and six delta features.

Basic model construction and comparison
The AUC values of the pre-treatment, post-treatment, 
delta, and their combined basic models constructed 
based on the three optimal feature sets were 0.771, 0.681, 

0.871, and 0.907, respectively. Their sensitivity values 
were 0.727, 0.864, 0.909, and 0.909, respectively, and their 
specificity values were 0.803, 0.492, 0.656, and 0.803, 
respectively; detailed results are provided in Table  2. 
The Delong test revealed a statistically significant differ-
ence in the diagnostic performance between the com-
bined basic model and the pre- and post-treatment basic 
models (P < 0.05). In addition, there was also a statistical 
difference in the diagnostic performance between the 
delta basic model and the post-treatment basic model 
(P < 0.05).

The RSTM construction and evaluation
Based on multivariate logistic regression analysis, the 
DIS and combined basic model scores were selected as 
independent predictors to construct the RSTM; detailed 
results are provided in Table  3. The machine learning 
results show that KNN has higher accuracy than SVM 
and RF. Figure 4 and Table S3 show the accuracy evalua-
tion of different machine learning and hyperparameters. 
When the hyperparameter is selected as 5, the KNN clas-
sifier has the highest ACC and kappa values of 0.892 and 
0.726, respectively. The AUC, sensitivity, and specificity 
values of the RSTM constructed based on KNN-5 were 
0.944, 0.864, and 0.885, respectively, which are shown 
in Fig.  5A. The Delong test revealed no statistically sig-
nificant difference between the RSTM and the combined 
basic model (P > 0.05). To further showcase the superior-
ity of KNN, we used Taylor plots to visualize the perfor-
mance of the model, which revealed that the RSTM had 
better performance than the combined basic model. The 
Taylor plot is shown in Fig. 5B. According to the Youden 
index of the RSTM model, all patients were identified 
as high-probability pCR patients when their prediction 
score was > 0.2. Based on the pathological gold standard, 
there was a significant difference in the actual number of 
pCR patients between the high-probability pCR group 
and the low-probability pCR group (P < 0.05), indicating 
that the RSTM has good clinical applicability. The clini-
cal classification performance of the RSTM is shown in 
Table 4.

Discussion
The results of this study confirm our hypothesis that 
consolidated information obtained from multiple points 
in time can more comprehensively evaluate patients 
with pCR than information obtained at a single point in 
time. The AUC value of the post-treatment model was 
lower than that of the pre-treatment model, which may 
be attributed to the tumor having necrosis and neovas-
cularization after the treatment, which may have resulted 
in an inaccurate reflection of tumor heterogeneity [18]. 
In addition, machine learning was found to significantly 
improve the efficiency of the combined basic model, 

Table 1 Baseline clinical characteristics of the study population
Characteristics Study dataset (n = 83)

ALL 
patients

pCR
(n = 22)

No-pCR
(n = 61)

P

Age (years, SD) 63.83 
(13.64)

61.76 
(9.21)

64.54 
(13.64)

0.21

Sex (N, %)

Male 60 (72.3) 15 (81.8) 45 (73.8) 0.208

Female 23 (27.7) 7 (18.2) 16 (26.2)

CEA (N, %)

Abnormal 48
(57.8)

15 (68.2) 33 (54.1) 0.251

Normal 35
(42.2)

7 (31.8) 28 (45.9)

CA199 (N, %)

Abnormal 22 (26.5) 9 (36.4) 13 (21.3) 0.235

Normal 59 (73.5) 13 (59.1) 46 (75.4)

DIS (cm, SD) 5.02 (2.28) 6.03 
(1.92)

4.62 (2.28) 0.012*

CRM status (N, %)

Positive 50 (60.2) 12 (54.5) 38 (62.3) 0.524

Negative 33 (39.8) 10 (45.5) 23 (37.7)

mrEMVI status (N, %)

Positive 36 (22.2) 8 (36.4) 28 (45.9) 0.474

Negative 47 (77.8) 14 (63.6) 33 (54.1)

Tumor stage (N, %)

T1 − 2 9 (10.8) 2 (90.9) 7 (11.5) 0.736

T3 − 4 74 (89.2) 20 (90.9) 54 (88.5)

Lymph node (N, %)

N0 11 (13.3) 3 (13.6) 8 (13.1) 0.289

N1 − 2 72 (86.7) 19 (86.4) 53 (86.9)
Note: CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 199; DIS, 
the distance from the end of the convex edge of the tumor to the edge of the 
anus; CRM, circumferential resection margin; mrEMVI, MRI-based extramural 
vascular invasion. Data are presented as counts or means (standard deviations 
in parentheses)
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suggesting that it can offer significant advantages in 
tumor treatment and prognosis in clinical practice.

Notably, pCR is associated with local disease control 
and long-term survival [19]. At present, the determi-
nation of pCR depends heavily on the specimen after 
surgical resection, and there is no reliable and accurate 
method to predict it before nCRT. Compared with tra-
ditional radiology technology, radiomics can extract 

high-dimensional features that are imperceptible to the 
human eye. At present, some prediction models based 
on the radiological features of MRI are aimed at predict-
ing the pCR status of rectal cancer patients after nCRT 
[20–22]; however, As mentioned in the introduction, the 
efficacy evaluation before nCRT underestimates the true 
incidence of pCR, while most of these studies only focus 
on the information of MRI before treatment. Therefore, 

Fig. 2 Feature screening process in Manhattan plots. Figure A represents the results of a one-way ANOVA among the three groups. Figure B shows the 
features that differed between the pre-treatment features and delta features. Figure C shows the features that differed between the post-treatment fea-
tures and delta features. Figure D shows features differed between pre- and post-treatment features

 



Page 7 of 11Peng et al. BMC Cancer          (2023) 23:365 

it is controversial whether focusing on a certain period 
rather than a certain moment will have a greater impact 
on the predictive effect of pCR. Considering the above 
reasons, the current study added post-treatment MRI 
information and delta information generated by the dif-
ference between the pre- and post-nCR, and also mod-
eled these three temporal information separately. The 
final results showed that the model constructed with 
delta information had better efficiency compared to 
the other two time point information, which suggests 
that one time period contains more biological informa-
tion than one time point and can better predict pCR. In 

addition, the RSTM also contains delta features, which 
further illustrate the importance of delta features.

In a previous study, T2-weighted MRI radiomics fea-
tures were considered as potential imaging biomarkers 
for the early prediction of rectal cancer non-response to 
nCRT [23]. Compared with standard MRI alone, standard 

Table 2 Results of the ROC curve analysis for each basic model
ROC curve analysis Classification of the basic model

Pre-treat-
ment model

Post-treat-
ment model

Delta 
model

Com-
bined 
basic 
model

AUC 0.771 (0.666, 
0.856)

0.681 (0.578, 
0.775)

0.871 
(0.78, 
0.935)

0.907 
(0.848, 
0.956)

Sensitivity 0.727 0.864 0.909 0.909

Specificity 0.803 0.492 0.656 0.803

F1_score 0.612 0.528 0.613 0.667

Recall 0.682 0.864 0.864 0.909

Accuracy 0.771 0.59 0.711 0.759
Note: ROC, receiver operating characteristic; AUC, area under the curve

Table 3 Results of univariate and multivariate logistic regression 
analyses
Variables Univariate logistic 

regression
Multivariate lo-
gistic regression

OR (95%CI) P value OR 
(95%CI)

P value

Age 0.984 (0.948, 1.023) 0.597 NA NA

Sex 1.113 (0.609, 2.034) 0.728 NA NA

CEA 1 (0.99, 1.009) 0.919 NA NA

CA199 1.002 (0.999, 1.004) 0.221 NA NA

DIS 1.335 (1.055, 1.689) 0.016* 1.397 
(1.032, 
1.891)

0.03*

CRM status 0.564 (0.211, 1.512) 0.255 NA NA

mrEMVI status 0.673 (0.247, 1.838) 0.440 NA NA

T stage 1.296 (0.248, 6.771) 0.758 NA NA

N stage 0.956 (0.230, 3.981) 0.951 NA NA

Combined basic 
model score

25.861 (6.561, 
101.932)

< 0.001 28.554 
(6.618, 
123.204)

< 0.001*

Note: CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 199; DIS, 
the distance from the end of the convex edge of the tumor to the edge of the 
anus; CRM, circumferential resection margin; mrEMVI, MRI-based extramural 
vascular invasion

Fig. 3 The dot chart shows the specific features remaining in the pre-treatment, post-treatment, and delta feature sets after dimensionality reduction by 
GBDT, where the abscissa represents the weight set for each feature set
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MRI + DWI shows better diagnostic performance in pre-
dicting pCR after neoadjuvant radiotherapy and che-
motherapy [24]. Compared with these models, RSTM 
has several distinct advantages. First, both standard 
MRI alone and standard MRI + DWI extract radiomics 
features from a single treatment time point and do not 
analyze differences in radiomics features before and 
after nCRT. Conversely, RSTM involves a longitudinal 
analysis of changes in MRI features during radiotherapy, 
which covers the entire course of treatment and therefore 

better reflects the development trends of heterogeneity 
with neoadjuvant therapy for rectal cancer. Second, some 
studies have reported suboptimal results using morpho-
logical features of T2WI sequences in assessing pCR 
[25]. Wan et al. reported that the radiomics features from 
combined T2-W, ADC, and cT1-W sequences showed 
better prediction performance than a single sequence 
[26]. Therefore, we used multisequence feature extrac-
tion to build a prediction model and used rigid registra-
tion to ensure the consistency of ROI between different 
sequences. This study also shows that the RSTM includes 

Fig. 4 ACC and Kappa result in different hyperparameter settings in different machine learning methods, among which KNN-5 has the highest accuracy 
and Kappa value
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two pre-treatment features and six delta features, among 
which the delta features contribute a lot to the construc-
tion of the RSTM model. We can see that the features at a 
single time point still cannot reflect tumor heterogeneity 
and changes in tumor characteristics, and the delta fea-
ture has great potential in this regard. Due to the small 
relative variability, it can be directly measured to reflect 
the longitudinal changes in images over multiple peri-
ods, and it has recently been effectively applied to vari-
ous cancer treatments [27–30]. Chang et al. investigated 
a delta radiomics-based machine learning model for pre-
dicting overall survival in patients with recurrent malig-
nant glioma [31]. In their work, compared with the model 
based on characteristics of a single time point, the delta 
radiomics-based model showed higher performance, 
which is also consistent with our research results. How-
ever, it should be noted that the RSTM does not include 
post-treatment features, which further suggests that the 
information on post-treatment features is not sufficient 
to effectively predict pCR, which is further corroborated 
by the lowest diagnostic performance of the post-treat-
ment model. Furthermore, it is known that incorporat-
ing more variables, such as clinical characteristics, can 
increase the stability of the model. Unfortunately, there 
was a statistically significant difference between pCR 
and non-pCR only in terms of DIS. This finding may be 
attributed to the higher correlation between radiomics 
and clinical baseline information, which is consistent 

with the smaller contribution of clinical information to 
the model in previous studies [32].

Currently, most similar studies are based on the logistic 
regression model. In this study, different machine learn-
ing methods are used to improve the model’s perfor-
mance. In a study by Mao et al., radiology analysis was 
carried out on CT images before routine clinical nursing 
treatment, and a radiology nomogram was developed to 
predict the response of locally advanced rectal cancer 
(LARC) patients to nCRT; they reported an AUC value 
of 0.87 [33]. Wang et al. studied the delta radiomics of 
MRI to evaluate pCR after nCRT in LARC patients and 
reported an AUC value of 0.91 [34], indicating inferior 
diagnostic performance to the RSTM (AUC = 0.944), 
which could be attributed to them ignoring the impact 
of modeling methods on prediction results. Notably, 
predictive models are an important part of radiomics. 
Building highly accurate and reliable models can aid deci-
sion-making in clinical practice, and machine learning 
may help in this regard. We compared multiple machine 
learning classifiers, among which the RSTM based on 
KNN was found to have higher accuracy than the model 
based on logistic regression. This further confirms that 
adding machine learning methods to build radiomics 
models can improve the prediction accuracy of pCR.

Notwithstanding, our study has some limitations. 
First, the study sample size is small, which may have led 
to overfitting of the model during training. However, we 
have performed the bootstrap method, which further 

Table 4 Clinical classification performance of RSTM model
Group Number of cases (n, %) Pathological results P

pCR (n, %) Non-pCR (n, %)
Predict results of RSTM Non-pCR 57 (68.68) 3 (5.26) 54 (94.74) < 0.001*

pCR 26 (31.32) 19 (73.08) 7 (26.92)

Number of cases (n, %) 83 (100) 22 (26.5) 61 (73.5)
Note: pCR, pathological complete response; RSTM, radiomics space–time model

Fig. 5 Figure A shows the ROC curve comparison of RSTM and the combined basic model and DIS. Figure B shows the Taylor plot of model comparison, 
showing that the performance of the RSTM is the closest to the observation point, reflecting the superiority of KNN modeling, where abscissa is the 
standard deviation, the radiation line is the correlation coefficient, and the dotted line is the root mean square error
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reduces the bias of the results. Second, the study lacks 
external validation, and our predictive model needs to 
incorporate more cases to improve its reproducibility 
and generalizability. Finally, due to the edema and fibrosis 
that accompanies nCRT, some tumors show blurred mar-
gins, which may affect imaging segmentation. However, 
MRI shows higher tissue contrast than other imaging 
modalities (e.g., computed tomography), thus allowing 
for more accurate detection of tumor margins.

The currently constructed RSTM achieves a more mul-
tidimensional and robust prediction of pCR from the 
perspective of full neoadjuvant radiotherapy, which will 
provide clinicians with reliable information to assess 
pCR and help advance individualized treatment of rectal 
cancer.
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