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Abstract
Background Colorectal cancer (CRC) is a heterogeneous disease, with subtypes that have different clinical 
behaviours and subsequent prognoses. There is a growing body of evidence suggesting that right-sided colorectal 
cancer (RCC) and left-sided colorectal cancer (LCC) also differ in treatment success and patient outcomes. Biomarkers 
that differentiate between RCC and LCC are not well-established. Here, we apply random forest (RF) machine learning 
methods to identify genomic or microbial biomarkers that differentiate RCC and LCC.

Methods RNA-seq expression data for 58,677 coding and non-coding human genes and count data for 28,557 
human unmapped reads were obtained from 308 patient CRC tumour samples. We created three RF models for 
datasets of human genes-only, microbes-only, and genes-and-microbes combined. We used a permutation test to 
identify features of significant importance. Finally, we used differential expression (DE) and paired Wilcoxon-rank sum 
tests to associate features with a particular side.

Results RF model accuracy scores were 90%, 70%, and 87% with area under curve (AUC) of 0.9, 0.76, and 0.89 for 
the human genomic, microbial, and combined feature sets, respectively. 15 features were identified as significant in 
the model of genes-only, 54 microbes in the model of microbes-only, and 28 genes and 18 microbes in the model 
with genes-and-microbes combined. PRAC1 expression was the most important feature for differentiating RCC and 
LCC in the genes-only model, with HOXB13, SPAG16, HOXC4, and RNLS also playing a role. Ruminococcus gnavus and 
Clostridium acetireducens were the most important in the microbial-only model. MYOM3, HOXC4, Coprococcus eutactus, 
PRAC1, lncRNA AC012531.25, Ruminococcus gnavus, RNLS, HOXC6, SPAG16 and Fusobacterium nucleatum were most 
important in the combined model.

Conclusions Many of the identified genes and microbes among all models have previously established associations 
with CRC. However, the ability of RF models to account for inter-feature relationships within the underlying decision 
trees may yield a more sensitive and biologically interconnected set of genomic and microbial biomarkers.
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      Background
Despite being part of the same organ, colorectal can-
cer tumours can have different pathogenicity, histology 
and patient outcomes depending on subtype [1] and 
which side of the splenic flexure they occur [2]. Left-
sided colorectal cancer (LCC, or distal colorectal can-
cer) affects the rectum, sigmoid colon, descending colon, 
and distal one-third of the transverse colon. It is gener-
ally more common in men, diagnosed at an earlier stage, 
more responsive to treatment, and patients exhibit a 
higher rate of survival [3]. Right-sided colorectal cancer 
(RCC, or proximal colorectal cancer) affects the proxi-
mal two-thirds of the transverse colon, ascending colon, 
and caecum [3]. It is generally more common in women, 
less responsive to existing treatments, and has poorer 
outcomes [2]. Numerous studies have reported vast dif-
ferences between LCC and RCC in terms of diagnostics, 
prognostics, histology, epidemiology, pathology, treat-
ment response, and survival [4–6]. Among other things, 
these differences suggest that LCC and RCC should be 
distinguished when developing new treatment regimens 
and therapeutic drugs [7, 8].

Gut microbiota has been shown to play an influential 
role in CRC carcinogenesis and progression. However, 
the mechanisms by which this occurs largely remains 
unknown [9]. In addition to cancer progression, it has 
also been postulated that the gut microbiome may affect 
gene expression and downstream patient treatment 
responses [10]. To test these hypotheses, there is a need 
for studies that explore the influence of the gut microbi-
ome on the genomic expression inside colorectal cancer 
tumor cells.

Machine learning (ML) methods are frequently applied 
for classification in tasks that rely on high-dimensional 
genomic data. Here, to query the relationships between 
the expression of genomic features in CRC and microbial 
content, we use Random Forest (RF) classification [11]. 
We selected RF as it can account for interactions and cor-
relations among large numbers of features [12]. Further-
more, RF models do not require normalization or scaling, 
which makes it possible to combine completely differ-
ent types of data, for example, microbial count data and 
RNA-seq datasets.

Here, we explore the ability of RF models to predict 
CRC sidedness using three different datasets: human 
genomic feature expression level (RNA-seq), microbial 
count data (from unmapped human reads), and a com-
bined genomic feature and microbial count dataset. We 
subsequently use differential expression (DE) analysis 
on the most important features of the RF model (i.e., 
biomarkers) to find differential genomic and microbial 

features and relationships between RCC and LCC. 
Finally, we discuss the possible biological mechanisms 
driving differences in these biomarkers.

Methods & materials
Patients, samples and processing
308 colorectal cancer tumour samples were obtained 
from patients via surgical resection (partial colec-
tomy). Patients with inherited CRC and those who had 
received preoperative chemotherapy or radiotherapy 
were excluded. Patients were over the age of 18 and 
gave written informed consent. Tumour tissue was 
obtained between January 2002 and January 2016, with 
a median tumour tissue date of August 2006. The study 
was approved by the University of Otago, New Zealand, 
Human Research Ethics Committee (approval number: 
H16/037). Patient and clinical data, including anatomi-
cal site of tumour, in addition to genomic and micro-
bial data profiles were available for all patients. Samples 
were snap frozen in liquid nitrogen at time of surgery 
and stored at -80 °C and transitioned for RNA Extraction 
using RNAlater®-ICE. RNA was then extracted using the 
QIAGEN RNAEasy mini kit and sequenced using Illu-
mina HiSeq machines (2 × 125 bp PE v4 sequencing). The 
samples were machine-randomized to limit any machine-
specific noise or calibration bias. Raw Sequence Reads 
are available at SRA Accession: PRJNA788974.

Sequence reads were first mapped to the human 
genome (GRCh38) using STAR (v2.73a). The remain-
ing unmapped reads were classified using Kaiju (v1.6.2) 
to obtain microbial abundances [13, 14]. Raw genomic 
reads were TPM (transcripts per kilobase million) nor-
malised prior to data analysis to remove gene length and 
sequencing depth biases. Microbial abundances were 
CPM (Counts per million) normalized.

Random forest model generation
The RF models were built on the following training data-
sets: the first contained 58,677 TPM normalized genomic 
features, the second contained CPM normalized micro-
bial counts for 28,557 taxa, and the third contained a 
combination of both. A separate validation cohort of 30 
samples (15 RCC, 15 LCC) was held out from model gen-
eration, leaving 278 patient samples for model develop-
ment. Genomic and microbial data was available for all 
308 patients.

The RF models were parametrized in parallel on high-
powered cluster computing nodes with 8,136 cores in 226 
× Broadwell nodes, and a total system memory of 31 TB.

RF models were generated using the Python-based 
scikit-learn random forest module [15, 16]. Model 
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hyperparameters were optimized independently for all 
three training datasets using a grid search with 5-fold 
cross validation (scikit-learn package GridSearchCV) 
[15]. To narrow down suitable hyperparameter sets, 
the influence of 8 hyperparameters on F1 scores (the 
weighted average of precision and recall) were each inde-
pendently observed across a typical range of values for 
each, while holding the other hyperparameters to their 
default values (Supplementary Figs. 1–3). GridSearchCV 
with 5-fold cross validation was then used on the smaller 
set of hyperparameter combinations on the training data-
sets. A final set of model parameters was selected for 
each dataset based on highest performing receiver-oper-
ator characteristic area-under the curve score (AUROC 
score), accuracy (total correctly classified cases), and F1 
score. For cases in which the performance scores were 
identical, the model with the fewest features was selected.

Each model was trained using the finalized set of 
parameters using a 75% train, 25% test split on the data-
set of tumor samples from the 278 different patients. 
The model metrics of accuracy, out-of-bag score, f1 
score, ROC AUC score, recall, and precision for each 
of the three models are reported in Table 2. Overfitting 
was assessed by comparing model accuracy with out-
of-bag score (number of correct predictions in the out-
of-bag sample) and accuracy of the validation cohort. If 
the model accuracy differed from the out-of-bag score 
by 0.1 or more, we inferred that there was a strong like-
lihood overfitting had occurred. A threshold analysis 

was also performed for each model, but we found that 
all optimised thresholds were within 10% of the default 
value, so we used the default threshold value (0.5). The 
model was then validated on our validation cohort of 30 
samples, this is sometimes referred to as the testing set, 
and is independent from the testing data used in model 
training. ROC curves were generated for all three models 
using the Python package seaborn [17].

Feature importance and retention
The feature importance scores (Gini impurity values) 
were extracted from each of our three RF models. Given 
that the models have large numbers of features (greater 
than 50), it is prudent to perform feature reduction such 
that only features with high importance (weight) and a 
high degree of statistical evidence are retained. Using the 
R package Rf2pval [18], we implemented a rank-based 
permutation approach to obtain distributions of feature-
importance scores at each rank under a null hypothesis 
where none of the features are associated with the target 
variable, and assign p-values to the features. We gener-
ated 100 randomized datasets in which the target vari-
able (‘side’) was permuted, retrained the RF models on 
each, and obtained feature importance scores and scor-
ing metrics for each permuted model. We retained only 
features with p-values less than 0.05 (Fig. 2a-c). A thresh-
old for feature reduction was identified using the overlap 
of feature importance scores from the true model with 
the mean of the permuted feature importance scores 
(Tables 1, 2 and 3). Family-wise error rate via resampling 
was used for measuring the probability of making one or 
more false discoveries during multiple-testing and was 
calculated using the Rf2pval package for all three models 
to be FWER < 0.05, or less than 5% chance of our features 
listed above our threshold being incorrectly identified.

Table 1 Patient Demographics & Cancer Characteristics
Characteristic Value
Patients enrolled - no (%) 308 (100)

Median Age - year (range) 73 (28–91)

Sex
 Female - no (%) 163 (53)

 Male - no (%) 145 (47)

Cancer Anatomical Side
 Left - no (%) 172 (56)

 Right - no (%) 136 (44)

Metastasis
 Positive - no (%) 70 (23)

 Negative - no (%) 238 (77)

Ethnicity (Self-Reported)
 European - no (%) 296 (96)

 Māori - no (%) 9 (3)

 Asian - no (%) 3 (1)

Cancer Stage
 T1 - no (%) 53 (17)

 T2 - no (%) 128 (42)

 T3 - no (%) 105 (34)

 T4 - no (%) 22 (7)

Nodal Status
 Positive - no (%) 185 (60)

 Negative - no (%) 123 (40)

Table 2 Random Forest Model Results
Scoring Metric Model
Testing set 
(5-Fold CV)

Genes-Only Microbes-Only Genes-
and-Mi-
crobes

Accuracy 0.94 0.76 0.8

Out-of-Bag 
Score

0.73 0.74 0.74

F1 Score 0.95 0.79 0.84

ROC AUC Score 0.94 0.75 0.78

Recall Score 0.95 0.8 0.93

Precision Score 0.95 0.78 0.77

Validation Set (30 held-out samples)
Accuracy 0.9 0.7 0.87

F1 Score 0.9 0.76 0.88

ROC AUC Score 0.9 0.76 0.89

Recall Score 0.93 0.64 0.79

Precision Score 0.87 0.93 1
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Differential expression, feature side-assignment and 
heatmap generation
DE analysis was performed on each of the feature lists 
from the three models using edgeR [18]. Wilcoxon-rank 
sum tests were used to calculate p-values to test for DE 
of each model’s features. Heatmaps were generated for 
assessing feature clustering compared with the clinical 
labels of cancer stage, metastasis, subtype, gender site 
and side using the function heatmap.2 in the R pack-
age gplots [19]. The heatmap implements row-scaled 
z-scores of the transcripts per kilobase million (TPM) 
read counts, with hierarchical clustering using Pearson 
distance correlation, and average-linkage distance.

Results
Random forest model performance
We found that the random forest models from all three 
datasets clearly differentiated between LCC and RCC. 
Model accuracy on the validation sets ranged from 0.7 
to 0.9, with genomic features having an accuracy of 0.94 
and 0.9 on the training and validations sets, respectively 
microbial counts having an accuracy of 0.76 and 0.7, and 
genomic features with microbial counts having an accu-
racy of 0.8 and 0.87 (Fig. 1). Out-of-bag scores were 0.73, 
0.74 and 0.74 for the three datasets. The strongest predic-
tors between the LCC and RCC were genomic features, 
although classifications based on microbial count dif-
ferences were also consistent. We found 15 statistically 
significant features in the genes-only model, 54 in the 
microbes-only model, and 46 in the genes-and-microbes 
model (Fig. 2A-C; Tables 3, 4 and 5).

Significant model features
Of the 15 significant features in our gene-only dataset, 
(Fig.  2A; Table  3) the highest importance score was for 
the Prostate Cancer Susceptibility Candidate 1 (PRAC1) 
gene, which has higher expression in LCC. Other sig-
nificantly important features included those in the HOX 
family of genes, HOXB13, HOXC4, HOXC6 and HOXC8.

Table  3. Top ranking features from the RF model 
trained on the genes-only dataset (Left). Top ranking fea-
tures with p-values less than 0.05 and their importance 
scores discovered by our genes model (Left). Side-paired 
differential expression (fold change) analysis results of 
TPM values for the same features (Right) Wilcoxon-rank 
sum test was used to calculate p-values and FDR (Ben-
jamini & Hochberg).

In the microbes-only dataset, 54 features were iden-
tified by Rf2pval as significantly important (Fig.  2B; 
Table  4). The taxon with the highest importance score 
was Ruminococcus gnavus, which shows higher counts in 
RCC (Table 4). Clostridium acetireducens ranked second 
and was more abundant in RCC.

Table  4. As per Table  3, with microbes-only model 
data. Top ranking features with p-values less than 0.05 
and their importance scores discovered by our microbes-
only model (Left). Side-paired differential expression 
(fold change) analysis results of CPM values for the same 
features (Right) Wilcoxon-rank sum test was used to cal-
culate p-values and FDR (Benjamini & Hochberg).

46 features were deemed significant in the genes-
and-microbes model (Fig.  2C; Table  5): 28 genomic 
features and 18 microbes. Notable features include 

Table 3 Top ranking features from the RF model trained on the genes-only dataset (Left). Top ranking features with p-values less than 
0.05 and their importance scores discovered by our genes model (Left). Side-paired differential expression (fold change) analysis results 
of TPM values for the same features (Right) Wilcoxon-rank sum test was used to calculate p-values and FDR (Benjamini & Hochberg)
Model Feature Importance Metrics Differential Expression
Rank Ensemble ID_Gene ID Impor-

tance 
Score

Log Im-
portance 
Score

p-value Log2 FC p-value FDR Great-
er 
Expr. 
Side

1 ENSG00000159182_PRAC1 0.12 -2.16 0 -2.86 5.08E-21 3.10E-19 Left

2 ENSG00000159184_HOXB13 0.07 -2.7 0 -1.78 1.78E-11 2.18E-10 Left

3 ENSG00000144451_SPAG16 0.05 -3.04 0 -0.64 9.00E-09 4.99E-08 Left

4 ENSG00000198353_HOXC4 0.05 -3.08 0 1.88 2.11E-15 6.43E-14 Right

5 ENSG00000184719_RNLS 0.03 -3.36 0 -0.89 2.85E-10 2.48E-09 Left

6 ENSG00000145649_GZMA 0.03 -3.42 0 1.54 4.75E-07 1.93E-06 Right

7 ENSG00000197757_HOXC6 0.02 -3.84 0 1.28 5.02E-12 1.02E-10 Right

8 ENSG00000162409_PRKAA2 0.02 -3.87 0 -1.2 3.90E-10 2.97E-09 Left

9 ENSG00000037965_HOXC8 0.02 -3.87 0 1.32 7.90E-12 1.20E-10 Right

10 ENSG00000147457_CHMP7 0.02 -3.92 0 0.35 8.44E-06 2.71E-05 Right

11 ENSG00000165548_TMEM63C 0.02 -3.99 0 -0.83 5.31E-05 0.000147 Left

12 ENSG00000203880_PCMTD2 0.02 -4.01 0 -0.43 5.16E-08 2.62E-07 Left

13 ENSG00000119397_CNTRL 0.02 -4.08 0.01 0.27 1.84E-06 7.00E-06 Right

14 ENSG00000103485_QPRT 0.02 -4.09 0.01 -1.01 2.20E-10 2.24E-09 Left

15 ENSG00000170677_SOCS6 0.02 -4.13 0.03 0.39 4.14E-06 1.40E-05 Right
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MYOM3, HOXC4, Coprococcus eutatus, PRAC1, lncRNA 
AC012531.3, Ruminococcus gnavus, RNLS, HOXC6, 
SPAG16, and Fusobacterium nucleatum.

Table  5. As per Tables  3 and 4, with genes-and-
microbes model data. Top ranking features with p-values 
less than 0.05 and their importance scores discovered 
by our genes-and-microbes model (Left). Side-paired 

differential expression (fold change) analysis results of 
TPM and CPM values for the same features (Right) Wil-
coxon-rank sum test was used to calculate p-values and 
FDR (Benjamini & Hochberg).

We used hierarchical clustering to ascertain connec-
tions between gene expression profiles and clinical char-
acteristics and consensus subtyping scores (Fig.  3). As 

Fig. 1 Receiver Operating Characteristic Curves (ROC) as calculated on the held-out validation set. a ROC curve of the genes-only model. b ROC curve 
of the microbial-only model. c ROC curve of the genes-and-microbes model

 

Table 4 As per Table 3, with microbes-only model data. Top ranking features with p-values less than 0.05 and their importance scores 
discovered by our microbes-only model (Left). Side-paired differential expression (fold change) analysis results of CPM values for the 
same features (Right) Wilcoxon-rank sum test was used to calculate p-values and FDR (Benjamini & Hochberg)
Model Feature Importance Metrics Differential Expression
Rank Tax ID_Name Impor-

tance 
Score

Log Im-
portance 
Score

p-value Log2 FC p-value FDR Great-
er 
Expr. 
Side

1 33038_[Ruminococcus] gnavus 0.025 -3.69 0 2.07E + 00 1.31E-15 3.54E-14 Right

2 76489_Clostridium acetireducens 0.020 -3.91 0 1.88E + 00 1.69E-13 1.52E-12 Right

3 1701326_uncultured bacterium 5G4 0.018 -4.04 0 1.73E + 00 6.55E-11 2.52E-10 Right

4 397291_Lachnospiraceae bacterium 
A4

0.014 -4.27 0 2.30E + 00 5.29E-16 2.85E-14 Right

5 2293240_Ruminococcus sp. TF10-6 0.013 -4.34 0 2.41E + 00 2.86E-15 5.14E-14 Right

6 239935_Akkermansia muciniphila 0.011 -4.51 0 -5.30E-01 2.27E-05 3.96E-05 Left

7 1531_[Clostridium] clostridioforme 0.011 -4.55 0 1.47E + 00 1.73E-12 1.03E-11 Right

8 936381_Selenomonas sp. CM52 0.010 -4.61 0 4.03E + 00 8.68E-11 3.13E-10 Right

9 46228_Ruminococcus lactaris 0.009 -4.76 0 1.86E + 00 2.96E-12 1.45E-11 Right

10 43064_Trichococcus pasteurii 0.007 -4.97 0 2.18E + 00 1.67E-08 4.10E-08 Right

11 1262831_Clostridium sp. CAG:678 0.007 -5.01 0 1.3 0.0322 0.0464 Right

12 1824_Nocardia asteroides 0.007 -5.02 0 -0.19 0.00112 0.00172 Left

13 208479_[Clostridium] bolteae 0.007 -5.03 0 1.76E + 00 2.18E-13 1.68E-12 Right

14 2026799_Verrucomicrobia bacterium 0.006 -5.14 0.01 -0.17 2.02E-06 3.76E-06 Left

15 1262706_Azospirillum sp. CAG:260 0.006 -5.14 0 1.15 1.86E-09 5.57E-09 Right
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expected, of the six clinical characteristics that we con-
sidered (cancer stage, post-operative metastasis, con-
sensus molecular subtype (CMS), gender, and site), side 
is most closely linked to the gene expression levels of 
our top genomic features. There is a clear cluster of left-
sided CRC samples that show higher expression levels of 
PRAC1 and HOXB13 (left side of heatmap). There is also 
a subset of RCC that show higher expression of HOXC4, 
HOXC6, and HOXC8 (middle of heatmap), although not 
all RCC exhibit this pattern. Heatmap for microbes-only 
model is shown in Supplementary Fig.  4, and the heat-
map for genes-and-microbes model is shown in Supple-
mentary Fig. 5.

In total, our models discovered 107 unique genomic 
and microbial features which played a significant role in 
the differentiating between CRC anatomical sides. Only 
six genomic features were common to both the genomic 
and genomic-plus-microbial models: PRAC1, SPAG16, 
HOXC4, RNLS, HOXC6 and PRKAA2; and six microbes 
which were common to both our microbes-only, and 
genes-and-microbes models: Ruminococcus gnavus, 
Ruminococcus sp. TF10-6, Selenomonas sp. CM52, Ver-
rucomicrobia bacterium, Anaerostipes caccae and Turici-
bacter sanguinis.

Fig. 2 Feature importance plots showing rank-based feature importance scores of the permuted data and the scores of the real (unpermuted) data. The 
cutoff for features reported as significant was determined based on an alpha threshold of 0.05, and are to the left of the vertical red line. a genes-only 
model. b microbes-only model. c shows the genes-and-microbes model
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Discussion
Many of the previous studies on RCC vs. LCC and gene 
expression have used the publicly available TCGA data. 
Here, we used a novel dataset of 308 patients, with 
microbial data from human unmapped reads, which 
adds to the growing body of evidence of the genomic and 
microbial differences between the sites [20, 21].

One difficulty in characterizing the roles of the micro-
biome and the genome in RCC vs. LCC is that there is 
genomic and microbial heterogeneity both between and 
within the two anatomical locations [22]. A primary rea-
son for this heterogeneity is that the proximal and distal 
areas of the colon have different embryonic origins and 
physiological functions: the right-side of the colon is 
derived from the embryonic midgut and is involved in 
digestion, and the left side of the colon is derived from 
the embryonic hindgut and is involved primarily in the 
storage of fecal matter and water absorption. Despite 
these different functions, the microbial content is similar 
in these two parts of the colon because they are attached, 
and peristaltic movement allows stool matter to pass 
both forwards and backwards [23]. Numerous studies 
have shown a strong correlation between gut dysbio-
sis and CRC, but less is known about the microbial taxa 
that differentiate RCC and LCC and, perhaps, play a role 
in carcinogenesis [24]. Fusobacterium, Prevotella, Clos-
tridium, Akkermansia, and Ruminococcus are among the 
most frequently reported bacteria in studies on CRC-
related microbial dysbiosis [24, 25]. All were deemed 

significantly important microbial taxa in the RF models 
presented here.

All three RF models showed strong predictive accuracy. 
The microbes-only model showed the poorest predictive 
capability while the genes-only model was the highest 
performing. It is perhaps surprising that the combined 
model was not the most predictive. We postulate that 
this may be due to the fact that while microbes and genes 
may both affect CRC, microbial taxa are in fact indirect 
players, with effects that are reflected as altered genomic 
expression within the tumour, leading to cancer growth.

Finally, there were a number of highly important genes 
that differed between the genomic features only and com-
bined RF models. One other point of interest is that there 
are some different top genes in the genes-only model 
when compared with the genes-and-microbes model. 
This may suggest that these genes and microbes act in 
consort and our genes-and-microbes RF model may have 
identified some underlying biological interactions.

Patterns in RCC
The RF models showed that increased expression of the 
HOX family of genes was characteristic of RCC. Specifi-
cally, we observed an upregulation of HOXC4, HOXC6, 
HOXC8, and HOX-related lncRNA AC012531.3, and a 
downregulation of HOXB13 (Tables  3 and 5). The HOX 
(homeobox) gene family is most well-known for guid-
ing embryonic development [26]. HOX mutations that 
cause either increased or decreased expression have been 
associated with several types of cancer [27] as tumor 

Table 5 As per Tables 3 and 4, with genes-and-microbes model data. Top ranking features with p-values less than 0.05 and their 
importance scores discovered by our genes-and-microbes model (Left). Side-paired differential expression (fold change) analysis 
results of TPM and CPM values for the same features (Right) Wilcoxon-rank sum test was used to calculate p-values and FDR (Benjamini 
& Hochberg)
Model Feature Importance Metrics Differential Expression
Rank ENSG ID_Gene/Tax ID_Name Impor-

tance 
Score

Log Impor-
tance 
Score

p-value Log2 FC p-value FDR As-
soci-
ated 
Side

1 ENSG00000142661_MYOM3 0.037 -3.29 0 -0.62 1.36E-08 2.71E-08 Left

2 ENSG00000198353_HOXC4 0.033 -3.40 0 1.88 2.11E-15 3.23E-14 Right

3 33043_Coprococcus eutactus 0.027 -3.62 0 2.08 2.00E-14 1.54E-13 Right

4 ENSG00000159182_PRAC1 0.024 -3.72 0 -2.86 5.08E-21 2.34E-19 Left

5 ENSG00000260597_AC012531.25 0.020 -3.90 0 1.19 4.26E-12 2.17E-11 Right

6 33038_[Ruminococcus] gnavus 0.016 -4.13 0 2.07 1.31E-15 3.02E-14 Right

7 ENSG00000184719_RNLS 0.011 -4.50 0.01 -0.89 2.85E-10 9.37E-10 Left

8 ENSG00000197757_HOXC6 0.011 -4.54 0 1.28 5.02E-12 2.31E-11 Right

9 ENSG00000144451_SPAG16 0.010 -4.61 0 -0.64 9.00E-09 1.97E-08 Left

10 851_Fusobacterium nucleatum 0.010 -4.62 0 1.67 2.73E-06 3.49E-06 Right

11 ENSG00000273374_RP11-383I23.2 0.010 -4.62 0 -1.02 2.86E-08 5.47E-08 Left

12 446043_uncultured Lachnospira sp. 0.010 -4.63 0 1.46 5.97E-09 1.37E-08 Right

13 165179_Prevotella copri 0.009 -4.66 0 1.6 1.50E-09 3.85E-09 Right

14 154288_Turicibacter sanguinis 0.009 -4.67 0 1.9 5.00E-08 8.51E-08 Right

15 59620_uncultured Clostridium sp. 0.009 -4.67 0 1.09 6.86E-12 2.87E-11 Right
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suppressors and proto-oncogenes. However, their role in 
CRC is not well understood [27].

The top microbes identified by the microbes-only 
model include Ruminococcus gnavus, Clostridium aceter-
educens, Lachnospiraceae, and, Ruminococcus sp. TF10-6 
(Table 4). R. gnavus causes inflammation in Crohn’s dis-
ease models, and influences immunotherapy responses in 
CRC [28, 29]. C. acetireducens is an anaerobic bacterium 
that has no previously known associations to CRC. How-
ever, it is known to oxidize alanine to produce butyrate, 

and butyrate has been associated with CRC tumorigen-
esis [30]. Lachnospiraceae spp are also known to pro-
duce short-chain fatty acids which are known to have 
increased abundance in CRC patients [31]; Ruminococ-
cus sp. TF10-6, also more abundant in RCC; and Akker-
mansia muciniphila, more abundant in LCC. There is 
some evidence that the largely uncharacterized lncRNA 
AC012531.3 which is located in one of the HOX gene 
loci, plays a role in colorectal cancer carcinogenesis [32].

Fig. 3 A heatmap of scaled gene expression values of the top-scoring genomic features discovered by the genes-only RF model and clinical charac-
teristics. Hierarchical clustering of both genes and patients is via Pearson correlation, based on average linkage distance. The colors indicate row-scaled 
z-scores of TPM RNA-seq gene expression ratios
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For the genes-and-microbes model the top features 
include Coprococcus eutactus, Ruminococcus gnavus, 
Fusobacterium nucleatum, Lachnospira sp., and Pre-
votella copri. Coprococcus eutactus has a very high fea-
ture importance score and is the microbe with the highest 
association to RCC in our genes-and-microbes model 
(Table  5). C. eutactus has previously been associated 
with longer cancer progression-free survival, and was 
not found in the microbes-only model, which could hint 
at a genomic-microbial interaction between C. eutactus 
and CRC side [33]. Ruminococcus gnavus, Ruminococcus 
sp. and Lachnospira were previously identified as being 
important to CRC and associated with structural segre-
gation of the mucosa [34]. Fusobacterium nucleatum was 
found to be important in the genes-and-microbes model, 
but was not discovered by the microbes-only model. F. 
nucleatum is one of the most commonly associated spe-
cies with CRC, and it is believed to act as a pathobiont 
[35, 36]. It is also known to cause periodontal disease 
and is currently being explored as a biomarker for high-
risk CRC. Given that F. nucleatum was only significant in 
the genes-and-microbes model, and that it is known to 
be only situationally pathogenic, this suggests this taxon 
may become pathogenic under specific gene co-activa-
tion [35, 36]. Prevotella copri, also identified uniquely 
by our genes-and-microbes model, has been shown to 
be significantly enriched in the gut microbiome of CRC 
patients compared with normal patients [37].

Patterns in LCC
One recurring pattern in LCC is the expression of genes 
known to be associated with the prostate or prostate can-
cer. This is of interest given the heightened prevalence 
of LCC in men, and the left-sided colon’s close proxim-
ity to the prostate [38]. Prostate cancers and LCCs can 
be challenging to distinguish from biopsy samples, due 
to similarities in morphology and immunohistochem-
istry [39]. Genes that are of high importance in our RF 
models that are associated with both LCC and prostate 
cancer include PRAC1, HOXB13, SPAG16 (Tables 3 and 
5) [26]. PRAC1 has been previously associated with LCC 
as well as prostate cancer [21, 40]. HOXB13 has a protec-
tive effect against tumor proliferation in RCC [41], and a 
reduction in the expression of HOXB13 via hypermeth-
ylation of the DNMT3B-HOXB13-C-myc signaling axis 
has been associated with tumor proliferation and metas-
tasis in RCC [41]. Our results indicated that HOXB13 is 
under-expressed in RCC relative to LCC, which adds evi-
dence to the hypothesis that decreased HOXB13 expres-
sion is specifically associated with RCC [41]. Elevated 
HOXC6 has been linked to poor overall survival in LCC 
patients, but not RCC patients [41]. MYOM3 was the 
top-ranking feature in our genes-and-microbes model 
and has a higher expression in LCC as determined using 

differential gene expression analysis. MYOM3 has not 
been studied in CRC but it has been linked to clinical 
outcomes in renal and lung cancer [42, 43].

While our microbes-only model mostly identified 
microbes associated with RCC, Akkermansia muciph-
ila was more common in LCC (Table  4). A. muciniph-
ila degrades mucin in the gut, and has previously been 
shown to exacerbate colitis-associated CRC development 
in mice [44], and is associated with total pathological 
response in treatment of non-small cell lung cancer [45]. 
Akkermansia has been noted as one of three microbes 
most likely to have a causal association with differential 
CRC treatment effectiveness [10].

The genes-and-microbes model also identified 
microbes that for the most part were enriched in RCC 
(Table 5). Only two microbes in this model are present at 
higher levels in LCC, namely, Verrucomicrobia bacterium 
and Fimbriiglobus ruber. Verrucomicrobia has been stud-
ied as a biomarker for the early detection of CRC [46]. 
However, Fimbriiglobus is largely uncharacterized.

Conclusions
Understanding microbial-genomic interactions may be 
important for informing treatment regimens in colorec-
tal cancer. This study uses machine learning random for-
est (RF) models and differential gene expression (DE) to 
discover and associate genetic and microbial biomark-
ers with LCC and RCC. Three RF models with accuracy 
scores of 0.9, 0.7, and 0.87 were created and these yielded 
15, 54 and 46 significantly important features. DE analysis 
was used to quantify changes in expression between CRC 
side. Our genes-and-microbes model identified microbes 
that did not appear in our microbes-only model, includ-
ing C. eutactus, F. nucleatum and P. copri, and this may 
indicate that the random forest model is uncovering 
interactive effects between genes and microbes. RCC was 
most associated with the HOX family of genes, including 
HOX-associated lncRNA AC012531.25. LCC was highly 
associated with prostate cancer related genes, which is 
of interest as LCC is more common in men. The future 
of CRC research lies in personalized genomics, and the 
biomarkers identified by these three classification mod-
els may play an important role in the observed variability 
in clinicopathological and treatment outcomes of CRC 
patients.
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