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Abstract 

Background Neoadjuvant chemotherapy (NAC) has become the standard therapeutic option for early high-risk and 
locally advanced breast cancer. However, response rates to NAC vary between patients, causing delays in treatment 
and affecting the prognosis for patients who do not sensitive to NAC.

Materials and methods In total, 211 breast cancer patients who completed NAC (training set: 155, validation set: 
56) were retrospectively enrolled. we developed a deep learning radiopathomics model(DLRPM) by Support Vector 
Machine (SVM) method based on clinicopathological features, radiomics features, and pathomics features. Further-
more, we comprehensively validated the DLRPM and compared it with three single-scale signatures.

Results DLRPM had favourable performance for the prediction of pathological complete response (pCR) in the train-
ing set (AUC 0.933[95% CI 0.895–0.971]), and in the validation set (AUC 0.927 [95% CI 0.858–0.996]). In the validation 
set, DLRPM also significantly outperformed the radiomics signature (AUC 0.821[0.700–0.942]), pathomics signature 
(AUC 0.766[0.629–0.903]), and deep learning pathomics signature (AUC 0.804[0.683–0.925]) (all p < 0.05). The calibra-
tion curves and decision curve analysis also indicated the clinical effectiveness of the DLRPM.

Conclusions DLRPM can help clinicians accurately predict the efficacy of NAC before treatment, highlighting the 
potential of artificial intelligence to improve the personalized treatment of breast cancer patients.
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Introduction
Breast cancer is the most common cancer among 
women in the world, and it related incidence rate is 
continuously rising [1, 2]. Neoadjuvant chemotherapy 
(NAC) has become the standard therapeutic option 
for early high-risk and locally advanced breast can-
cer [3]. When breast cancer patients have a patho-
logical complete response (pCR) to NAC, it can help 
patients lower the stage and shrink the tumor to receive 
more conservative treatment, and its event free sur-
vival (EFS) and overall survival (OS) are significantly 
improved [4, 5]. However, because of the heterogeneity 
and complexity of tumors, not all patients benefit from 
NAC. For patients who are not sensitive to treatment, 
although disease progression rarely occurs during NAC 
[6], the long-term treatment process will still have side 
effects [7, 8], which may also lead to missing the best 
time to change the treatment plan. Currently, there is 
an urgent requirement for accurate prediction of the 
response before the NAC, which is critical for breast 
cancer patients who are destined to have no response.

Radiomics could predict effectively pCR in patients 
with breast cancer. In the process of NAC, some stud-
ies used the images of different treatment nodes to fuse 
each other to predict pCR [9, 10], but the image data 
required for model construction was obtained after 
NAC, and the clinical practicability of the model was 
poor. Some scholars have made optimization on this 
basis [11, 12], it could benefit patients in some extent, 
but the radiomics features only provide tumor informa-
tion from a macroscopic perspective in vitro, it cannot 
completely reflect information about pCR. As another 
source of medical images, histopathology combined 
with machine learning can help in risk stratification, 
prognosis prediction and adjuvant chemotherapy effi-
cacy prediction [13–16]. Pathomics differ from radi-
omics in that they provide microstructural information 
about the tumor microenvironment, which can com-
plement tumor heterogeneity and enhance the predic-
tive power of existing models. So we hypothesized that 
a multi-scale model integrating the features of radiom-
ics and pathomics could efficiently predict pCR.

In this study, we aimed to develop and validate a 
deep learning radiopathomics model(DLRPM) for the 
prediction of pCR to NAC in patients with breast can-
cer using Contrast-Enhanced Computed Tomography 
(CECT) images and whole slide images (WSIs). This 
proposed DLRPM can be used for early adjustment 
therapy in non-PCR patients to improve pCR rates and 
avoid toxic side effects. This might provide clinicians 
with treatment strategies to improve the effectiveness 
of individual therapy.

Materials and methods
Patients
This retrospective study was approved by the Institu-
tional Review Board of the Southwestern Medical Uni-
versity Hospital (No. KY2022216), and the requirement 
for written informed consent was waived. This study col-
lected 1532 patients with breast cancer who underwent 
a CECT examination between January 2020 and March 
2022 from the Picture Archiving and Communications 
System (PACS).

The inclusion criteria were as follows: (a) Pathologi-
cal biopsy confirmed non-specific invasive breast cancer 
with no distant metastasis; (b) The patient has undergone 
6–8 cycles of NAC; (c) surgery was performed after NAC; 
(d) The available clinical data. A total of 245 patients ful-
filling the inclusion criteria were enrolled.

Exclusion criteria were as follows: (a)No histopatho-
logical evaluation results. (b) Lack of images in venous 
phase or poor image quality. (c)Synchronous tumors or 
history of other malignancy.

A total of 211 breast cancer patients with non-spe-
cific invasive were enrolled in the study from February 
2020 and March 2022, we divided patients into train-
ing set and independent validation set in chronological 
order. Patients who performed their first NAC treatment 
before September 2021 were used as the training set, the 
remaining patients were used as the validation set, the 
ratio of training set to validation set was about 7:3. A 
flowchart of the patients’ collection is shown in Fig. 1.

Workflow of study
The workflow of this study is shown in Fig.  2, includ-
ing (1) image acquisition, (2) feature extraction, (3) fea-
ture selection, (4) model construction, and (5) model 
validation.

The CECT images and WSIs acquisition
All patients received contrast-enhanced CT chest exami-
nation (Netherlands, Philips Medical Systems) before 
NAC treatment. The scanning procedure was as follows: 
The contrast agent (iodohexol, 320 mg/mL) was injected 
into the median cubital vein with a double-barrel high-
pressure syringe (dose 1.0  mL/kg, flow rate 3.0  mL/s). 
The CT value of blood vessels at the level of the aortic 
arch was monitored after injection of contrast agent. The 
Enhanced CT scans are automatically triggered when 
the CT value reaches around 250 HU. And venous phase 
scans were performed after a delay of 30s.

The pathologists collected all biopsy samples of breast 
cancer patients using crude needle puncture before NAC. 
Firstly, biopsy tissue was soaked in 10% formalin for 
4  h and buried in immunohistochemical paraffin wax. 
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Exclude (n=34)

1.No histopathological evaluation results (n=10).

2.Lack of images in venous phase or poor image quality (n=8).

3.Synchronous tumors or history of other malignancy (n=16).

Exclude (n=1287)

1.Patients choose surgical strategy after diagnosis (n=1085).

2.Incomplete course of NAC (n=38).

3.BC with distant metastasis (n=164).

1532 patients with BC

(Feb.2020 - Mar.2022)

Completed NAC and planned surgery

(n=245)

Eligible patients of BC

(n=211)

Fig. 1 Flow diagram of patient cohort selection
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Fig. 2 Workflow of Study. The images were preprocessed for feature extraction. After feature evaluation and model construction, four sets of 
features [radiomic signature (RS), pathologic signature (PS), deep learning pathologic signature (DLPS) and clinical features] were generated and 
further used to construct DLRPM. The performance of DLRPM in predicting pCR before NAC was validated in validation set
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Subsequently, the biopsied tissue was severed at 4-μm 
intervals and stained with hematoxylin and eosin (H&E) 
for pathological evaluation. A pathologist with 8 years of 
experience in pathological diagnosis scanned all H&E-
stained histopathological slides using a digital slide scan-
ner (KFBio KF-PRO-020) at 10 × magnification to obtain 
WSIs of the breast cancer patients, and images were digi-
tized as kbf. format files, which were managed with the 
KF-Viewer software (version 1.7.0.23).

Pathological complete response assessment
In accordance with the National Comprehensive Cancer 
Network (NCCN) guideline [17], all patients received six 
or eight cycles of NAC. The NAC regimens were based 
on taxane or taxane and anthracycline; all human epider-
mal growth factor receptor 2 (HER2) positive patients 
also received trastuzumab. At the end of treatment, we 
performed an initial imaging assessment of the efficacy 
of NAC according to the Response Evaluation Criteria in 
Solid Tumors (RECIST) 1.1 [18]. Subsequently, the final 
pCR status of each patient was determined by the patho-
logical findings after surgery (Fig. 3). pCR was defined as 
the complete absence of invasive tumor cells in the breast 

and axillary lymph nodes, regardless of the presence of 
residual ductal carcinoma in situ (ypT0/isypN0) (Fig. 3A).

Radiomics feature extraction
The volume of interest (VOI) segmentation was per-
formed using 3D-Slicer software. All manual segmenta-
tion of the CECT images were performed by 2 practicing 
experienced radiologists. Both radiologists were blinded 
to the patient’s clinical data when they evaluated the 
CECT images. Firstly, the VOIs covering the whole 
tumor (VOI 1) were segmented. After manual tumor seg-
mentation, we automatically segment the peritumoral 
regions (VOI 2) (Figure S1). The regions (2-mm radius) 
surrounding the tumor were defined as the peritumoral 
regions. If the peritumor regions were beyond the paren-
chyma of the breast after the spread, the portion beyond 
the parenchyma was removed manually.

According to the instructions of the Image Biomarker 
Standardization Initiative [19], radiomics features were 
extracted from the VOI 1 and VOI 2 using PyRadiomics, 
before feature extraction, PyRadiomics was also used for 
image preprocessing. A total of 3814 radiomics features 
were extracted from two VOIs per patient. These features 

Fig. 3 CECT and histology images from complete responder (A) and partial responder (B) before NAC and after 8 courses of NAC. In the CECT 
image, it is seen that the tumor in the complete responder have completely dissipated in the post-NAC image, and stromal tissue with no visible 
tumor cells was presented in the pathological images. But CECT and histology images from and partial responder shows residual tumor cells but 
reduced compared to baseline
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included First Order, Shape-based (2D and 3D), Gray 
Level Cooccurence Matrix (GLCM), Gray Level Run 
Length Matrix (GLRLM), Gray Level Size Zone Matrix 
(GLSZM), Gray Level Dependece Matrix (GLDM); and 
Filters included Laplacian of Gaussian (LoG), Wavelet, 
Square, Square Root, Logarithm, Exponential, Gradient, 
Local Binary Pattern (LBP) 3D. To make features repro-
ducible, an interclass correlation coefficient (ICC) higher 
than 0.75 was considered credible [20].

Pathomics feature extraction
In KF Viewer, WSIs were magnified 10 × , the pathologist 
(W.Q) selected the sample area containing nuclear pleo-
morphism, mitosis, carcinoma infiltration, cancer inva-
sion, tumor cell differentiation and pathological grading, 
and obtained five typical non-overlapping screenshots 
with a field of vision of 1534 × 832 pixels, and then con-
firmed by the other pathologist (J.M).They had 3  years 
and 8  years of experience in breast cancer pathological 
diagnosis respectively. We saved the selected screenshots 
as format files (. jpg, 300dpi). If the two pathologists have 
different opinions, they will consult the third pathologist 
to make a decision. All screenshots were cut into small 
frame tiles (512 × 512 pixels) by sampling without overlap 
for subsequent analysis (Figure S2).

We used CellProfiler (version 4.0.7) [21], an open-
source image analysis software developed by Broad 
Institute (Cambridge, Massachusetts), to extract quanti-
tative pathomics features of selected pathological screen-
shots. Based on the “Unmix Colors” module to separate 
H&E-stained images and convert them into haematox-
ylin-stained and eosin-stained greyscale images, The 
H&E-stained images were also converted to greyscale 
images using the “ColorToGray” module (Figure S3). 
We measured images twice, in the first measurement, 
we obtained 136 original features, which summarize the 
three types of images in general. For the second meas-
urement, we made a careful exploration of hematoxylin 
images. First, we identified the primary and secondary 
objects, and then measured them. After measurement, 
we took their mean, median and standard deviation as 
our research characteristics and 1054 pathomics features 
were obtained, the extracted features were aggregated 
by mean of the values for every 10 tiles in each WSI. 
Detailed method of feature extraction in Figure S4.

Resnet50 was employed to extract deep learning fea-
tures of pathomics. Before extracting features, All the 
small tiles went through color normalization with the 
Vahadane method based on staintools (Figure S2), which 
was an open-source package based on python for stain 
normalization and augmentation. The input area was 
512 × 512 pixels, and the transfer learning took the pre-
trained weights of Resnet50 on the ImageNet dataset 

as the initial weights of the model, The model was fine-
tuned using data from our data. Resnet50 was adjusted 
from the original multi-classification task to a binary 
classification task, we extracted the deep learning fea-
tures from the last layer of resnet50, and the principal 
component analysis (PCA) algorithm further compressed 
the deep learning features, the extracted features were 
aggregated by mean of the values for every 10 tiles in each 
WSI. We obtained a total of 200 deep learning features.

Feature selection and signature construction
The radiomics, pathomics features and pathomics deep 
learning features can reveal tumour information from 
macroenvironment and microenvironment perspectives, 
repectively. However, these features were high-dimen-
sional data, which had an adverse impact on predicting 
the pCR to NAC. Therefore, we should obtain the fea-
tures which were most closely related to pCR in the train-
ing set. Firstly, all variables were normalized, and a U-test 
was performed on each feature as a preliminary selec-
tion to remove redundant features. To sufficiently extract 
discriminative features in this process, the threshold of 
p value was determined with 0.05. Subsequently, con-
sidering the dependence between features, we perform 
correlation analysis on the features, if the correlation 
coefficient between the two features was greater than 
0.9, one of them was excluded. Then, the least absolute 
shrinkage and selection operator (LASSO) algorithm was 
utilized to select the extracted features [22], and tenfold 
cross-validation was used to select the value of Lambda 
to determine the optimal features.

Based on the above three types of optimal features, we 
constructed three distinct single-scale prediction models 
by Support Vector Machine (SVM) method [23], The best 
regularization parameter C and Gamma (γ) for Gauss-
ian Radial Basis Function (RBF) kernel were determined 
by fivefold cross validation and grid search. Then, each 
model prediction value was used to construct signatures, 
named radiomics signature (RS), pathomics signature 
(PS), and deep learning pathomics signature (DLPS), 
respectively.

DLRPM development and validation
Independent clinical predictor and three single-scale 
signatures were used to construct the DLRPM for the 
integrated prediction of pCR in breast cancer patients 
by a similar non-linear SVM method. We used the fol-
lowing methods to comprehensively evaluate the model. 
Receiver operating characteristic (ROC) curve analysis, 
sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV) were employed to 
evaluate the discrimination performance [24].  The cali-
bration of models were assessed using the calibration 
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curve and the Hosmer–Lemeshow test was used to assess 
the goodness-of-fit of the models.The Decision curve 
analysis (DCA) of all models was performed to quantify 
the net benefit of patients under different threshold prob-
abilities in the sets to assess the clinical value of the pre-
dictive models in our study [25].

In addition, the net reclassification improvement (NRI) 
test and integrated discrimination improvement (IDI) 
test were calculated to compare the performance of 
DLRPM and single-scale signatures.

Statistical analysis
All statistical analysis was performed using R studio 
(version 4.1.1; R Studio, http:// www.R- proje ct. org) and 
Jupyter Notebook (version 6.4.11). Differences of cat-
egorical variables were calculated with the chi-square test 
or Fisher’s exact test. The differences of continuous vari-
ables were analyzed using independent t-test or Mann–
Whitney U test. All tests were two-sided, and two-tailed 
p < 0.05 were considered statistically significant.

Results
Demographic and clinicopathological characteristics
The baseline characteristics of all patients are summa-
rized in Table 1. A total of 211 patients with breast cancer 
were enrolled in this study, patients with pCR accounted 
for 39.35% (61/155) and 37.50% (21/56) of the training 
and validation sets, respectively, the findings on HER2 
was significantly correlated with the pCR status in both 
the training and validation set (p < 0.05). In addition, 
there were no statistically significant differences between 
the two sets (p > 0.05) (Table S1).

Radio‑pathomics feature selection and signature 
construction
The inter-observer reproducibility of the feature extrac-
tion was excellent, with inter-observer ICCs ranging 
from 0.758 to 0.953 for CECT. U-test and Spearman 
correlation coefficient analysis was performed exclude 
redundant features, which resulted in 154 radiomic fea-
tures, 21 pathomics Feature and 8 deep learning Pathom-
ics Feature per patient.

Table 1 Clinical characteristics of patients

Data in parentheses are percentages; p values were derived from the univariate analysis between each of characteristic and pCR Status. HER2 Human epidermal 
growth factor receptor 2, ER Estrogen receptor, PR Progesterone receptor

Characteristics Training set(n = 155) p Validation set(n = 56) p

Non‑pCR(n = 94) pCR(n = 61) Non‑pCR(n = 35) pCR(n = 21)

Age 49.5(45.2,55.8) 49.0(46.0,54.0) 0.437 52.3 ± 9.63 50.3 ± 9.26 0.623

T stage (%) 0.149 0.420

 T1 4 (4.26) 3 (4.92) 3 (8.57) 0 (0.00)

 T2 64 (68.1) 47 (77.0) 23 (65.7) 18 (85.7)

 T3 10 (10.6) 8 (13.1) 5 (14.3) 2 (9.52)

 T4 16 (17.0) 3 (4.92) 4 (11.4) 1 (4.76)

N stage (%) 0.076 0.946

 N0 28 (29.8) 13 (21.3) 9 (25.7) 5 (23.8)

 N1 50 (53.2) 44 (72.1) 17 (48.6) 12 (57.1)

 N2 13 (13.8) 4 (6.56) 6 (17.1) 2 (9.52)

 N3 3 (3.19) 0 (0.00) 3 (8.57) 2 (9.52)

ER status (%) 0.03 0.128

 Negative 39 (41.5) 37 (60.7) 13 (37.1) 13 (61.9)

 Positive 55 (58.5) 24 (39.3) 22 (62.9) 8 (38.1)

PR status (%) 0.047 0.448

 Negative 30 (31.9) 30 (49.2) 15 (42.9) 12 (57.1)

 Positive 64 (68.1) 31 (50.8) 20 (57.1) 9 (42.9)

HER2 status (%)  < 0.001 0.001

 Negative 69 (73.4) 22 (36.1) 25 (71.4) 5 (23.8)

 Positive 25 (26.6) 39 (63.9) 10 (28.6) 16 (76.2)

Ki-67 status (%) 0.238 1.000

  < 30% 26 (27.7) 11 (18.0) 8 (22.9) 5 (23.8)

  ≥ 30% 68 (72.3) 50 (82.0) 27 (77.1) 16 (76.2)

http://www.R-project.org
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Then, LASSO was adopted to deeply select the pre-
existing features. For LASSO, the subset of the best fea-
tures depended on the choice of lambda value, and we 
used fivefold cross validation to find the best lambda 
value. To further simplify the model, step-forward feature 
selection was then conducted to reduce the optimal fea-
tures, we pick the lambda value with one standard error 
to select features, which resulted in 30 radiomic features 
and 12 pathomics Feature, for deep learning pathom-
ics Feature, Lasso did not further reduce features (Fig. 4) 
(Table S2, 3).

We constructed three predictive signatures by non-
linear SVM method respectively. In training set, the 
grid search with fivefold cross validation found the 
optimal parameters of the three models, RS (C = 4.67, 
gamma = 0.0015), PS (C = 1, gamma = 0.0028) and 
DLPS (C = 2.15, gamma = 0.031). Raincloud plot (Fig. 5) 
visualized the different distributions of the samples in 
training and validation sets, it indicated Three single-
scale signatures already had a certain discriminant abil-
ity (p < 0·05, Table 2).

Fig. 4 Feature selection process. Radiomics features (A, B) and pathomics features (C, D) were selected by the LASSO model with tuning parameter 
(λ) using fivefold cross-validation via minimum and 1se criteria
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DLRPM development and validation
By integrating HER2, RS, PS and DLPS in the train-
ing set, we developed the DLRPM comprehensive pre-
diction model by using the nonlinear support vector 
machine method. The same method was used to find the 
optimal parameter of DLRPM (C = 5, gamma = 0.01). 
ROC curves were used to assess discrimination perfor-
mance, DLRPM accurately predicted pCR in Training 
set (AUC 0·933[95% CI 0.895–0.971]) and validation set 

(0.927 [95% CI 0.858–0.996]). The sensitivity of DLRPM 
was markedly high in validation set (94.28%), whereas 
the specificity remained moderate (76.19%). The NPV 
of DLRPM exceeded 90% in validation set, whereas the 
PPV was around 71.25% (Table 3, Fig. 6A).

In validation set, RS and DLPS yielded marginally 
AUC values of 0.821(0.700–0.942) and 0.804(0.683–
0.925) (Fig.  6B), whereas PS had a lower AUC value 
of 0.766(0.629–0.903). the DeLong test, NRI and IDI 
showed that performance of the three single scale models 
had no significant difference(all p > 0.05).

Compared with single-scale prediction models, 
DLRPM showed superior to evaluate the discrimination 
performance. The improvements in discriminative ability 
were confirmed by the NRI tests (all p < 0·05) and IDI (all 
p < 0·05). Calibration plots demonstrated good agreement 
between all model prediction and the actual observation 
for detecting pCR (Fig.  6C). The Hosmer–Lemeshow 
test showed non-significant statistics in both groups 
(p > 0.05). The DCA plots showed that the DLRPM pro-
vided better net benefit compared with single-scale pre-
diction models, it indicated DLRPM had a better clinical 
benefit (Fig. 6D).

Fig. 5 The raincloud plot visualizes prediction probability of RS, PS and DLPS, it shows the sample distribution locations and interval sample 
densities for the training (A)and validation set(B) of signatures

Table 2 Predicted probability of signatures and in training and 
validation set

Skewed distributed variable values: median (interquartile range), Normally 
distributed variable values: mean ± standard deviation

Training Set Non-pCR(n = 94) pCR(n = 61) p

RS 0.31(0.20,0.41) 0.46(0.40,0.71)  < 0.001

PS 0.28(0.19,0.44) 0.55(0.38,0.63)  < 0.001

DLPS 0.21(0.15,0.37) 0.60(0.44,0.66)  < 0.001

Validation Set Non-pCR(n = 35) pCR(n = 21) p

RS 0.34 ± 0.18 0.54 ± 0.16  < 0.001

PS 0.34 ± 0.14 0.51 ± 0.20 0.002

DLPS 0.19(0.10,0.35) 0.44(0.29,0.56)  < 0.001
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Discussion
In this study, we developed a multi-scale integrated 
model for prediction of pCR to NAC in breast cancer 
patients before treatment based on SVM algorithm, com-
bining CECT images with WISs. In the independent val-
idation set, DLRPM had a better performance in terms 
of discriminative ability, calibration, and clinical utility 
relative to other single-scale models. In clinical practice, 
patients who predicted for pCR using DLRPM should be 
given aggressive NAC therapy, and intensive follow-up 
strategies were used to improve survival and quality of 
life. DLRPM assisted clinicians predict accurately the effi-
cacy of NAC treatment before it is administered, which is 
critical for developing patient treatment plans and opti-
mizing overall patient management.

Predictive biomarkers of response to NAC for breast 
cancer patients have been the focus topic of research 
[26], but not all biomarkers were applicable to clinical 
practice. Previous studies have explored the predictive 
effectiveness of genetic biomarkers, but they have not 
been applied in clinical practice because they are costly 
and and not widespread [27, 28]. Secondly, we should 
consider the predictive power of the model. Clinico-
pathological factors were currently used to estimate the 
potential benefit of NAC, however, satisfactory perfor-
mance cannot be achieved based on clinical characteris-
tics alone [29–31]. Full digitalization of the stained tissue 
sections has become feasible because of advances in slide 
scanning technology and reductions in the cost of digital 
storage. In our study, DLRPM not only had good predic-
tive power (AUCs > 0.9), but DLRPM had a stable source 
of modeling and validation data in clinical practice, pro-
viding assurance for subsequent large-scale studies.

Previous studies had demonstrated that radiomic 
biomarker can predict pCR to NAC in breast cancer 

patients. Many studies applied pre-treatment radiomic 
features combined with clinicopathological factors for 
efficacy prediction, but their predictive efficacy was 
unstable [32–34]; others predicted pCR using pretreat-
ment and post-treatment US images, and their model had 
better predictive efficacy in the external validation set [9], 
but promising results were mainly attributed to post-
treatment US images, which provided direct information 
on tumor regression, and the model was unable to pro-
vide early estimates of treatment response to guide the 
implementation of NAC because the images required for 
the construction of model were obtained late and clinical 
utility was poor. In contrast, the US images from the sec-
ond and fourth courses of treatment were matched with 
US images before treatment, respectively, and This staged 
prediction pipeline benefited patients to a certain extent 
[11], and treatment regimens were adjusted based on the 
prediction results. However, for patients with breast can-
cer, accurate prediction of neoadjuvant chemotherapy 
efficacy before treatment can help maximise patient’s 
benefit.

In the pathological examination, the pathologist used 
light microscope to determine the benign and malig-
nant tumor, the growth mode and differentiation degree 
of tumor cells under the light microscope. Because of 
the limitation of microscope magnification, pathologists 
were not able to describe the microscopic information of 
each slide in detail. In recent years,with the application 
of cell analysis software and the development of deep 
learning algorithms [14, 15], several scholars research-
ers have extracted image features from digital pathology 
slices for quantitative analysis. Breast cancer was a highly 
heterogeneous tumor, and tumor microenvironment will 
change when tumor responds to NAC [35]. This subtle 
change was not detectable by the naked eye. Pathomics 

Table 3 Discrimination performance of predict models for predicting pCR status in breast cancer patients

AUC  Area under the receiver operating curve, CI Confidence interval, SEN sensitivity, SPE Specificity, ACC  Accuracy, PPV Positive predictive value, NPV Negative 
predictive value

Training Set AUC (95%CI) SEN (%) SPE (%) ACC (%) PPV (%) NPV (%)

HER2 0.686(0.611–0.762) 63.93 73.04 69.67 60.93 75.82

RS 0.858(0.801–0.916) 88.52 67.02 75.48 63.52 90.00

PS 0.803(0.734–0.872) 65.57 81.91 75.48 70.17 78.57

DLPS 0.862(0.805–0.920) 85.24 74.46 78.70 68.42 88.60

DLRPM 0.933(0.895–0.971) 90.16 85.10 87.09 79.71 93.02

Validation Set AUC (95%CI) SEN (%) SPE (%) ACC (%) PPV (%) NPV (%)

HER2 0.738(0.617–0.858) 76.19 71.42 73.21 61.53 83.33

RS 0.821(0.700–0.942) 85.71 77.14 80.35 69.23 90.00

PS 0.766(0.629–0.903) 52.38 91.42 76.78 78.57 76.19

DLPS 0.804(0.683–0.925) 61.90 91.42 80.35 81.25 80.00

DLRPM 0.927(0.858–0.996) 94.28 76.19 87.50 71.25 92.25
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can capture the microstructure of tumors and provide 
the characteristics of cells and microenvironment in 
tumor lesions. Previous studies had shown pathomics 
features were used to predict the efficacy and prognosis 
of adjuvant chemotherapy for gastric cancer [16], and 
have achieved good performance. In our study, pathom-
ics features also showed a stable predictive ability in pre-
dicting the pCR to NAC.

DLRPM integrates macroscopic radiomics and micro-
scopic pathomics features for integrated prediction of 
pCR to NAC in breast cancer patients. In the radiom-
ics workflow, we added a 2  mm peritumoral region for 

feature extraction, and the great predictive potential of 
the peritumoral region features had been demonstrated 
in the Ning’s study [36]. In our study, the peritumoral 
region features accounted for 50% of the total radiomics 
features selected by LASSO and contributed significantly 
to the predictive power. In the pathomics workflow, we 
learned from the experience of the current study in Cell-
Profile extraction and performed two extractions of our 
pathology images. In our analysis, we found that the pre-
dictive power of the two types of features can comple-
ment each other. DLRPM has high sensitivity and NPV in 
the independent validation set, indicating that the model 

Fig. 6 ROC analysis of predict models for predicting pCR in the training set (A) and validation set (B), respectively. C Calibration curves of models in 
training set on discriminating Non-pCR versus pCR. D Decision curve analysis in training set using RS, PS, DLPS and DLRPM
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can reliably identify individuals without pathological 
complete response. This study is consistent with the find-
ings of Li’s study [37]. and they could avoid subsequent 
ineffective treatments, breast cancer patients who were 
destined not to respond will benefit from the predicted 
results of DLRPM.

Although our research is innovative, there were also 
several limitations in our current study. Firstly, this study 
is a retrospective study, and all of breast cancer patients 
were obtained from a single medical institution. Consid-
ering the limited number of study samples, we will fur-
ther obtain a large number of sample data from multiple 
medical institutions and perform prospective studies to 
validate the generalization and accuracy of DLRPM. Sec-
ondly, All the features of radiomics are derived from the 
venous phase images of CECT and lack of diversity. In 
the future, multiphase CT data can be collected for fea-
ture enrichment.Finally,VOI segmentation of tumor is 
not automatic, and the probability of error in artificial 
semi-automatic segmentation is large and difficult to 
find. This may be overcome by automatic segmentation 
artificial intelligence system in the future.

In conclusion, we established DLRPM based on the 
characteristics of radiomics and pathomics to predict the 
complete pathological response of breast cancer patients 
to neoadjuvant chemotherapy. This model can help cli-
nicians accurately predict the efficacy of neoadjuvant 
chemotherapy before treatment, highlighting the poten-
tial of artificial intelligence to improve the personalized 
treatment of breast cancer patients.
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lin and eosin images were assessed by using the “MeasureImageQuality” 
module with three types of features, including blur features, intensity 
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