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Abstract 

Background Peroxisome proliferator activated receptors (PPARs) are a nuclear hormone receptors superfamily that 
is closely related to fatty acid (FA) metabolism and tumor progression. Solute carrier family 27 member 2 (SLC27A2) is 
important for FA transportation and metabolism and is related to cancer progression. This study aims to explore the 
mechanisms of how PPARs and SLC27A2 regulate FA metabolism in colorectal cancer (CRC) and find new strategies for 
CRC treatment.

Methods Biological information analysis was applied to detect the expression and the correlation of PPARs and 
SLC27A2 in CRC. The protein–protein interaction (PPI) interaction networks were explored by using the STRING 
database. Uptake experiments and immunofluorescence staining were used to analyse the function and number of 
peroxisomes and colocalization of FA with peroxisomes, respectively. Western blotting and qRT‒PCR were performed 
to explore the mechanisms.

Results SLC27A2 was overexpressed in CRC. PPARs had different expression levels, and PPARG  was significantly highly 
expressed in CRC. SLC27A2 was correlated with PPARs in CRC. Both SLC27A2 and PPARs were closely related to fatty acid 
oxidation (FAO)‒related genes. SLC27A2 affected the activity of ATP Binding Cassette Subfamily D Member 3 (ABCD3), 
also named PMP70, the most abundant peroxisomal membrane protein. We found that the ratios of p-Erk/Erk and 
p-GSK3β/GSK3β were elevated through nongenic crosstalk regulation of the PPARs pathway.

Conclusions SLC27A2 mediates FA uptake and beta-oxidation through nongenic crosstalk regulation of the PPARs 
pathway in CRC. Targeting SLC27A2/FATP2 or PPARs may provide new insights for antitumour strategies.

Keywords SLC27A2, Colorectal cancer, FAO, PPARs

Background
Colorectal cancer (CRC), ranking as the third most fre-
quent cancer and second leading cause of cancer‒related 
deaths, is a major challenge in healthcare worldwide [1]. 
Most patients are diagnosed with advanced or metastatic 

disease [2]. The proportion of patients younger than 50 
years is rising, owing to hereditary or environmental risk 
factors [3]. Precise management of CRC, involving single 
or combined reagents, is needed [4]. Metabolic repro-
gramming of tumor and the tumor microenvironment 
(TME), including cells, cytokines, nutrients or metabo-
lites, supports proliferation, migration, immune escape 
or resistance in cancers [5, 6].

Lipid metabolic hallmarks play a pivotal role in CRC. 
Fatty acids (FAs) as the essential molecules of lipid can 
maintain membrane homeostasis, and regulate cell 
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signalling and energy metabolism [7]. FA can be taken up 
from the TME or de novo synthesized in cells. FA uptake 
occurs through transmembrane proteins, including fatty 
acid translocase (FAT, CD36), fatty acid binding pro-
teins (FABPs) and fatty acid transport proteins (FATPs, 
SLC27s) [8]. The intracellular FA pool is the source of cell 
structural molecules and metabolism. Fatty acid beta-
oxidation (FAO) is an important metabolic process in 
mitochondria or peroxisome [9]. For tumor progression, 
cancer cells reprogram to FAO to produce ATP more 
efficiently. Medium-chain FAs are mainly catabolized in 
mitochondria and long-chain or very long-chain FAs are 
primarily catabolized in peroxisome [10].

Peroxisome proliferator activated receptors (PPARs) 
are nuclear hormone receptors (NHR) and are ligand-
dependent transcriptional regulators. Recent researches 
have revealed that PPAR agonists or antagonists can 
regulate cell metabolism, including the FAO process, 
exhibiting anticancer effects [11]. Recently, studies 
about single-cell genomic and transcriptomic landscapes 
of metastatic colorectal cancer (mCRC) patients and 
patient-derived tumor organoids have revealed that 
the PPAR signaling pathway was aberrantly activated in 
mCRC. PPAR inhibitors can suppress the proliferation 
and promote the apoptosis of CRC organoids, indicat-
ing it’s critical role in mCRC tumorigenesis [12]. The 
PPAR pathway can regulate FAO to induce tumorigen-
esis in intestinal stem cells (ISCs) in high-fat diet (HFD) 
feeding mouse models [13, 14]. Ligand-activated PPARs 
heterodimerize with retinoid X receptor (RXR) and bind 
to specific DNA response elements (PPREs), regulat-
ing lipids homeostasis and metabolism [15]. In previous 
studies, solute carrier family 27 member 2 (SLC27A2) 
was reported to regulate cancer proliferation, metasta-
sis, inflammation and immunosuppression [16, 17]. We 
investigated the expression of SLC27A2 and PPARs aim-
ing to find new metabolic therapies for CRC.

Materials and methods
Cell culture and transient transfection
The human colorectal cancer cell lines, HCT-15 and 
SW480 were purchased from ATCC and passed short 
tandem repeat (STR) detection. The cells were cultured 
in RPMI 1640 medium (CORNIN, USA) containing 10% 
fetal bovine serum (FBS, Gibco, USA), at 37  °C and 5% 
 CO2. For further study, we cultured cells with palmitic 
acid (PA, 100 uM, Sigma, dissolved in DMSO, NaOH, 
BSA) and generated the fatty cells, in which lipid drop-
let accumulated in the cytosol and Oil-Red-O (ORO) 
staining were observed [18]. Transient transfections were 
conducted by MegaTran 2.0 or siTran 2.0 to overexpress 
or knock down SLC27A2 expression, according to the 
manufacturer’s protocol, respectively. And qRT‒PCR 

was used to test the efficacy. In our previous study we 
used two siRNAs to knock down SLC27A2 and the effi-
cacy was tested by qRT‒PCR and western blotting. The 
sequence of siRNA-SLC27A2-3 in this study was 5’-CGA 
CAG AGU UGG AGA UAC ATT- 3’.

Western blot
Whole proteins were extracted by cell lysis buffer (Beyo-
time, P0013B, Shang hai) and quantified by a BCA pro-
tein assay kit (Thermo Fisher, 23,227, USA). Proteins 
were separated by a 10% SDS‒PAGE gel and transferred 
to a PVDF membrane. Then, the PVDF membrane was 
blocked with 5% nonfat milk for 2 h at room temperature 
(RT), and incubated with primary antibodies overnight 
(4 °C) and secondary HRP-conjugated antibodies for 2 h 
(RT), respectively. The PVDF membrane was washed 
with Tris buffered Saline with Tween-20 (TBST) buffer 
after every step. The blots were cut prior to hybridisation 
with antibodies. Western Blot Stripping Buffer (Bioss, 
C05-03,041) was used for breaking antibody-antigen 
interactions to detect multiple target protein by using 
different antibodies. The molecular weights of target pro-
teins are very similar and we cropped the blots closely. 
The original gels and multiple exposure images was 
shown in Supplementary Fig.  1. Blots were detected by 
an enhanced chemiluminescence system (Bio-Rad, USA). 
The relative gray value was measured by Image J. We 
performed three independent repetitions of the experi-
ments for each dataset. The specific primary antibod-
ies as follows: anti-β-actin (42KD, 1:5000, 20,536–1-AP, 
Proteintech), anti-SLC27A2 (70KD, 1:2000, 14,048–1-AP, 
Proteintech), anti-PPARG (50KD, 1:2000, 16,643–1-AP, 
Proteintech), anti-Erk1/2 (42/44KD, 1:1000, 11,257–1-
AP, Proteintech), anti-p-Erk1/2 (42/44KD, 1:2000, 
28,733–1-AP, Proteintech), anti-GSK3β(47KD, 1:500, 
ET1607-71, HUABIO), and anti-p-GSK3β (47KD, 1:500, 
ET1607-60, HUABIO).

RNA extraction and quantitative reverse transcriptase‑PCR 
(qRT‒PCR)
Total RNA was extracted by using TRIzol Reagent (Inv-
itrogen, 15,596–018, USA). All steps were performed 
according to the manufacturer’s instructions. RNA con-
centrations were quantified with a Nanodrop 2000 sys-
tem (Thermo Fisher Scientific, USA), and cDNAs were 
obtained with a reverse transcriptase kit (TaKaRa, Japan). 
qRT‒PCR was performed by SYBR Premix ExTaqTM 
II (Takara, Japan). The mRNA levels were normalized 
to β-actin and  2−ΔΔCt was calculated for analysis. The 
mRNA expression average three different experiments. 
The primers used in qRT‒PCR are listed in Table S1.
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Immunofluorescence staining and FA uptake
HCT-15 and SW480 cells were digested, collected and 
counted after transfection for 24 h. A total of 2 ~ 2.5 ×  105 
cells were seeded in 6-well culture plates per well, in 
which a slide had been placed. After attaching, the cells 
were cocultured with fluorescent BODIPYTM FL C16 
fatty acid (24 h, 10 μM, Invitrogen, D3821, USA), which 
is a fluorescence labelled palmitic acid (PA). Slides with 
cells were collected, washed gently with PBS, fixed in 
4% PFA for 15 min, incubated in 0.25% Triton X-100 for 
10  min to rupture the cell membranes, and blocked for 
1  h by using PBST (1% BSA). The cells were incubated 
in anti-PMP70 (1: 500, Abcam, ab3421) primary anti-
body (overnight, 4 °C). Next, the slides were washed with 
PBS and incubated with fluorescent secondary antibody 
(Alexa Fluor 568 goat anti-rabbit IgG, 1:100, Life Tech-
nologies, Waltham, MA USA) in the dark (1  h, RT). 
Finally, the slides were washed and stained with DAPI 
(sc-24941, Santa Cruz Biotechnology, Dallas, TX, USA) 
and imaged by using a confocal microscope (Olympus, 
IX83, FLUOVIEW FV1200, Tokyo, Japan). The relative 
fluorescence intensity was measured by Image J. We per-
formed three independent repetitions of the experiments.

Biological information analysis
Extensive RNA sequencing data from The Cancer 
Genome Atlas (TCGA) and the Genotype-Tissue Expres-
sion (GTEx) databases were collected in the Gene 
Expression Profiling Interactive Analysis (GEPIA) data-
base (http:// gepia. cancer- pku. cn/) [19]. In our study, we 
explored the expression of SLC27A2 and PPARs in CRC 
through the GEPIA database (http:// gepia2. cancer- pku. 
cn/# analy sis) by ‘GEPIA2 Expression DIY on Box Plot’ 
mode. We explored the correlation of ‘SLC27A2 with 
PPARs’ and ‘SLC27A2 with FAO‒related genes’ in CRC 
through the GEPIA database by the ‘GEPIA2 Correla-
tion Analysis’ mode. The protein–protein interaction 
(PPI) networks were analyzed on the STRING data-
base Version 11.5 (https:// cn. string- db. org/) [20]. The 
PPI networks of SLC27A2/PPARG  in CRC were visual-
ized by using the following steps: ‘STRING Protein by 
name’, ‘Organisms Homo sapiens’, and ‘Viewers by Net-
work’. The graphic abstract was generated by the Fig-
Draw database (https:// www. figdr aw. com/ static/ index. 
html#/, accession numbers: 788566346027118592; Figure 
ID:UWYWTc1d3c).

Statistical analysis
GraphPad Prism 5.0 software was used for statisti-
cal analysis. Data were expressed as the mean ± SEM. 
The differences between two groups were analyzed by 

Student’s t test, and three groups or more were analyzed 
by one-way ANOVA. P < 0.05 was considered statistically 
significant. *P < 0.05; **P < 0.01; ***P < 0.001.

Results
SLC27A2 was related to PPARs in colorectal cancer
SLC27A2 is a protein–coding gene, and the encoded 
protein FATP2 acts as a transporter to take up FAs or an 
isozyme to convert long-chain fatty acids into fatty acyl-
CoA [21]. Studies have shown that SLC27A2 is elevated 
in cancers and promotes cancer progression [16]. We 
explored the GEPIA database and found that SLC27A2 
was overexpressed in CRC compared to para-normal tis-
sues (Fig. 1A). Our previous experiments elucidated that 
overexpression or knockdown of SLC27A2 could pro-
mote or suppress CRC cells proliferation, cell cycle or 
migration. PPARs were also expressed differently in CRC, 
and PPARG  was highly expressed with statistical sig-
nificance (Fig. 1B). PPARs are pivotal factors in regulat-
ing lipid metabolism. We performed correlation analysis 
between SLC27A2 and PPARs and the protein–protein 
interaction (PPI) networks showed that SLC27A2 was 
related to PPARs in CRC (Fig. 1C). The original data was 
provided in Supplementary Fig. 2.

SLC27A2 was associated with the PPARs pathway
We explored the protein–protein interaction (PPI) 
networks between proteins on the STRING database 
(https:// cn. string- db. org/). The results showed that 
SLC27A2 was correlated with FAO metabolic genes, 
whether in mitochondria or peroxisome (Fig.  2A). 
PPARG  is a nuclear hormone receptor (NHR), that is 
mainly located in the nucleus, cytosol, or peroxisome. 
Additionally, PPARG  is involved in energy metabolism. 
As a ligand–inducible transcriptional regulator, PPARG  
can be activated by FA. We investigated the proteins cor-
related with PPARG  in the STRING database and found 
that it had a relationship with other NHRs (Fig.  2B). 
Through gene correlation analysis in the GEPIA data-
base (http:// gepia. cancer- pku. cn/), we revealed that the 
expression level of SLC27A2 was significantly correlated 
with FAO metabolic genes (Fig. 2C).

SLC27A2 was associated with FAO metabolic genes 
in colorectal cancer
To investigate the influence of SLC27A2 on FAO–related 
gene expression, we overexpressed SLC27A2 by plasmids, 
and the efficiency was tested by qRT–PCR (Fig. 3A ~ B). 
We extracted RNA from HCT-15 and SW480 cells trans-
fected with plasmids and demonstrated that the mRNA 
levels of FAO–related genes were increased (Fig. 3C ~ D). 
Similarly, we knocked down SLC27A2 by siRNAs 

http://gepia.cancer-pku.cn/
http://gepia2.cancer-pku.cn/#analysis
http://gepia2.cancer-pku.cn/#analysis
https://cn.string-db.org/
https://www.figdraw.com/static/index.html#
https://www.figdraw.com/static/index.html#
https://cn.string-db.org/
http://gepia.cancer-pku.cn/


Page 4 of 11Shang et al. BMC Cancer          (2023) 23:335 

(Fig. 3E ~ F) and the mRNA levels of FAO–related genes 
concomitantly decreased (Fig. 3G ~ H).

SLC27A2 regulated the function and number 
of peroxisomes in colorectal cancer
ABCD3 (ATP Binding Cassette Subfamily D Member 3), 
also named PMP70, belongs to the superfamily of ATP-
binding cassette (ABC) transporters. Peroxisomal ABC 
transporters are involved in lipid metabolism and the 
PPARs pathway, particularly in FAO metabolism [22]. 
The expression level of ABCD3 increased or decreased 
upon SLC27A2 overexpression or knockdown, respec-
tively (Fig. 3). We conducted coculture experiments and 
found that FA uptake levels were elevated when SLC27A2 
was overexpressed. The PMP70 level, which represents 
the number and function of peroxisomes [23], increased 
in the overexpression group. Interestingly, fluorescence–
labelled FAs colocalized with PMP70 (Fig.  4A ~ B). 

Similar results were observed when SLC27A2 was 
knocked down (Fig. 4C ~ D).

SLC27A2 reprogrammed colorectal cancer non‑genic 
crosstalk regulation of PPARG 
PPARG  is a nuclear hormone receptor (NHR). Activated 
PPARG  can regulate lipid homeostasis and metabo-
lism [15]. We detected the the ratios of p-Erk/Erk and 
p-GSK3β/GSK3β when cells were transfected with plas-
mids or siRNAs to overexpress or knock down SLC27A2 
(encoding FATP2), respectively. Additionally, the efficien-
cies were verified by western blotting. The results showed 
that the ratios of p-Erk/Erk and p-GSK3β/GSK3β were 
elevated when SLC27A2 was overexpressed (Fig. 5A ~ B). 
Conversely, the ratios were reduced when SLC27A2 was 
knocked down (Fig. 5C ~ D). Non-genic crosstalk regula-
tion of PPARs through p-Erk/Erk and p-GSK3β/GSK3β 

Fig. 1 SLC27A2 was related to PPARs in colorectal cancer. A SLC27A2 was overexpressed in CRC from (GEPIA) database. B PPARs had different 
expressions in colorectal cancer, and PPARG was significantly highly expressed in CRC from (GEPIA) database. C SLC27A2 had a relationship 
with PPARs in CRC from GEPIA database. *P < 0.05; **P < 0.01; ***P < 0.001. T: tumor; N: normal; COAD: colon adenocarcinoma; READ: rectum 
adenocarcinoma; SLC27A2: Solute carrier family 27 member 2; PPARA: Peroxisome proliferator activated receptor A; PPARD: Peroxisome proliferator 
activated receptor D; PPARG: Peroxisome proliferator activated receptor G
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Fig. 2 SLC27A2 was associated with the PPARs pathway. A SLC27A2 correlated with genes encoding proteins associated with FAO metabolism 
on the STRING database. B The correlated proteins with PPARG in CRC from the STRING database. C SLC27A2 had a close relationship with FAO 
metabolic genes in CRC, both in mitochondria and peroxisomes on the STRING database
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influenced FA metabolic reprogramming in CRC (Fig. 5E, 
Graphic abstract).

Discussion
Peroxisome proliferator-activated receptors (PPARs) are 
ligand-activated nuclear hormone receptors (NHRs) and 
pivotal regulators in a series of lipid metabolic bioactivi-
ties, including adipocyte differentiation, lipid transporta-
tion and energy metabolism. PPARs isoforms can act as 
pro- or anti-tumorigenic factors. Preclinical or clinical 
evidence has proven that PPAR agonists or antagonists 
play critical roles in tumor metabolic reprogramming, 
cellular environmental homeostasis, and drug response 
[24, 25]. High-fat diet (HFD) was reported to contribute 
to CRC progression and liver metastasis, and PPARD 
antagonists could reverse this condition and might be 
beneficial for CRC treatment [26]. PPARs can induce 
FAO programming to maintain renewal of intestinal stem 
cells (ISCs) under HFD conditions [13]. In addition, HFD 
could also affect intestinal stem cell homeostasis through 
PPARs, mTORC1, Wnt/GSK-3β, or PTEN pathways [27]. 
Controversially, PPARs play different roles in tumor pro-
gression. In our previous study, we have demonstrated 
that SLC27A2 regulated FA uptake and cell biological 
behavior in a metabolic manner in CRC cell lines. Previ-
ous studies revealed that SLC27A2 regulated FAO to sup-
port ISC renewal [28], and mediated immune suppressive 
activity for myeloid-derived suppressor cells (MDSCs) 
in CRC mouse models [17]. We investigated the expres-
sion of PPARs and found differentially expressed levels 
in CRC. PPARs had a relatively close relationship with 
SLC27A2 in CRC (Fig. 1). As important factors for pro-
liferation, apoptosis and energy metabolism, the ratios of 
p-Erk/Erk and p-GSK3β/GSK3β varied when SLC27A2 
was overexpressed or knocked down via non-genic cross-
talk regulation of PPARG  (Fig. 5). Additionally, immune 
checkpoint inhibitors (ICIs) effective for CRC patients 
when the genetic phenotypes are mismatch-repair-defi-
cient or microsatellite instability-high (dMMR/MSI-H) 
[29]. Recent studies have shown that PPARG  induces 
programmed cell death ligand 1 (PD-L1) expression in 
CRC [30]. Encouragingly, targeting PPARs may be a new 
anti-tumor strategy.

The solute carrier protein (SLC) family is the sec-
ond largest class of transmembrane transporters and is 
a potential drug target [31]. SLC27s (SLC27A1 ~ 6) are 

protein-encoding families involved in lipids metabolism. 
Fatty acid transport proteins (FATP1 ~ 6) play pivotal 
roles in fatty acid uptake and fatty acyl-CoA synthetase 
activity [32]. In this study, we found that SLC27A2 was 
elevated in CRC (Fig.  1). Additionally, we have proved 
that SLC27A2 played a critical role in biological behav-
ior and was mechanically regulated via the FA metabolic 
pathway in CRC cell lines. Consistently, the expression 
of SLC27A2 in colorectal cancer tissues was also higher 
to paired para-cancerous tissues in our ongoing study. 
The preliminary results indicated that knockdown of 
SLC27A2 may reduce tumor burden in preclinical ani-
mal model. The differences between isolated cancer cells 
and paired normal colon cells from the models can be 
further analyzed by single-cell RNA sequencing (scRNA-
seq), RNA sequencing (RNA-seq) or metabonomics 
analysis. By protein–protein interaction (PPI) network 
analysis, we found that SLC27A2 had an obvious correla-
tion with FAO–related genes (Fig.  2) and demonstrated 
that the mRNA expression levels of the genes were ele-
vated when SLC27A2 was overexpressed or reduced 
when SLC27A2 was knocked down (Fig. 3). Considerable 
evidence has revealed that SLC27A2 is related to vari-
ous metabolic disorders or diseases, such as lipotoxic-
ity, oxidative stress and energy production, nonalcoholic 
fatty liver disease (NAFLD), type 2 diabetes mellitus 
(T2DM), kidney fibrosis, and cancers [33, 34]. Addition-
ally, SLC27A2 regulated the function and number of 
peroxisomes in CRC (Fig. 4). Peroxisomes are metabolic 
organelles. Extensive studies have revealed the functional 
significance of peroxisomes, which are involved in FAO, 
cellular redox homeostasis, lipolysis and immunome-
tabolism. The pathogenesis of cancer can be mediated by 
peroxisomes [35, 36]. SLC27A2 could regulate cells per-
oxisomes and mitochondria FAO in melanoma cells to 
induce drug resistance [37]. In addition, SLC27A2 regu-
lated peroxisomes and mitochondria FAO to maintain 
ISC renewal [28]. Investigation of peroxisomes might 
provide new targeted therapeutic strategies. In our study, 
we explored the relationship between SLC27A2 and 
FAO metabolic genes, and found SLC27A2 could regu-
late FAO metabolic genes expression (Fig. 3). Metabolic 
reprogramming is a hallmark of malignant cells or the 
tumor microenvironment (TME), and cells adapt their 
metabolism to sustain biological processes [38]. Infil-
trating immune cells play pivotal roles in the TME and 

Fig. 3 SLC27A2 was associated with FAO metabolic genes in colorectal cancer. A ~ B SLC27A2 was overexpressed in HCT-15 and SW480 by 
plasmids and tested by qRT‒PCR. C ~ D The expression of FAO related genes were measured when SLC27A2 was overexpressed in CRC and the 
mRNA expression of CPT1A, SLC35G1, ACOX1, EHHADH, ABCD3, HADHA, HADHB, ETFA, and EPHX2 elevated in HCT-15 and SW480. E ~ F SLC27A2 
was knocked down in HCT-15 and SW480 by siRNAs and verified using qRT‒PCR. G ~ H The mRNA expression levels of FAO–related genes were 
measured when SLC27A2 was knocked down in CRC and the mRNA expression of SLC25A20, ACOX1, ABCG2, ABCD3, HADHA, HADHB, HADH, and 
ETFA decreased in HCT-15 and SW480. NC: negative control; OE: over expression

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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Fig. 4 SLC27A2 regulated the function and number of peroxisomes in colorectal cancer. A ~ B The function and number of peroxisomes were 
enhanced, and the uptake levels of fluorescent FA (BODIPY FL C16, PA, 10 μM) were elevated and the colocalization of FA with peroxisomes 
were enhanced when SLC27A2 was overexpressed in CRC. C ~ D The function and number of peroxisomes, uptake level of fluorescent FA, and 
colocalization diminished when SLC27A2 was knocked down in CRC. NC: negative control; OE: over expression; PMP70: belonged to the superfamily 
of ATP-binding cassette (ABC) transporters, also named ABCD3 (ATP Binding Cassette Subfamily D Member 3)

Fig. 5 SLC27A2 reprogrammed colorectal cancer nongenic crosstalk regulation of PPARs. A The protein expression levels of SLC27A2, PPARG, 
p-GSK3β, GSK3β, p-Erk, and Erk when SLC27A2 was overexpressed. The grouping of blots cropped from diferent gels. The blots were cut prior to 
hybridisation with antibodies. The raw data with detail description and multiple exposure images was shown in Supplementary Fig. 1. The relative 
levels of SLC27A2, PPARG, p-GSK3β/GSK3β, and p-Erk/Erk in HCT-15 and SW480 between NC group and OE group. C The protein expression levels 
of SLC27A2, PPARG, p-GSK3β, GSK3β, p-Erk, and Erk when SLC27A2 wasknocked down. The grouping of blots cropped from diferent gels. The blots 
were cut prior to hybridisation with antibodies. The raw data with detail description and multiple exposure images was shown in Supplementary 
Fig. 1. D The relative levels of SLC27A2, PPARG, p-GSK3β/GSK3β, and p-Erk/Erk in HCT-15 and SW480 between siNC group and siR3 group. E The 
graphic abstract of SLC27A2 reprogramming colorectal cancer. SLC27A2: Solute carrier family 27 member 2; NC: negative control; OE: over 
expression; PPARG: Peroxisome proliferator activated receptor G; GSK3β:Glycogen Synthase Kinase 3 Beta; PPARG: Peroxisome proliferator activated 
receptor G; RXR: retinoid X receptor; FAs: Fatty acids; FATP2: Fatty acid transport protein 2

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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coordinate immunosurveillance [39]. MDSCs mediates 
immune escape in cancer progression. FATP2 was exclu-
sively elevated in MDSCs and regulated the function of 
MDSCs via the lipid metabolic pathways [17]. Target-
ing FATP2 could modulate lipid metabolism and reduce 
reactive oxygen species (ROS) production in MDSCs, 
thus enhancing ICIs efficacy [40]. In addition, FATP2 
regulated lipids metabolism in melanoma and induced 
resistance to targeted therapy. Inhibiting FATP2 strongly 
overcame the phenotype [37]. PPARs regulate cancer cell 
progression through crosstalk with oncogenes or sup-
pressor genes [41]. Previous study showed that SLC39A1 
impaired tumor metabolism and regulated ell prolifera-
tion, migration, and cell cycle through the PPAR cross-
talk regulation in renal cell carcinoma (RCC) [42]. In our 
research, we investigated the crosstalk between PPARs 
and SLC27A2, and found non-genic crosstalk regulation 
of PPARs through p-Erk/Erk and p-GSK3β/GSK3β to 
influence FA metabolic reprogramming in CRC. Taken 
together, these findings might provide novel insights for 
cancer treatment. Targeting SLC27A2/FATP2 or PPARs 
may identify new anti-tumor strategies, especially in 
metabolic therapy, immunotherapy, targeted therapy, 
immunometabolism or combinations.

Conclusions
In our study, we verified that SLC27A2 was overexpressed 
in CRC and that SLC27A2 mediated FAO metabolism 
through non-genic crosstalk regulation of the PPAR 
pathway in CRC. Targeting metabolic reprogramming in 
cancers might provide new insights for anti-tumor strat-
egies. Targeting SLC27A2/FATP2 or PPARs might be a 
new strategy for cancer treatment.
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